
Automated Resource Management System Based

upon Container Orchestration Tools Comparison

B. Purahong, J. Sithiyopasakul, P. Sithiyopasakul, A. Lasakul, and C. Benjangkaprasert *

Computer Engineering Department, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang,

Bangkok, Thailand; Email: boonchana.pu@kmitl.ac.th (B.P.), 63601074@kmitl.ac.th (J.S.),

paisan.si@kmitl.ac.th (P.S.), attasit.la@kmitl.ac.th (A.L.)

*Correspondence: chawalit.be@kmitl.ac.th (C.B.)

Abstract—The goal of this article is to study and analyze the

container orchestration technology Kubernetes, Docker

Swarm, and Apache Mesos by performing performance

evaluations and inspecting how many requests and

responses the server can handle. Due to the fact that

managing information system resources is a challenge in

terms of performance, usability, reliability, and the cost of

information resources. Some orchestration tools cannot

automatically allocate resources depending on the scope of

the information system resource management. This leads to

allocating resources more than the needs of system

requirements, resulting in excessive costs. Therefore, this

article proposed testing the system by measuring its

effectiveness using a structured process by examining

measurement variables such as the number of requests per

second, number of responses to requests, and resource

extension period using all three-orchestration technology.

From the testing and analysis of all three variables as

mentioned, it is possible to know the efficiency of the

Kubernetes technology in such a similar environment and

compared it with other orchestration tools like Docker

Swarm and Apache Mesos orchestrator. For Kubernetes,

Docker Swarm, and Apache Mesos, the mean value of its

handling average request per minute is 30,677.25/min,

33,688.67/min, and 29,682.6/min, respectively. Swarm

performed better in aspects of handling requests per minute

by 9.35% of the difference when compared to Kubernetes

and by 12.64% when compared to Apache Mesos. However,

there are several things which should be taken into

consideration because each orchestration tool has its own

strong and weak points. The testing experiment could

display a piece of information on the dashboard for

visualization and analytic purposes and there is an

elaboration at the end of when to use which container

orchestration tool to suit the business proposes the most.

Keywords—resource management system, Kubernetes,

docker swarm, Apache Mesos, container orchestration

I. INTRODUCTION

To obtain the optimal results of how the server can

handle massive requests, it is always possible when the

server receives too many requests in a short period of

time causing the server down which in real-world

Manuscript received July 1, 2022; revised August 12, 2022; accepted

November 11, 2022; published June 1, 2023.

production this problem directly affects the benefits and

loss for the company which in this aspect is very crucial.

Therefore, this proposed research will greatly help user to

understand which of the container orchestration tools are

the most suitable choice for them together with the

elaboration of pros and cons of each orchestration tools.

Nowadays, cloud computing is used to supply

information resources, and there are multiple cloud

providers to choose from, including Azure Cloud

Services, Amazon Web Services, and Google Cloud

Platform. The open-source community’s most popular

platforms for coordinating containers include

Kubernetes [1–7], Docker swarm [4, 8–10], and Apache

Mesos [11]. The allocation of information system

resources can generally be done by the system

administrator to allocate the resources and fix when the

system is not working normally, but now there is

Kubernetes technology (K8S) [1] that can manage

information resources automatically such as creating new

Virtual Machines based on the number of requests that

come to the system.

There is one K8S autoscaling system that estimates

resource requirements called Resource Utilization Based

Autoscaling System (RUBAS) which could adjust the

allocation of running containers in a K8S cluster [1]. Also,

it is possible to adjust and address the problem of

managing resources with the use of absolute metrics [2]

which results in enabling more accurate scaling decisions

when facing CPU intense workload. Ferreira and

Sinnott [3] showed how they experimented on relative

usage measures that show how to assess the performance

of Kubernetes Horizontal Pod Auto-Scaling (KHPA) to

analyze more in CPU utilization and response time. K8S

must be configured since system design to comply with

K8S limitations, K8S users must understand HTTP,

Application Programming Interface, and Microservice

design [12–14]. Moreover, for the aspects of the

reliability of the deployed server, it is very crucial to

always keep the server running even when there is a

scenario where the server handles an intense workload.

II. HYPOTHESIS AND RESEARCH SCOPE

The hypothesis for this research is K8S orchestration

tools can be configured and adapted more to get better

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

501doi: 10.12720/jait.14.3.501-509

javascript:;

results in terms of handling massive requests in a short

period of time. To be specific, the Horizontal Pod

Autoscaler (HPA) configuration or Horizontal Pods

AutoScaling would have a big role to get better

performance and could receive more requests when

compared to a default configuration deployment.

When it comes to K8S and Docker Swarm comparison,

it was known that in Docker Swarm there is no auto-

scaling provided by service. Instead, Swarm only

supports scaling up or down manually with commands.

Therefore, K8S might have a better performance in

aspects of auto-scaling with HPA and might handle

requests from users greatly and better than Docker

Swarm.

The objective of this research is a presentation of an

automated information resource management system

based on Kubernetes technology, Docker Swarm, and

Apache Mesos (DC/OS). Which featured to reduce the

cost of deploying Cloud services and to increase the

reliability of the system. The system consists of

Kubernetes managing all available information resources.

The system operates based on the amount of user traffic

passing through the HTTP channel at the time; as access

increases or decreases, the system instructs the Virtual

Machines to increase or decrease the number of services.

While the Admin is only responsible for observing the

system from a distance, there is no need to manually

allocate the system. Kubernetes is known for its

scalability, and it includes a number of tools that allow

both infrastructure and applications to be hosted on it to

scale the workload based on requisition, efficiency, and

configured metrics. When diving into managing the

resources, it is crucial for operating applications once

they are in production. Therefore, the tests were

conducted which to solve the problem of how to make the

Kubernetes server be able to handle a massive workload

without having any traffic failures. Moreover, there are

some comparisons on configuring and optimizing the

usage of resources by adjusting the HPA configuration to

obtain the optimal results and compare with other

orchestration tools such as Docker Swarm and Apache

Mesos which has functionality similar to the Kubernetes

orchestration tool.

III. SYSTEM DESIGN AND DEVELOPMENT

A. Kubernetes, Docker Swarm, and Apache Mesos

System Design Comparison

Fig. 1 shows the overall system design workflow

diagram of K8S, Docker Swarm, and Apache Mesos in

comparison. In which one thing that these three tools

have in common is these individuals were deployed by

using Google Cloud Platform. Moreover, the deploying

processes of these three tools are quite similar including

uploading an image, configuring the deployment file, and

measuring the outcome efficiency. All of the mentioned

processes require some fundamental knowledge of

container technology which is based on Docker. Despite

the aforementioned, there are some noticeable differences

in Apache Mesos when compared to others due to the fact

that Apache Mesos itself requires terraform as an external

service in order to make the deployment successful.

Figure 1. Flow diagram of Kubernetes, docker swarm, and Apache

Mesos results comparison.

Figure 2. The overall architecture of Kubernetes.

Fig. 2 shows the K8S cluster’s overall system structure.

It consists of two types including the master node and

slave node or worker node. K8S cluster can consist of

multiple master nodes for high availability. However, by

default, there is a single master node which is a

controlling node for others slave nodes or nodes that are

not masters. In each slave node, there are containerized

applications that were deployed and encapsulated in a

pod. The master node consists of various components.

For instance, kube apiserver, kube controller manager,

cloud controller manager, and kube scheduler. The master

node is responsible for monitoring and controlling the

usage of each slave node by displaying it in the form of a

record. This indicates how much computing resources

each node is using. For example, the usage of the

estimator unit, the usage of memory, or even the usage of

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

502

writing and reading from the storage (Read/Write

storage).

Docker Swarm is another open-source container

orchestration platform built and maintained by Docker, as

shown in Fig. 3. Basically, Docker Swarm converts

multiple Docker instances into a single virtual host. A

Docker Swarm cluster generally contains three main parts

including nodes, services and tasks, and load balancers

which the node structure is very similar to K8S but there

are major differences. Unlike K8S, Docker swarm

services can only be scaled with a command and there is

no automatic way to scale. The interaction structure

consists of three main sides. The admin interacts with the

server orchestrator of the Docker Swarm deployment

configuration in the Swarm manager. The admin role is to

configure the application deployment metrics including

choosing the based image and configuring scaling

services. The Docker Swarm Manager itself is the

deployment results of services created from the Nginx

image.

Figure 3. The overall architecture of Docker Swarm.

Figure 4. The overall architecture of Apache Mesos.

As shown in Fig. 4, all running tasks on DC/OS

(Apache Mesos) are containerized and the container can

be started by downloading images from a docker

repository such as Docker Hub. The operating system of

DC/OS is based on Linux which abstracts the cluster

hardware and software resources and provides service on

top of cluster management and container orchestration

functionality. In the DC/OS cluster, it is possible to have

several master nodes to manage the worker nodes or

Mesos agent (Agent node) which in the individual agent

node contained our containerized application or running

Nginx docker images. The purpose of Zookeeper is to

arrange the master node as the Hadoop or MPI scheduler

and Zookeeper is one example of arranging the master

node. DC/OS includes Marathon as a core component for

a scheduler. With Marathon, it provides the ability to

reach extreme scale, scheduling tens of thousands of tasks

across thousands of nodes. It is possible for highly

configurable declarative application definitions to enforce

advanced placement constraints with node, cluster, and

grouping affinities.

B. Based-Line Deployment Configuration and Tools

In this research, the Apache JMeter application was

chosen to test sending HTTP requests to the server

orchestrator and to see how many requests K8S server,

Docker Swarm, and Apache Mesos can handle. Also, the

application was originally designed for testing Web

Applications but has since expanded to other test

functions. There are many other usages that JMeter can

do. For example, analyze and measure the performance

with the built-in integration of a customizable

dashboard [15]. Performance testing means testing a web

application against heavy load, multiple and concurrent

user traffic. The JMeter basic workflow is shown in Fig.

5. Firstly, the JMeter creates a request to the target server

then it collects and calculates statistical information.

Finally, the report is generated whether in form of a

dashboard or table. The test result can be displayed in a

different format such as a chart, table, tree, or even log

file.

Figure 5. Basic workflow of JMeter.

In JMeter, there is one feature that can set up the

number of threads that would like to send., the number of

users (threads) which in the experiment was set up to 400

threads. By the meaning of this, it means that there is a

simulation of sending requests with 400 users

concurrently at the same time. The duration, the based

line of sending a request duration was set up to 600

seconds or 11 minutes.

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

503

The selected based-line Docker image for this

experiment was nginx. Basically, nginx is open-source

software for web serving, reverse proxying, caching, load

balancing, media streaming, and more. The nginx image

was picked because of its HTTP server capabilities and is

also designed for cloud-native architectures. Moreover,

nginx functions as a load balancer for HTTP, TCP, and

UDP servers.

C. Experimental Design on Adjusting CPU Target

Utilization of Kubernetes Horizontal Pod Autoscaler

(HPA) Based on Samples Metrics

In this system design, the K8S usage management of

the metrics resources will be shown. Specifically, using

Horizontal Pod Autoscaler, by adjusting the resources

consumed by the application based on the actual load in

real-time by HPA in K8S supports CPU and memory

metrics. The Horizontal Pod Autoscaler (HPA)

automatically scales the number of replicas according to

the configured metric of target CPU utilization

percentage. In other words, the number of pods in a

replication controller, deployment, replica set, or stateful

set. In this experiment, four target CPU utilization values

will be adjusted and tested to obtain the results which

consist of 20%, 40%, 60%, and 80%, as shown in Table I.

All of the deployment images are nginx and every min

and max replicas metrics were set to 1 and 5 respectively.

TABLE I. CONFIGURATION OF HPA METRICS

Based-line

Images

target CPU

Utilization

Percentage

min

Replicas

max

Replicas

nginx 20% 1 5

nginx 40% 1 5

nginx 60% 1 5

nginx 80% 1 5

D. Experimental Design on Docker Swarm Scaling

Services

Docker Swarm is another open-source container

orchestration platform built and maintained by Docker.

Basically, in Docker Swarm converts multiple Docker

instances into a single virtual host. A Docker Swarm

cluster generally contains three main parts including

nodes, services and tasks, and load balancers which the

node structure is very similar to K8S but there are major

differences. Unlike K8S, Docker swarm services can only

be scaled with a command and there is no automatic way

to scale.

For this system design on Docker swarm manager, for

each service, the number of tasks were declared to be

scaled up or down which includes 1, 3, and 5 replicas, as

shown in Table II. Similar with K8S, Docker Swarm can

also define the actual state and expressed desired state.

The swarm manager node constantly monitors the cluster

state which will reconcile any failures. For instance, if

you set up a service to run 5 replicas of the container, and

a worker machine hosting two of those replicas’ crashes,

the manager will automatically generate two new replicas

to replace replicas that crashed.

TABLE II. DOCKER SWARM SERVICES CONFIGURATION

Based-line Images Number of Scaling services

nginx 1

nginx 3

nginx 5

E. Experimental Design on Mesosphere DC/OS Scaling

Services

For this system design on DC/OS (Apache Mesos), for

each service, the number of instances were declared to be

scaled up or down which includes 1, 3, and 5 instances as

shown in Table III. Similarly with Docker Swarm and

K8S, it can also define the number of deployed instances.

The cluster manager or master node constantly monitors

the cluster state which will reconcile any failures. For

instance, if you set up a service to run 5 services of the

container, and a worker machine hosting two of those

services crashes, the manager will automatically generate

two new services to replace services that crashed [11].

DC/OS includes a group of agent nodes that are

coordinated by a group of the master nodes which is

similar to the K8S master node and worker node structure.

As a cluster manager, it manages both resources and

running tasks on the agent node. The agent node of

DC/OS provides resources, and those resources are

available to registered schedulers. Moreover, a container

platform of DC/OS includes two built-in task schedulers

which are Marathon and DC/OS (Metronome), and two

combined container runtimes (Docker and Mesos). This

functionality can be referred to as container orchestration.

It also supports custom schedulers for handling more

complex application workloads and operational logic.

TABLE III. DC/OS SERVICES CONFIGURATION

Based-line deployed

services
Number of Scaling instances

nginx 1

nginx 3

nginx 5

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the experimental results will be shown

which includes some of the discussion. The experimental

results are divided into three main parts. Firstly, the

results after adjusting the CPU target utilization of

Kubernetes Horizontal Pod Autoscaler (HPA) based on

samples metrics and the resources consumed by the

application based on the actual load in real-time by HPA

in K8S supports CPU and memory metrics [15]. Secondly,

the experimental results on Docker Swarm scaling

services which in Docker Swarm converts multiple

Docker instances into a single virtual host. Finally, the

comparison of how both of these orchestration tools can

handle a massive request which is a comparison between

K8S and Docker swarm.

A. Experimental Results on Adjusting the Kubernetes

Horizontal Pod Autoscaler (HPA)

The Kubernetes CPU target utilization adjustment of

the metrics resources is shown. The adjustment of HPA

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

504

based on actual load automatically scales the number of

replicas according to the configured metric of target CPU

utilization percentage which includes 20%, 40%, 60%,

and 80% to see the performance of how the individual

adjustment can handle requests the best by letting users

send requests for 400 threads at the same time with

duration of 11 minutes. Fields that were selected to be

shown from the table are as follows: Time (Min),

response code status 200 (Successfully sent request), non-

HTTP response code (Error sent request), throughput

(Hits per second), and total requests.

Figure 6. Comparison between HPA configuration average of received

requests per minute.

Figure 7. Comparison between HPA configuration total received

requests.

The chart illustrates the average received requests

comparison between HPA configuration of target CPU

utilization (20%, 40%, 60%, and 80%) as shown in Fig. 6.

Overall, the CPUUtilization-Target80% has the lowest

performance with the number of averages received

requests of 29594, due to slowly scale up the replicas to

meets the requirements, it poorly handled the workload.

Following with CPUUtilization-Target60% with the

average requests of 30787, this configured target slightly

having a better performance than CPUUtilization-

Target80%. In term of performance, CPUUtilization-

Target40% beaten both CPUUtilization-Target60% and

CPUUtilization-Target80% by having average requests at

30981. On the other hand, CPUUtilization-Target20%

performed the best with an average request of 31347

which is more than the average request of

CPUUtilization-Target80%, CPUUtilization-Target60%,

and CPUUtilization-Target40% by 5.75%, 1.8%, and

1.17% respectively. The aspects of how the server could

handle the performance of a massive request also applied

the same with the total received request as shown in

Fig. 7.

B. Experimental Results on Docker Swarm Scaling

Services

For these experimental results on Docker swarm

manager configuration of services, the adjustment of

services or replicas based on actual load results is shown

in this section [4]. For each scaling service, the number of

tasks was declared to be scaled up or down which

includes 1, 3, and 5 replicas. The one downside that

Docker swarm cannot provide like K8S is that in Swarm

there are no autoscaling features. When it comes to

scalability in Docker Swarm, services can be scaled

through Docker Compose YAML templates and only

support scaling up or down with commands.

Figure 8. Comparison between Docker Swarm configuration average of

received requests per minute.

Figure 9. Comparison between Docker Swarm configuration total

received requests.

Overall, Swarm allows users to deploy and scale faster

and in an easier way, considering it enables scaling on

demand. To see the performance of how the individual

adjustment can handle requests the best by letting users

send requests for 400 threads at the same time with a

duration of 10 minutes. Fields that were selected to be

shown from the table are as follows: Time (Min),

response code status 200 (Successfully sent request), non-

HTTP response code (Error sent request), throughput

(Hits per second), and total requests.

The chart illustrates the average received requests

comparison between Docker Swarm replicas scaling (1, 3,

and 5 replicas) as shown in Fig. 8. Overall, the Swarm

with single replicas performed the least with the number

of averages received requests of 33,222, due to having

just only a single service to handle requests. Followed by

Swarm with 3 replicas with average requests of 33,717.

The Swarm server with 5 replicas beats both Swarm with

1 replica and 3 replicas by having average requests of

34,126. To summarize, Swarm with replicas of 5

performed the best which handled requests more than the

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

505

average request of Swarm with replicas of 1 and Swarm

with replicas of 3 by 2.68% and 1.2% respectively.

Swarm with 5 replicas slightly has a better performance

than 1 replica and 3 replicas. From the aforementioned,

the same thing could be applied for the number of totals

received requests as in Fig. 9 in terms of performance

differences in percentage.

C. Experimental Results on Mesosphere DC/OS

(Apache Mesos) Scaling Services

For these experimental results on Mesosphere DC/OS

configuration of services, the adjustment of instances

based on actual load results is shown in this section. For

each scaling instance, the number of tasks was declared

to be scaled up or down which includes 1, 3, and 5

instances. The key differences downside of DC/OS is that

the mesosphere installations are quite complicated when

compared to Docker Swarm and K8s because it needs to

implement infrastructure which requires Terraform

installation and Google API to connect with the cloud

platform before the deployment.

When it comes to scalability, DC/OS provides a user

interface to scale which is convenient. To see the

performance of how the individual adjustment can handle

requests the best by letting users send requests for 400

threads at the same time with a duration of 11 minutes.

Fields that were selected to be shown from the table are

as follows: Time (Min), response code status 200

(Successfully sent request), non-HTTP response code

(Error sent request), throughput (Hits per second), and

total requests.

Figure 10. Comparison between Mesosphere DC/OS (Apache Mesos)

configuration average of received requests per minute.

The chart illustrates the average received requests

comparison between DC/OS instance scaling (1, 3, and 5

instances) as shown in Fig. 10. Overall, the DC/OS with a

single instance performed the least with the number of

averages received requests of 28,835, due to having just

only a single service to handle requests. Following with

DC/OS with 3 instances with average requests of 29,891.

The DC/OS server with 5 instances beats both DC/OS

with 1 instance and 3 instances by having average

requests of 30,320. To summarize, DC/OS with instances

of 5 performed the best which handled requests more than

the average request of DC/OS with an instance of 1 and

DC/OS with instances of 3 by 5.02% and 1.42%

respectively. DC/OS with 5 instances has a better

performance than 1 instance and 3 instances. From the

aforementioned, the same thing could be applied for the

number of total received requests as in Fig. 11 in terms of

performance differences in percentage.

Figure 11. Comparison between Mesosphere DC/OS (Apache Mesos)

configuration total received requests.

D. Comparison Results between K8S and Docker

Swarm

The results in Fig. 12 and Fig. 13 show that Docker

Swarm outperformed all of the Kubernetes CPU target

configurations and DC/OS. Considering a comparison

between the least performed Docker Swarm (Swarm with

1 replica) with a total request received of 365,452

requests and any of other K8S scaling replicas (80%,

60%, 40%, and 20%) with a total request received of

325,544, 338,667, 340,800, and 344,825 requests

respectively. Docker Swarm’s total received requests

outperformed K8S by 11.55%, 7.60%, 6.98%, and 5.80%

according to 80, 60, 40, and 20 CPU target utilization

percentages respectively. In DC/OS, the total received

requests in aspects of handling workloads results

according to 1, 3, and 5 scaled instances with the total

received requests of 317,185, 328,811, and 333,530

respectively. Nevertheless, Docker Swarm still

outperformed them according to instances of 1, 3, and 5

by 14.14%, 10.55%, and 9.13% respectively.

Figure 12. Comparison between K8S and Docker Swarm total received

requests.

Figure 13. Comparison between K8S and Docker Swarm average

requests per minute.

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

506

Despite the based-line of all the settings for K8S,

Swarm, and Mesos on deployment being the same which

includes Nginx docker image, the compute engine

instance, and network detail, the lowest performance of

Swarm (Swarm with 1 replica) still has better

performance (In terms of handling a massive request

concurrently with 400 threads) than K8S deployment

server with the best performance (K8S CPU Utilization

Target 20%) among its own orchestration service. This

could prove that a single replicas instance deployment of

Docker Swarm could handle more workload than any

other HPA configuration from Kubernetes and DC/OS

scaled instances. However, the big downside of Docker

Swarm is the lack of functionality in auto-scaling. When

it comes to scalability, Swarm only considers it enables

scaling on demand through Swarm CLI. But in K8S, a

one-in-all framework can comprise a complex system. It

is complex because the cluster state utilizes a unified set

of APIs (Application Programming Interfaces) that slugs

container deployment and scaling.

E. Kubernetes, Docker Swarm, and Apache Mesos

Features Comparison

1) Installation complexity

For K8S, learners with the introduction on how to

deploy a containerized application, it is quite complex for

starters. It is necessary to have enough amount of

knowledge on container technology since it has a steeper

learning curve when compared to Docker Swarm

installation. Originally, K8S is designed to be developed

containerized web applications in a large infrastructure.

Moreover, K8S does not have a simple web UI to manage

the cluster and needs to configure it via configuration

files.

For Docker Swarm, it provides simplicity for

installation. For learners who already know Docker

containers and want to know how to deploy containers in

a group for orchestration, Swarm is a great choice. Also,

managing a Swarm cluster is not complex at all since

Swarm is not designed to be used in a very large

infrastructure.

For Apache Mesos or DC/OS, in terms of installation

complexities, DC/OS is the most complex one to set up a

cluster since it requires external frameworks like

Marathon or Terraforms before it can even begin

functioning as a container orchestration tool. To unlock

the auto-scaling features in DC/OS, Marathon is required

to be able to scale up to thousands or even ten thousand

agents (nodes or servers). In contrast, DC/OS is quite

flexible to set up unlike K8S and Docker Swarm but it

comes with a high level of complexity. DC/OS is

originally designed for large organizations with large

infrastructure deployment.

2) Scalability

For K8S, the auto-scaling feature is provided which is

integrated with K8S services itself which are called HPA

(Horizontal Pods Autoscaler). The orchestration comes

from containers in pods since several containers can be

deployed and scheduled together as a group from a

service. K8S provides the ability to schedule groups of

containers even though the applications are complex. For

scaling it is quite straight forward and many large

organizations with a large infrastructure use K8S.

For Docker Swarm, the service itself does not provide

any auto-scaling capability. Therefore, the users need to

put a large amount of effort to make Swarm be able to

scale automatically. Auto-scaling only supports scaling

up or down via commands only which in a technical

perspective is not practical to manually scale container up

or down. But overall, Docker Swarm allows users to

deploy an application faster and easier in terms of scaling.

Apache Mesos or DC/OS provides the largest

scalability on container orchestration which stands out

when compared to K8S and Docker Swarm. Mesos

cluster is known to support the performance of scalability

which could scale up to 10,000 agents using Marathon as

a framework scale while a K8S cluster can scale up to a

maximum of around 5,000 nodes. This scalability makes

Mesos the container orchestration tool alternative for

large organizations with a large deployment of

containerized applications or even Virtual Machines to

maintain massive clusters. Also, it is important to be

noted that Mesos can even run a K8S service as a

framework on top of its own cluster deployment.

3) Monitoring

K8S has its own built-in monitoring and supports

integration with third-party monitoring tools [15]. Also,

there are plenty of monitoring solutions such as

Prometheus which is a native monitoring tool for K8S.

Another popular tool is Grafana. it provides simplicity to

set up on K8S and there are numerous deployment

specifications that include a Grafana container by default

and consists of a K8S monitoring dashboard for Grafana

available for use. Moreover, there are others monitoring

tools such as kubewatch, kube-ops-view, and kube-state-

metrics.

Docker Swarm does not provide any built-in

monitoring solution and requires third-party applications

to be able to monitor the cluster.

Apache Mesos monitoring tools are quite difficult to

find since Mesos orchestration is relatively new when

compared to K8S and Swarm. However, monitoring a

DC/OS cluster is available through using Marathon

metrics. Also, to diagnose and scans all the cluster

components, the data can be queried and aggregated

through available APIs which is quite complex when

compared to K8S available monitoring tools.

4) Integration tools

For K8S, it provides flexibility to integrate with other

open sources tools such as monitoring (cAdvisor),

security (Twistlock, Falco, and Aqua) [7], and

deployment tools (Helm, Apollo, and Kubespray).

For Docker Swarm, the dependency on Docker creates

little interest for developers and there are just a few

integration tools for Swarm. For instance, an open-source

plugin that automates and simplifies the script-building

process is called Gradle. Moreover, there is a

configuration management and deployment automation

tool created by RedHat.

For Apache Mesos or DC/OS, it provides a lot of

integration tools since Mesos tends to have a preference

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

507

for tools developed by Apache itself and Mesosphere

such as Marathon. On top of that, the provided tools for

Mesos direct towards the use of specialty tools and there

is a lot of external or internal frameworks which included

K8S as a framework itself for Mesos.

F. Scenarios of When to Use the Most Efficient

Container Orchestration Tools

For scenarios that need an entry-level solution for

smaller projects and testing purposes of working on a

small project that requires the deployment of a few nodes,

Docker Swarm is ideal especially if the users are already

familiar with the Docker Container platform. Also, it

provides simplicity on deployment, and the learning

curve is quite low. Docker Swarm is a lightweight, easy-

to-use orchestration tool with limited offerings compared

to Kubernetes. In contrast, Kubernetes is complex but

powerful and provides self-healing, auto-scaling

capabilities out of the box. As shown in Table IV, from

the experimental results, Docker Swarm has the best

capability to handle requests which could handle the

average total received requests of 370,375. In contrast,

Docker Swarm does not have any auto-scaling capability

and to able auto-scaling features, the user needs to write a

script itself of when to scale up or down which is very

overwhelming.

For scenarios of working on a massive project which

involved several data centers where multiple complicated

applications are needed to be set up and configured.

Apache Mesos justifies the use of a high-level complexity

platform since it offers an industrial-grade solution for

very large clusters, but due to its complexity, it’s

generally only relevant for big corporations. Moreover,

Mesos is a great alternative if multiple Kubernetes

clusters are required within the data center and the

intuitive architectural design of Mesos provides good

options when it comes to handling legacy systems and

large-scale clustered environments via its DC/OS. As

shown in Table IV, from the experimental results,

Apache Mesos has the lowest capability to handle

requests with an average total received requests of

326,509. However, DC/OS is very flexible in terms of

importing other frameworks to be used in the cluster

which could increase the performance of the cluster

according to the user specification. To be mentioned,

DC/OS could use Kubernetes as a running framework in

the cluster. So, Apache Mesos is focusing more terms on

flexible deployment and large infrastructure rather than

handling massive requests in a short period of time with

its own default agent (Server).

TABLE IV. COMPARISON BETWEEN K8S AND DOCKER SWARM

HANDLING REQUESTS AND TOTAL REQUESTS

Handling Average

Requests per minute

(Mean)

Handling total

requests per interval

of 11 minutes (Mean)

Kubernetes 30,677.25 337,459.8

Docker Swarm 33,688.67 370,575.3

Apache Mesos 29,682.60 326,509.0

For scenarios of working on a project that requires an

enterprise-level platform capable of running and

managing thousands of containerized applications or

services. Kubernetes is the best alternative choice and

also it provides a powerful self-healing and auto-scaling

which brings stability to the clusters. Moreover, the auto-

scaling feature from the service itself is provided which is

integrated with Kubernetes services itself which are

called Horizontal Pods Autoscaler (HPA). So, it is easier

to manage the minimum and maximum pods within the

cluster and car write an HPA script to manage how you

want to scale and configure a threshold of CPU utilization

for when to scale up or scale down the pod. As shown in

Table IV, from the experimental results, the performance

of handling requests for Kubernetes was in mid-tier with

the total average received requests of 337,459.8.

However, Kubernetes provides more stability and reliable

cluster when compared to Docker Swarm since the auto-

scaling for Kubernetes is integrated with its own service

by could configure in the deployment YAML file and

could set minimum CPU Utilization and maximum CPU

utilization when scaling their pods (server).

In-depth analyses of the Apache Mesos, Docker

Swarm, and Kubernetes orchestration services are

conducted in this study. The user’s complexity of

deploying apps affects whether orchestration solutions

are considered to have better performance when

comparing these three container orchestration services.

Due to its auto-scaling characteristics, Kubernetes

performed better than Docker Swarm in terms of

scalability. In particular, the HPA configuration on

Horizontal Pods Autoscaling while in Docker Swarm

needs to scale manually via Swarm CLI. In contrast,

Apache Mesos provides large infrastructure deployment

which could deploy Kubernetes on top of the cluster itself.

The obtained results illustrate that in the aspect of

handling a request, Docker Swarm performed better in

terms of handling a massive request by Docker Swarm

outperforming all of the Kubernetes CPU target

configurations and Apache Mesos. Considering a

comparison between least performed Docker Swarm

(Swarm with 1 replica) with a total request received of

365,452 requests and any of other Kubernetes scaling

replicas (80%, 60%, 40%, and 20%) with a total request

received of 325,544, 338,677, 340,800, and 344,825

requests respectively. Docker Swarm total received

requests outperformed Kubernetes by 11.55%, 7.60%,

6.98%, and 5.80% according to 80, 60, 40, and 20 of

CPU target utilization percentages respectively. This

could prove that a single replicas instance deployment of

Docker Swarm could handle more workload than any

other HPA configuration from Kubernetes and any

deployed agents from Apache Mesos. However, the big

downside of Docker Swarm is the lack of functionality in

auto-scaling. When it comes to scalability, Swarm only

considers it enables scaling on demand through Swarm

CLI.

The testing experiments were conducted by using

JMeter to send requests to both server orchestrators by

generated users (threads) that configured up to 400

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

508

threads by sending requests concurrently. To summarize,

choosing Kubernetes or Docker Swarm depends on the

requirements of the application. If the server application

on production was deployed in Kubernetes, there was a

low possibility for the server to crash or down due to

Kubernetes having its own flexible autoscaling server

system. In contrast, if the production deployment was

deployed by using Docker Swarm, it was certain that

Docker Swarm could handle more requests from users

greater than Kubernetes. However, Docker Swarm needs

to manually adjust the number of replicas and there is

more possibility for the Docker Swarm server to crash or

not run due to receiving too many excessive requests in a

short period.

V. CONCLUSION

The container orchestration services Kubernetes,

Docker Swarm, and Apache Mesos are examined in-

depth in this study. The results are from simulating users

to send requests to the server using the based-line setup

of both orchestrators to see how both orchestrators may

perform while handling requests.

The outcomes in Kubernetes HPA configuration

showed that HPA configuration has an impact on how

well the server manages a workload from external

sources. Due to slowly scaling up the replicas to satisfy

the requirements, the CPUUtilization-Target80%

performed worse than Docker Swarm in terms of the

number of average requests received and the total number

of requests received. CPUUtilization-Target20%

performed the best which is more than the average

request of CPUUtilization-Target80%, CPUUtilization-

Target60%, and CPUUtilization-Target40% by 5.57%,

1.8%, and 1.17% respectively.

In future work, the comparison could be applied to

other orchestration services and could also be used to

measure other aspects like networking, load balancing,

and manual scaling.

CONFLICT OF INTEREST

The authors declare no conflict of interest

AUTHOR CONTRIBUTIONS

B. Purahong, J. Sithiyopasakul, and C.

Benjangkaprasert conducted the research and wrote the

paper. J. Sithiyopasakul, P. Sithiyopasakul, A. Lasakul,

and C. Benjangkaprasert analyzed the data. All authors

had approved the final version.

REFERENCES

[1] S. Burroughs, et al., “Towards autoscaling with guarantees on

Kubernetes clusters,” in Proc. Int. Conference on Autonomic

Computing and Self-Organizing Systems Companion, 2021, pp.

295–296.

[2] Ł. Wojciechowski, et al., “NetMARKS: Network metrics-aware

Kubernetes scheduler powered by service mesh,” in Proc. Int.

Conference on Computer Communications, 2021, pp. 1–9.

[3] A. P. Ferreira and R. Sinnott, “A performance evaluation of

containers running on managed Kubernetes services,” in Proc. Int.

Conference on Cloud Computing Technology and Science, 2019,

pp. 199–208.

[4] J. Shah and D. Dubaria, “Building modern clouds: Using Docker,

Kubernetes & Google cloud platform,” in Proc. Int. Annual

Computing and Communication Workshop and Conference, 2019,

pp. 184–189.

[5] H. Kitahara, K. Gajananan, and Y. Watanabe, “Highly-scalable

container integrity monitoring for large-scale Kubernetes cluster,”

in Proc. IEEE Int. Conference on Big Data, 2020, pp. 449–454.

[6] M. K. Abhishek, D. R. Rao, and K. Subrahmanyam, “Framework

for containers orchestration to handle the scientific workloads

using Kubernetes,” Journal of Computer Science, vol. 18, no. 9,

pp. 860–867, October 2022.

[7] S. R. Rizvi, A. Lubawy, J. Rattz, A. Cherry, B. Killough, and S.

Gowda, “A novel architecture of Jupyterhub on Amazon elastic

Kubernetes service for open data cube sandbox,” in Proc. IEEE

Int. Geoscience and Remote Sensing Symposium, 2020, pp. 3387–

3390.

[8] J. N. Acharya and A. C. Suthar, “Docker container orchestration

management: A Review,” in Proc. International Conference on

Intelligent Vision and Computing, 2022, pp. 140–153.

[9] V. K. Thakur, “A review paper on open-source container

orchestration,” International Research Journal of Modernization

in Engineering Technology and Science, vol. 2, pp. 1008–1016,

October 2020.

[10] B. S. Kim, S. H. Lee, Y. R. Lee, Y. H. Park, and J. Jeong, “Design

and implementation of cloud Docker application architecture

based on machine learning in container management for smart

manufacturing,” Applied Sciences, vol. 12, no. 13, July 2022.

[11] G. Rattihalli, “Exploring potential for resource request right-sizing

via estimation and container migration in Apache Mesos,” in Proc.

Int. Conference on Utility and Cloud Computing Companion,

2018, pp. 59–64.

[12] H. Bairagi, U. Chourasiya, S. Silakari, P. Dixit, and S. Sharma, “A

survey on efficient container orchestration tools and techniques in

cloud environment,” International Journal of Scientific &

Technology Research, vol. 9, pp. 1425–1430, January 2020.

[13] A. Valantasis, N. Makris, and T. Korakis, “Orchestration software

for resource constrained datacenters: An experimental evaluation,”

in Proc. International Workshop on Performance Evaluation of

Next Generation Virtualized Environments and Software-Defined

Networks, 2022, pp. 121–126.

[14] S. Kaiser, S. Haq, A. S. Tosun, and T. Korkmaz, “Container

technologies for ARM architecture: A comprehensive survey of

the state-of-the-art,” IEEE Access, vol. 10, pp. 84853–84881,

August 2022.

[15] R. K. Lenka, S. Mamgain, S. Kumar, and R. K. Barik,

“Performance analysis of automated testing tools: JMeter and

TestComplete,” in Proc. Int. Conference on Advances in

Computing, Communication Control and Networking, 2018, pp.

399–407.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

509

https://www.researchgate.net/journal/Journal-of-Computer-Science-1549-3636
https://link.springer.com/chapter/10.1007/978-3-030-97196-0_12#auth-Jigna_N_-Acharya
https://link.springer.com/chapter/10.1007/978-3-030-97196-0_12#auth-Anil_C_-Suthar
https://www.researchgate.net/journal/Applied-Sciences-2076-3417
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N3-501

