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Abstract—A virtual assistant has a huge impact on business 

and an organizations development. It can be used to manage 

customer relations and deal with received queries, 

automatically reply to e-mails and phone calls.Audio signal 

processing has become increasingly popular since the 

development of virtual assistants. Deep learning and audio 

signal processing advancements have dramatically enhanced 

audio tagging. Audio Tagging (AT) is a challenge that 

requires eliciting descriptive labels from audio clips. This 

study proposes an Optimized Deep Neural Networks Audio 

Tagging Framework for Virtual Business Assistant to 

categorize and analyze audio tagging. Each input signal is 

used to extract the various audio tagging features. The 

extracted features are input into a neural network to carry 

out a multi-label classification for the predicted tags. 

Optimization techniques are used to improve the quality of 

the model fit for neural networks. To test the efficiency of the 

framework, four comparison experiments have been 

conducted between it and some of the others. From these 

results, it was concluded that this framework is better than 

the others in terms of efficiency. When the neural network 

was trained, Mel-Frequency Cepstral Coefficient (MFCC) 

features with Adamax achieved the best results with 93% 

accuracy and a 0.17% loss. When evaluating the performance 

of the model for seven labels, it achieved an average of 

precision 0.952, recall 0.952, F-score 0.951, accuracy 0.983, 

and an equal error rate of 0.015 in the evaluation set 

compared to the provided Detection and Classification of 

Acoustic Scenes and Events (DSCASE) baseline where he 

achieved and accuracy of 72.5% and a 0.209 equal error rate. 

Keywords—audio tagging, Deep Neural Networks (DNNs), 

optimizations, Detection and Classification of Acoustic 

Scenes and Events (DCASE) 

I. INTRODUCTION

Audio signal processing is the operation of applying 

powerful methods and techniques to audio signals [1]. 

Devices such as smartphones have been increasingly 

popular in recent years, and communicating remotely via 

the internet has become the preferred way to connect over 

face-to-facemeetings. However, auditory noise, distortion, 

and echo are unavoidable in any communication process. 

Every day, millions of multimedia recordings are created 

and published on the Internet as a result of the widespread 

use of electronic communication. These recordings 

contain a variety of media, including music, news 

broadcasts, television shows, and science articles. 

Recently, audio analysis has attracted a lot of interest from 

researchers. In reality, audio rarely comes from a single 

source but rather from a blend of sounds from various 

sources.  Therefore, audio pattern recognition is a critical 

research topic in the field of machine learning and 

performs a significant role in our daily lives, e.g., for 

automatic audio tagging [2], audio segmentation [3], and 

audio context classification [4, 5]. 

The goal of Audio Tagging (AT) is to label a sound clip 

with one or more tags. “Tags” is the sound events that 

happen in the audio recording., such as “speaking”, “TV 

sound”, “Clapping”, “car”, and others. Audio labelling 

technology can be utilized in a variety of applications 

including lifelogging [6], medical activity surveillance [7], 

and so on. 

Early, Special data sets collected by individual 

researchers were used for audio pattern recognition [8, 9]. 

For instance, Woodard [8] has implemented a Hidden 

Markov Model (HMM) to categorize three kinds of sounds: 

The wooden door was opened and closed, metal was 

dropped, and water was poured. Recently, the Detection 

and Classification of Acoustic Scenes and Events (DCASE) 

challenge series [10–13] has presented publicly available 

datasets, such as acoustic scene classification and sound 

event detection datasets. 

For the musical tagging task, deep learning methods 

have proved their efficiency [14, 15]. Deep learning-based 

techniques have also been used for environmental audio 

tagging, it is a suggested task in the DCASE 2016 

challenge [16] based on the CHiME-home dataset [17]. 

Until now, most of the audio-related recognition 

systems have been used, features are extracted from the 

frequency domain of the audio signal [18], such as Mel 

Frequency Cepstral coefficients (MFCCs) [19], log-

frequency filter banks [20], and time-frequency filters [21]. 

The task of audio tagging has been extensively studied. 

The Gaussian Mixture Model (GMM) is trained on 

MFCCs [22], Convolutional Neural Networks (CNNs) 
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with input features Constant-Q-Transform [23], and deep 

neural networks with inputs from the Mel Filter Bank [24]. 

This study presents an Optimized Deep Neural 

Networks Audio Tagging Framework for Virtual Business 

Assistant for audio signal classification. First the features 

are extracted from the input signal, and then these features 

are input into a neural network for classifier. Adamax 

optimizer is used to optimize the parameters of the neural 

network. This study is organized as follows: Section II 

discusses related work, while Section III discusses the 

proposed Optimized Deep Neural Networks Audio 

Tagging Framework for Virtual Business Assistant. 

Section IV discusses the experimental results. Finally, the 

conclusion and future work are presented in Section V. 

II. RELATED WORK 

The DCASE challenge is a set of tasks designed to 

improve sound classification and detection systems. 

The audio files for the challenge have two limitations 

that make the tagging task difficult. The first is 

environmental noise, which occurs because the recordings 

are taken in real-world environments. Therefore, it is 

necessary to choose a strong environmental noise 

resistance model for audio tagging. 

The second limitation is that multiple sound sources can 

exist in a single recording. As a result, the classification 

model must be able to model and recognize multiple sound 

sources at the same time. 

So, we must choose the optimal feature that is related to 

the problem and will solve it, the best deep learning model 

for classifier and optimizer, to improve efficiency, reduce 

resource consumption, and reduce time. Previously for the 

audio tagging task. The GMM was trained on audio 

features such as the DSCASE 2016 base line [22, 24], 

where GMM was trained on Mel frequency correlation 

coefficients and achieved an accuracy of 72.5% and a 

0.213 equal error rate on the evaluation set. However, 

neural networks such as Recurrent Neural Network (RNN), 

Deep Neural Network (DNN), and CNN were trained on 

audio features. 

Lars and Phan et al. [25] performed multi-label 

classification for audio tagging, a short-time Fourier 

transform was used to extract features from audio signals, 

which were then fed into a convolutional neural network 

with masked global pooling. They achieved an overall 

accuracy of 84.5% and an Equal Error Rate (EER) of 0.17 

on average. 

In Xu and Huang et al. [26], the Mel-Frequency 

Cepstral Coefficients and mel filter bank features were 

employed, and these were fed into a deep neural network 

with an SGD optimizer. The MFCC Feature produced 

results with an EER of 0.168 on average. The MFB Feature 

produced results with an EER of .157 on average. It turns 

out that the MFB feature outperforms the MFCC feature, 

so it took the MFB feature and tested it with another 

network that has a Denosing Autoencoder (DAE) with 

SGD optimizer and achieved results with an average EER 

of 0.148. 

In Kong et al. [27], for feature extraction, 40 Mel-filter 

bank features are used. These features are input to Deep 

neural network with SGD optimizer for Classification. 

They achieved an overall EER of 0.209. 

In Vu and Wang [28], a MFCCs input feature signal was 

used, each audio chunk was preprocessed by segmenting it 

with an .04-ms sliding window with a hop size of .02 ms 

and converting it to 13-dimensional MFCCs. The RNN 

system achieved a 0.200 EER. 

In Xu and Kong [29], a Convolutional Gated Recurrent 

Neural Network (CGRNN), which is a hybrid of the CNN 

and the gated recurrent unit, was used. Three features, such 

as MFBs and spectrograms, as well as raw waveforms, 

were used to extract features from audio, and these features 

were fed into the CGRNN. To classify audio tagging, 

spatial features such as Interaural Phase Differences (IPD) 

or Interaural Time Differences (ITD) and Interaural Level 

Differences (ILD) are incorporated in the hidden layer. It 

looks like IMD has some meaningful patterns, whereas the 

ILD and IPD appear to be random, which would 

exacerbate the classifier’s training difficulties. The 

spectogram achieved 0.110. The spectogram with the 

IMDs can get the EER of 0.104. The raw waveforms 

achieved 0.127. The raw waveforms with the IMDs can get 

the EER of 0.106. The MFBs achieved 0.119 and MFBs 

with the IMDs could procure the bare minimum of EER, 

which is 0.102. 

III. THE PROPOSED OPTIMIZED DEEP NEURAL NETWORK 

AUDIO TAGGING FRAMEWORK FOR VIRTUAL BUSINESS 

The proposed Optimized Deep Neural Networks Audio 

Tagging Framework for Virtual Business Assistant 

consists of three layer as follows: The Data preparation 

layer, data modeling layer, and prediction layer (see Fig. 

1). 

A. Data Preparation Layer 

1) Audio signal representations  

The extraction of audio features is an important process 

in audio signal processing, which is a subcategory of signal 

processing. It deals with audio signal processing. By 

transforming digital and analogue signals, it eliminates 

background noise and balances the time-frequency ranges. 

It concentrates on arithmetic methods for changing sounds. 

Each audio signal contains numerous characteristics or 

features [30]. So, we should extract the features that are 

pertinent to the issue we are trying to solve. 

An audio signal is a signal containing information in the 

audible frequency range. Audio is produced by the shaking 

of a body, and that shaking causes the wiggle of air 

particles, which leads to a change in air pressure. The 

combination of high and low air pressure causes a wave, 

and we can represent this wave using wave form, as shown 

Fig. 2. 

A Fourier transform is used to decompose complex 

periodic audio into a sum of sine waves oscillating at 

different frequencies.  

The Fast Fourier Transform (FFT) is a significant 

analytical technique in the field of audio. It decomposes a 

signal into its spectroscopic system and offers information 

about the signal’s frequency. 
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Figure 1. The proposed optimized deep neural networks audio tagging framework for virtual business assistant. 

 
Figure 2. Plot audio wave in time domain. 

 

Figure 3. Plot FFT of the audio. 

Note that when we do Fourier transform basically we 

move from the time domain to the frequency domain, as 

shown Fig. 3 and because of it we lose information about 

time. at first, it seems we lost a lot of information. but there 

is a solution to that, and it’s called spectrogram, as shown 

in Fig. 4. Another feature that is fundamental and as 

important as spectrogram for deep learning, it called Mel 

Frequency Cepstral Coefficient (MFCC), as shown in 

Fig. 5. 

 

Figure 4. Plot STFT of the audio. 

 

Figure 5. Plot MFCCs of the audio. 

2) Data preprocessing  

Original data sometimes contains noise, is incomplete, 

or is in an unsuitable format that makes it difficult to use it 

directly in deep learning models. Data preprocessing is one 

of the missions essential to purifying the data, which 

makes it fit for a deep learning model. Data preprocessing 

refers to the techniques that must be followed to transform 

or encode data in order for it to be conveniently analyzed 

by a machine. 
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Encoding Categorical data is information that has 

distinct categories within a data set. The machine learning 

model is based entirely on mathematics and numbers. 

However, if our dataset included a categorical variable, 

then it may cause issues during the model’s construction. 

So, these category variables should be encoded as 

numbers [31]. 

Feature scaling is a method for standardizing 

independent features in a dataset on the same scale. The 

feature selection helps to perform calculations in 

algorithms extremely rapidly. It is a significant element in 

data preprocessing. A standardization technique is used. It 

is a very efficient technique that rescales the feature value 

so that it has a distribution of 0 mean and variance equal 

to 1 [32]. 

Here’s the formula for standardization value: 

 𝑋𝑛𝑒𝑤 =
𝑥𝑖−𝑥𝑚𝑒𝑎𝑛

 standard deviation
  (1) 

Data set splitting: a data set splitting strategy is required 

for building a model with good generalization performance. 

B. The Data Modeling Layer 

Deep Neural Network (DNN) is a non-linear multi-layer 

model that can be used for classification [33] or 

regression [34] task. In the case of our audio classification 

issue, the input denotes the chain of audio features [35, 36], 

such as MFCC and STFT. 

A DNN structure consists of three layers: input, hidden, 

and output. Fig. 6 shows the DNN structure. The hidden 

layer may have two or more layers, whereas the input and 

output layers are single layers. The hidden layer contains a 

set of neurons. The parameters used in a neural network 

are shown in Table I. The input layer receives data features. 

After processing in the hidden layers, prediction values are 

produced from the output layer. 

 
Figure 6. The deep neural network structure used in deep learning layer of ODLAT framework. 

TABLE I.  PARAMETERS OF THE NEURAL NETWORK 

NN Parameter Values 

Classifier  Sequential 

No of Hidden layer 2 

No of Neuron in first hidden layer 1000 

No of Neuron in second hidden layer 700 

Hidden activation function ReLU 

Output activation function  Softmax 

Optimizer  Adamax 

loss function Categorical cross entropy 

Batch Size  100 

No of Epoch s 100 

Learning rate 0.005 

momentum 0.9 

 

Neural networks are prone to over-fitting as a result of 

the vast number of variables. Dropout is a regularization 

method that avoids over-fitting in neural networks. 

Dropout denotes the elimination of all incoming and 

outgoing connections as well as all hidden and visible units 

from a neural network. Each neuron in a neural network is 

eliminated with a probability of 0.5 during each training 

iteration of the original approach, and all neurons are 

included during testing [37]. 

C. Optimizer 

During the training of the deep learning model, we have 

the function of loss. which tells us about the weakness of 

the model at the moment. So, we must utilize this loss to 
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train our network to do well. Basically, what we have to do 

is use the loss and try to reduce it.  

Because reducing the loss makes the model work better. 

An optimizer’s primary function is to change the neural 

network’s parameters for example weights and learning 

rate. As a consequence of this, it aids in lowering overall 

loss and improving accuracy [38]. The Adamax optimizer 

is employed in this study. 

D. The Prediction Layer  

This layer presents the whole results obtained from the 

proposed framework. 

IV. THE EXPERIMENTAL RESULTS  

A. Data Set DCASE2016 for Audio Tagging 

The study has been applied to the CHIME-HOME 

dataset of the DCASE 2016 For challenging audio tagging. 

The audio recordings were created in a domestic 

environment [39]. The audio data is presented as 4-second 

chunks at a sampling rate of 16 kHz. There are 7 labels that 

appear in audio segments as shown in Table II, Besides, 

Sounds issued from outside the house. 

Alternate input features for audio tagging include 

MFCC and SSFT. Each audio chunk was preprocessed by 

segmenting it with a 20 ms sliding window and a 10 ms 

hop size, then converting it to 13-dimension MFCCs and 

13-dimension stft with 320 window length and 160 hop 

size. 

TABLE II.  LABELS OF AUDIO DATA SET 

Event Description Label/Audio events 

Broadband noise b 

Child speech c 

Adult female speech f 

Adult male speech m 

Other identifiable sounds o 

Percussive sound events p 

Video game / TV v 

B. Confusion Matrix 

A confusion matrix is utilized to evaluate a classifying 

algorithm’s performance. The confusion matrix is a table 

that summarizes the number of accurate and inaccurate 

predictions that are created by the classifier (or 

classification model) for binary classification tasks. A 

confusion matrix is a N  N matrix that is utilized to assess 

the efficiency of a classification model, in which N as the 

number of target classes. 

TP: True Positive: The actual value was positive and the 

model anticipated a positive value. FP: False Positive: 

Your prediction is positive, and it is false. FN: False 

Negative: Your prediction is negative, and result it is also 

false. TN: True Negative: The actual value was negative 

and the model predicted a negative value. Table III shows 

evaluation metrics that are driven from the confusion 

matrix. 

A model with a lower EER is considered more accurate, 

whereas a model with a higher Accuracy Coefficient (ACC) 

is considered to be superior. Precision (PREC), recall 

(REC), and F-score are other metrics used to assess the 

performance of models [40]. 

TABLE III.  THE MAIN EVALUATION METRICS 

Measure Formula 

ACC (TP+TN)/ (TP+TN+FN+FP) 

ERR (FP+FN)/ (TP+TN+FN+FP) 

REC TP / (TP+FN) 

PREC TP / (TP+FP) 

F(score) 2PRECREC/ (PREC+REC) 
 

C. Experiment Result Number One: Test DCASE 2016 

Accuracy 

This experiment is designed to evaluate the proposed 

framework’s accuracy and loss. The data set DCASE2016 

Task4 was used [41, 42]. The MFCCs and STFT features 

were employed. These features were trained using a deep 

neural network with two hidden layers: an input layer and 

an output layer. Adamax is used as an optimizer, and the 

cost function is binary cross entropy. After the time period 

specified, the training process comes to an end (100 epoch). 
 

 

Figure 7. MFCCs Adamax accuracy and STFT Adamax accuracy by 

epoch. 

 

Figure 8. MFCCs Adamax loss and STFT Adamax loss by epoch. 

As shown in Fig. 7, the accuracy of the feature MFCC 

with Adamax optimizer is better than that of the STFT with 

Adamax optimizer. At epoch 100, the accuracy of the 

MFCC-Adamax optimizer is 95% and the accuracy of the 

STFT Adamax optimizer is 93%. In Fig. 8, the loss of the 

Adamax optimizer is better than the Adam optimizer. At 

epoch 100, the loss of the Adamax optimizer is 0.17%. The 

loss of the STFT Adamax optimizer is 0.22% (see Table 

IV). 
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TABLE IV.  THE LABELS OF AUDIO DATA SET 

Description Label 

Child speech c 

Adult male speech m 

Adult female speech f 

Video game /TV v 

Percussive sounds, e.g. crash, bang, knock, footsteps p 

Broadband noise, e.g. household appliances b 

Other identifiable sounds o 

Silence / background noise only s 

Flag chunk (unidentifiable sounds, not sure how to label) u 

D. Experiment Result Number Two: Test Accuracy 

This experiment elucidates the ACC of the proposed 

framework for seven tags, which measures the number of 

correct predictions for the framework. The results in Table 

V show that ACC in MFCC with Adamax optimizer 

outperforms ACC in STFT with Adamax optimizer. In the 

development set, the average accuracy increased from 

0.991 to 0.994, and in the evaluation set, it increased from 

0.983 to 0.966. 

E. Experiment Result Number Three: Test Equal Error 

Rate 

1) Evaluate the proposed framework 

The Equal Error Rate (ERR) is tested in this experiment. 

Table VI displays the outcomes. For seven tags, EER from 

the proposed framework shows that EER in the MFCC 

Feature with Adamax optimizer is better than in the STFT 

with Adamax optimizer [43]. In the development set, the 

average EER decreased from 0.027 to 0.007, and in the 

evaluation set, it decreased from 0.023 to 0.015. 

2) Overall evaluations 

Table VII compares EER on seven labels between [24-

28], and the proposed framework. where the proposed 

frame work is superior, with EER decreasing from 0.209 

in [24] to 0.015 in the proposed MFCCs feature frame 

work. 

F. Experiment Result Number Four: Test the Precision, 

Recall and F-Score 

This experiment clarifies the tests of precision, recall, 

and f-score of the proposed framework. The table 

summarizes the performance of DCASE2016 Task4 for 

seven tags. As shown in Table VII, the MFCC Adamax 

optimizer is better than the STFT Adamax optimizer, 

where precision increased from 88% to 95.2%, recall 

increased from 88.3% to 95.2%, and F-score increased 

from 85.3% to 95.1%. 

V. THE CHALLENGES AND LIMITATIONS OF DSCASE 2016 

DATA SET 

The challenges that have been met are the limitations 

that must be followed when dealing with data in order to 

improve the result and obtain a lower error rate and reduce 

noise. 

Specified the labels used in the study: In a DSCASE 

challenge, for example, the audio has nine labels, as shown 

in Table VIII, but the maximum number of labels allowed 

is seven. An author can assign any subset of labels to an 

audio clip. They can only be set separately, with the 

exception of the labels S and U. 

Optimizing the feature: Because each audio signal 

contains many features, we must select the feature that best 

fits the problem we want to solve. Algorithms for audio 

signal processing analyze signals, extract features, and 

detect the presence of any pattern in the signal. 

The audio files for the challenge have limitations that 

make tagging difficult. The first source of noise is 

environmental noise, which occurs because the recordings 

are made in real-world settings. As a result, for audio 

tagging, a strong environmental noise resistance model is 

required. The second limitation is the presence of multiple 

sound sources in a single recording. As a result, the 

classification model must be capable of modelling and 

recognizing multiple sound sources simultaneously. 

So, in our future work, we must select the optimal 

feature that is related to the problem and will solve it, such 

as the Mel filter bank, as well as the best deep learning 

model for a classifier, such as the denoising autoencoder, 

and another optimizer, such as AdamW, to improve 

efficiency, reduce resource consumption, and reduce time 

(see Table IX). 

TABLE V.  ACCURACY RESULTS OBTAINED FROM THE PROPOSED FRAME WORK 

Tags b c f m o p v Average 

Development Set 

MFCC-DNN(Adamax-opt) 0.999 0.990 0.977 0.988 0.993 0.997 0.994 0.994 

STFT-DNN(Adamax-opt) 0.998 0.981 0.995 0.996 0.990 0.991 0.989 0.991 

Evaluation Set 

MFCC-DNN(Adamax-opt) 0.998 0.962 0.991 0.993 0.972 0.989 0.977 0.983 

STFT-DNN(Adamax-opt) 0.994 0.925 0.981 0.984 0.961 0.964 0.956 0.966 

TABLE VI.  EER COMPARISONS BETWEEN THE RESULTS OBTAINED FROM THE PROPOSED FRAMEWORK  

Tags b c f m o p v Average 

Development Set 

MFCC-DNN (Adamax-opt) 0.004 0.019 0.003 0.002 0.012 0.006 0.008 0.007 

STFT-DNN (Adamax-opt) 0.005 0.080 0.010 0.008 0.030 0.020 0.040 0.027 

Evaluation Set 

MFCC-DNN(Adamax-opt) 0.001 0.037 0.008 0.006 0.027 0.010 0.022 0.015 

STFT-DNN(Adamax-opt) 0.003 0.061 0.012 0.009 0.023 0.018 0.039 0.023 
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TABLE VII.  PRECISION, RECALL, AND COMPARISONS BETWEEN THE RESULTS OBTAINED FROM THE PROPOSED FRAMEWORK 

  Evaluation set b c f m o p v Average 

Precision 
STFT-DNN(Adamax-opt) 0.983 0.804 0.917 0.908 0.848 0.869 0.836 0.880 

MFCC-DNN(Adamax-opt) 0.987 0.946 0.964 0.967 0.895 0.974 0.935 0.952 

Recall 
STFT-DNN(Adamax-opt) 0.980 0.629 0.941 0.994 0.891 0.894 0.855 0.883 

MFCC-DNN(Adamax-opt) 1.000 0.806 0.992 1.000 0.961 0.959 0.948 0.952 

F-score 
STFT-DNN(Adamax-opt) 0.981 0.706 0.894 0.935 0.819 0.818 0.819 0.853 

MFCC-DNN(Adamax-opt) 0.994 0.871 0.977 0.983 0.927 0.967 0.942 0.951 

TABLE VIII.  SUMMARY AND COMPARISON OF PREVIOUS STUDIES AND THE PROPOSED FRAMEWORK 

Ref Year 
System Characteristics Equal Error Rate (Average) 

Accuracy 
Features Classifier Optimizer (evaluation dataset) (development dataset) 

23 2016 CQT Features CNN SGD 0.178 0.166  

24 2016 MFCCs  GMM  0.209 0.213 72.5% 

25 2016 STFT CNN Adam 00.210 0.174 84.50% 

26 2017 MFCCs DNN SGD 0.168 0.151 - 

26 2017 MFBs DNN SGD 0.157 0.135 - 

26 2017 MFBs  DAE SGD 0.148 0.126 - 

27 2016 MFBs DNN SGD - 0.209 - 

28 2016 MFCCs RNN ADADELTA 0.20  - 

The Proposed 

framework 

- STFT DNN Adamax 0.023 0.027 93% 

- MFCCs DNN Adamax 0.015 0.007 95% 

TABLE IX.  SUMMARY AND COMPARISON OF PREVIOUS STUDIES AND THE PROPOSED FRAMEWORK ON SEVEN LABELS ON THE EVALUATION SET 

Ref. [24] [25] [26] [27] [28] [29] 
Proposed Framework 

STFT 

Proposed Framework 

MFCC 

Broadband noise 0.117 0.18 0.014 0.039 0.11 0.150 0.003 0.001 

Child speech 0.191 0.20 0.210 0.195 0.21 0.145 0.061 0.037 

Adult female speech 0.314 0.23 0.207 0.229 0.26 0.143 0.012 0.008 

Adult male speech 0.326 0.06 0.149 0.280 0.24 0.031 0.009 0.006 

Other identifiable sounds 0.249 0.19 0.256 0.272 0.29 0.0135 0.023 0.027 

Percussive sound events 0.212 0.11 0.175 0.221 0.23 0.013 0.018 0.010 

TV sound 0.056 0.24 0.022 0.090 0.06 0.248 0.039 0.022 

Average 0.209 0.17 0.148 0.189 0.20 0.123 0.023 0.015 

 

VI. DISCUSSION  

It is found from the Overall evaluations the following: 

Table VI compares EER on seven labels between [24–29] 

and the proposed framework. The results obtained showed 

that the proposed framework is superior, with EER 

decreasing from 0.209 in [24] to 0.015 in the proposed 

MFCCs feature framework. 

Table V demonstrates the summary and comparison of 

previous studies and the proposed framework. The 

proposed framework processes input signals using MFCCs 

and STFT features to extract features or characteristics 

from the audio signal, and these features are then entered 

into the deep neural network with the Adamax optimizer. 

But in In Lidy and Schindler [22], a CQT feature was used 

and then input to CNN with the SGD optimize.In Lars and 

Phan et al. [25], a short-time Fourier transform feature was 

used and then fed into a convolutional neural network with 

masked global pooling with Adam optimizer.In Xu and 

Huang [26], Mfccs and mfbs were used, and then features 

were added to DNN and MFBs were input to the DAE. In 

Kong et al. [27], a mel filter bank feature was used and 

then input to DNN with the SGD optimize. In Vu and 

Wang [28], the MFCCs feature was used and then input to 

RNN with the ADADELTA optimize. Audio signal 

processing is very critical and challenging topic that has a 

great impact on different real life applications. For 

example, health-related activity monitoring, robotic 

systems, virtual assistants and Metaverse. 

VII. CONCLUSIONS 

In this study, we have examined the modelling and 

acoustic feature learning problems in audio tagging. We 

introduce the proposed Optimized Deep Neural Networks 

Audio Tagging Framework for Virtual Business Assistant 

trained on the DCASE 2016 data set for audio pattern 

recognition. MFCCs and STFT were used to extract 

features from the audio signal. It has been proven that 

MFCC feature and DNN can be used effectively for 

automatic labelling and classification of audio. A dropout 

was also used to avoid the neural network’s over-fitting. 

Adamax is used as an optimization technique. In future 

work, this study will be implemented to the DAE. It might 

result in more high-level features being extracted for the 

audio tagging challenge. To more to evaluate the proposed 
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model, bigger datasets such as YouTube-8M dataset [44] 

would be regarded. 
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