
Causal Inference and Conditional Independence

Testing with RCoT

Mayank Agarwal 1, Abhay H. Kashyap 1,*, G. Shobha 1, Jyothi Shetty 1, and Roger Dev 2

1 Department of Computer Science, R. V. College of Engineering, Bangalore, India
2 Lexis Nexis Risk Solution, Alpharetta, USA; Email: Roger.Dev@lexisnexisrisk.com (R.D.)

*Correspondence: abhayhkashyap01@gmail.com (A.H.K.)

Abstract—Conditional Independence (CI) testing is a crucial

operation in causal model discovery and validation.

Effectively performing this requires a linearly scalable and

robust algorithm and its implementation. Previous

techniques, such as cross-correlation, a linear method;

Kernel Conditional Independence Test (KCIT,) and a kernel-

based algorithm, do not scale well with dataset size and pose

a bottleneck for CI algorithms. An improved version of

kernel-based algorithms which use linear mapping to

decrease computational time is the Randomized conditional

Correlation Test (RCoT) and Randomized Conditional

Independence Test (RCIT). This paper describes their use

and implementation in Python. This paper then compares the

time complexity of the RCoT algorithm with a previously

implemented Discretization-based algorithm Probspace. The

results show that the accuracy of the previous and current

models is similar, but the time taken to get these results has

been reduced by 50%. The implemented algorithm takes

about 3s to run the testcases (the data used and testcases

generated are described in Section IV-C).

Keywords—causal inference, conditional independence

testing, Randomized conditional Correlation Test (RCoT)

algorithm, Lindsay-Pilla-Basaky approximation, Fourier

features

I. INTRODUCTION

Causality is the study of the causes and effects of events

in the environment. It is fundamental in gaining

information about the environment to model it and predict

further events. Causal models are used to satisfactorily

model causal relationships between variables

(cause/effect). A Causal Model is a directed graph of the

causal relationships of random variables and has the

following components [1]:

● A set of nodes (W, X, Y, Z) representing random

variables.

● A set of directed edges (W → Y, W → X, Y → Z, X

→ Z) between pairs of nodes, each edge regarded

as the hypothesis that the node to which the edge

is incident depends on the other node if values of

all other random variables were fixed.

● Joint probability distribution over the possible

values of all the variables.

Manuscript received August 29, 2022; revised September 29, 2022;

accepted October 20, 2023; published June 1, 2023.

Figure 1. Example of causal model showing factors effecting the

income of a person.

Fig. 1 shows the observed factors that directly or

indirectly affect a person’s income. This causal model

shows most of the causality concepts like common affect,

education and age affect the experience in the industry,

common cause, experience, and income is directly affected

by education. The purpose of creating or “fitting” a causal

model is to derive reasonable inferences from the relations

in the model. This process is termed causal inference.

Causal inference is the process of separating causal from

non-causal influences between variables in a particular

phenomenon. Causal science makes heavy use of

Conditional Independence testing to discover causal

relationships and validate causal assumptions. Conditional

Independence Tests are methods of finding the

dependency of one random variable with respect to another

when one or more random variables are conditioned on. It

involves measuring the linear and non-linear correlation

between the variables. Some popular methods used for

Independence testing are Regression and permutation-

based tests [2]. The cross-correlation and partial cross-

correlation methods are widely used linear methods as a

test for conditional independence [3]. Most of these

algorithms make assumptions about the data or the

conditioning variables that are hard to justify in the real

world and may lead to incorrect approximations, such as

linearity or Gaussianity [4].

Recently, algorithms used for independence testing of

random variables are kernel-based methods, that detect

non-linear dependencies. They counter the computational

bottleneck, which is a disadvantage of using non-kernel-

based independence testing algorithms [2]. Kernel-based

algorithms perform well and give accurate results for both

conditional and non-conditional independence testing. But

in the case of CI testing, the dimension of the conditioning

variable dictates the time complexity, and thus, the

algorithms’ time complexity scales cubically with the

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

495doi: 10.12720/jait.14.3.495-500

conditioning set [5]. This paper discusses a kernel-based

algorithm, RCoT and its first implementation in Python.

The results of the experiment are then compared with

previously used non-kernel-based algorithms for

Independence Testing.

II. LITERATURE REVIEW

Causal interventions or randomized experiments are

used to identify causal relationships among a set of random

variables and generate a causal model for them. This

method, in many cases, is expensive, time-consuming, or

even impossible [6]. Alternatively, there are two ways for

generating the causal model [7]:

1. One way is to assume relationships between the

random variables and, by verifying with the data,

discover the causal model that generated it, known

as Causal Discovery. These methods try revealing

causal information by analyzing purely

observational data [8].

2. The second method uses prior knowledge to create

a causal model, but it may be missing crucial

information, therefore, the model is validated with

data to test whether the knowledge of the domain

fits the data that is observed. Causal validation is a

class of methods for determining whether the

causal model is correctly specified [9].

The primary goal of causal discovery and validation is

to determine whether the generated model is consistent

with the data. Relationships between variables must be

discovered to generate the causal model. To achieve this,

dependence between variables is measured using

independence testing. Two random variables in a causal

model are independent if a change in one of the variables

does not affect the other when all other variables of the

environment are kept constant. Measuring the CI between

different sets of variables is an essential technique for both

Causal Discovery and Validation [10]. Independence

Testing has two main subcategories, unconditional and

conditional independence testing [11]. Unconditional

independence testing considers the” variable X is

dependent on the variable Y directly” denoted by X Y as

the null hypothesis and tries to approximate the p-value for

this hypothesis from the given data [12]. For conditional

independence, consider a scenario: let X, Y, and Z denote

sets of random variables, then the independence between

X and Y given Z is denoted by X Y / Z. Both the

conditional and unconditional independence tests are key

in causal validation to know the relationships between

variables. Generally, conditional independence testing is

much more complicated and time-consuming than

unconditional independence testing [12]. This is due to

non-linearity and noise in the data and the “curse of

dimensionality” for the variable Z. The test statistic for

conditional independence is the distance between the

estimated conditional densities p (X|Y, Z) and p(X|Y) [13].

A standard metric used to measure the dependence

between two variables, which is the basis of independence

and conditional independence testing, is the linear

correlation between the two variables [14]. But as the

name suggests it can only detect and map the linear

relationship between the variables. A false negative

detection for the correlation may indicate independence

when the variables on verification may be dependent or

vice versa [15]. The real world is rarely linear; thus, a

better metric is required to map the correlation between

variables accurately. The higher dimensions of the

environment variables create a computational barrier for

approximating the independence between the variables.

The same problem is more relevant for conditional

independence, where both the conditional variables and

the target variable determine the dimensionality of the test

and incur the “curse of dimensionality”. A solution to the

curse of dimensionality is explored in [16] which uses

kernel feature maps (functions), to map the random

variable from its original nonlinear space to a kernel space

where linear operations can be performed on it.

The most useful kernel space is the Hilbert space, which

is the complete vector space on the distance function,

induced by the inner product, that defines the kernel

space [17]. Two-dimensional and three-dimensional

pictures can be used to reason about infinite-dimensional

Hilbert spaces.

 ⟨𝑦, 𝑥⟩ = ⟨𝑥, 𝑦⟩ (1)

 ⟨𝑎𝑥1 + 𝑏𝑥2, 𝑦⟩ = 𝑎⟨𝑥1,𝑦⟩ + 𝑏⟨𝑥2,𝑦⟩ (2)

Eq. (1) shows that the inner product is conjugate

symmetric, i.e., for real-valued variables the complex

conjugate is equal to the complex number. This implies:

⟨𝑥 , 𝑥⟩ > 0 | 𝑥 ≠ 0

 ⟨𝑥 , 𝑥⟩ = 0 | 𝑥 = 0 (3)

Eq. (2) describes that the inner product is linear in its

first argument and Eq. (3) constrains the inner product to

be positive definite. A special type of Hilbert space that

allows scaling of vector space from its non-linear space to

a linear space is the Reproducing Kernel Hilbert Space

(RKHS). An RKHS forms the mathematical base for the

RCoT algorithm. RCoT uses RKHS to translate vectors

from nonlinear space to linear space. An RKHS is defined

below.

Consider a Hilbert space F of functions from X → R.

Then F is a reproducing kernel Hilbert space if, for each x

∈ X, the Dirac evaluation operator δx: F → R, which maps

f ∈ F to f(x) ∈ R, is a bounded linear functional. To each

point x ∈ X, there corresponds an element ϕ(x) ∈ F such

that ϕ(x), ϕ(x′) F = k (x, x′), where k: X × X → R is a unique

positive definite kernel [18]. The above definition will

require that F be separable (it must have a complete

orthonormal system). Such a reproducing kernel exists if

and only if every evaluation functional is continuous [19].

The Hilbert Schmidt Independence Criterion (HSIC) uses

the distance between the kernel embeddings of probability

measures in the Reproducing Kernel Hilbert Space

(RKHS). RKHS theory is normally described as a

transform theory between RKHS and positive semi-

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

496

definite functions, called kernels [20–22]. RKHS are

precisely the space of functions where norm convergence

implies pointwise convergence and are, consequently,

relatively well behaved compared to other Hilbert spaces.

III. RCOT ALGORITHM

The Hilbert-Schmidt norm of the normalized

conditional cross-covariance operator is used to show that

this operator encodes the dependence structure of random

variables. It proves in the limit of infinite data, under

assumptions on the richness of the RKHS, that this

measure has an explicit integral expression that depends

only on the probability densities of the variables, despite

being defined in terms of kernels [4].

The Kernel Conditional Independence Test (KCIT) is a

widely used Conditional Independence test in the non-

parametric setting, but KCIT scales cubically with sample

size. A solution to the above limitation of KCIT is to use

Random Fourier features to scale down the dimension of

KCIT to simplify the computation [23]. This paper

introduces the Randomized Conditional Independence

Test (RCIT) and the Randomized Conditional Correlation

Test (RCoT). RCIT explores the partial cross-covariance

matrix of (X, Y), and RCoT explores the correlation of X

and Y after subjecting the variable sets to the nonlinear

transformations and then nonlinearly regressing out the

effect of Z.

In practice, both proposed tests scale linearly with

sample size and return accurate p-values much faster than

KCIT, when tested on large sample size.

RCoT Algorithm uses Random Fourier Features to

significantly improve the performance by approximating

the results of the kernel. It further optimizes the

performance by using a powerful approximation technique,

i.e., the Lindsay Pilla Basaky method to determine whether

the observed dependence is statistically significant or

caused by random variation in the data [2].

Consider a random variable (X, Y) and RKHS Hx and Hy

on X and Y, respectively, with measurable positive definite

kernels kX and kY.

 𝐸 [𝑘𝑥(𝑋 , 𝑋)] < 𝑖𝑛𝑓, 𝐸 [𝑘𝑥(𝑌 , 𝑌)] < 𝑖𝑛𝑓 (4)

The cross-covariance operator Y, X: Hx → Hy is defined

by the unique bounded operator that satisfies:

 ⟨𝑔 ,𝛴𝑌 𝑋⟩𝐻𝑦
 = 𝐶𝑜𝑣[𝑓(𝑋), 𝑔(𝑌)] (𝐸[𝑓(𝑋), 𝑔(𝑦)]

 − 𝐸[𝑓(𝑋)] 𝐸[𝑔(𝑌)]) (5)

It is known that the cross-covariance operator can be

decomposed into the covariance of the marginals and the

correlation; that is, there exists a unique bounded operator

VYX such that

 𝛴𝑌 𝑋 = 𝛴𝑌𝑌
1/2

𝑉𝑌 𝑋 𝛴𝑌 𝑋
1/2

 (6)

Consider another random variable Z on Z and RKHS (HZ;

kZ). The normalized conditional cross covariance operator

is defined as,

 𝑉𝑌 𝑋 | 𝑍 = 𝑉𝑌 𝑋 − 𝑉𝑌 𝑍 𝑉𝑍 𝑋 (7)

 𝑉𝑌 𝑋 | 𝑍 = 𝛴𝑌𝑌
−1/2

 (𝛴𝑌 𝑋 − 𝛴𝑌 𝑋 𝛴𝑍 𝑍
−1 𝛴𝑌 𝑋) 𝛴𝑌 𝑋

1/2
 (8)

Using the above equations, the ΣY X operator can be used

to determine the independence of X and Y, i.e., ΣYX = 0 if

and only if X Y.

After evaluating the p-value and the test statistic for the

data, we must analyze the result to confirm whether it is

significant or could have been caused by random chance.

For this test, two approximation methods are used, Hall-

Buckley-Eagleson (HBE) and Lindsay-Pilla-Basak

(LPB) [17]. HBE is a precursor to LPB, so the latter is

explained below. It is a moment-based approximation of

random variable distributions using mixtures, and it is used

to improve the efficiency of the RCoT algorithm. LPB uses

moment methods to approximate a theoretical univariate

distribution with a mixture of unknown distributions. The

mixture used to approximate is a finite mixture of n

Gamma cdfs. The LPB is a complicated procedure, the

Section IV-B goes through the algorithm sequentially.

IV. IMPLEMENTATION

This section describes the first implementation of the

RCoT Algorithm and LPB approximation in Python and

reports the results of the same. Most of the Linear algebra

equations are not present directly in Python, so numerical

operations such as HBE and LPB [17] approximation

techniques were implemented. The RCoT algorithm uses

Random Fourier Features to accelerate the training of

kernel machines by mapping the input data to randomized

low-dimensional feature space and then applying linear

methods, in this case, cross-correlation to reduce the

computation time compared to traditional kernel-based

independence testing methods. The output of the RCoT

algorithm is the p-value for the null hypothesis, “the

variables are dependent on each other”. Dataset used for

testing and the link to the implementation code are

provided in Section IV-C.

A. Pseudo Code for RCoT

● Input: n datapoints of three random variables X, Y,

Z.

● Verify if conditional variable Z exits in given data.

● If it does not exist run the Unconditional

Independence Testing algorithm, i.e., Residual

Independence Test (RIT).

● Slice the given data to extract the fixed number of

datapoints for the Random Fourier Features (RFF)

method.

● The output of the RFF algorithm is the input data

mapped to a low-dimensional feature space in the

form of a matrix(feat) for each of the variables.

● Normalize the feat matrix for each of the variables

(fx, fy, fz).

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

497

● Invert the normalized matrix of conditional

variable (fz) after converting it to positive definite.

● Find covariance of normalized matrix of X (fx) with

respect to normalized matrix of Z (fz). Similarly for

Z (fz) and Y (fy).

● Evaluate the test statistic for linear partial

correlation using the values of Cx,y,z (cross-

correlation of x with respect to y given z).

● Find the eigenvalues of the Covariance matrix and

apply Lindsay-Pilla-Basaky approximation with

the eigenvalues as coeff vector and test statistic

value for x to determine if the output of RCoT is

statistically significant or it could have been

generated by a random variation.

● The RCoT algorithm return Test statistic Sta, the

p-value for the null hypothesis.

B. Pseudo Code for RCoT

● Input: coeff is the coefficient vector, x is a vector.

● If the length of coeff is less than 4 run the HBE

approximation and return the p-value.

● Set p, which is the number of support points, value

to 4 (more support points increase the accuracy and

the computational intensity).

● Compute the weighted sum of first the 2p chi-

squared moments and solve its determinant

equation. Use bisection method to find a

𝑙𝑎𝑚𝑏𝑑𝑎𝑡𝑖𝑙𝑑𝑒_𝑝.

● Generate the delta matrices for each datapoint. Use

the calculated 𝑙𝑎𝑚𝑏𝑑𝑎𝑡𝑖𝑙𝑑𝑒_𝑝 to generate 𝑀𝑝

which will be used to create matrix 𝑆˜.

● Compute polynomial coefficients of the modified

𝑀𝑝, obtain the real roots of the polynomial and

store it as a vector.

● Generate the Vandermonde matrix using the vector

of roots.

● Calculate the linear combination of the I gamma

cdfs using 𝑙𝑎𝑚𝑏𝑑𝑎𝑡𝑖𝑙𝑑𝑒𝑝 and 𝑚𝑢𝑖 as parameters.

Return this value.

C. Dataset and Testing

Synthetic Data was generated to test the implementation

of the algorithm described above. Data is generated using

random probability distributions like uniform distributions,

normal distributions, logistic distributions, exponential

distributions, and gamma distributions.

Some exogenous variables are declared, and their values

are generated using the linear combination of the above

distributions from the NumPy. random library.

Then, the values of the endogenous variables are

generated using linear and non-linear combinations of

exogenous variables. The paper used 10 different types of

models with different combinations of distributions to

generate exogenous variables and different combinations

of exogenous and endogenous variables to generate

endogenous variables.

The data generated is used to test the RCoT algorithm

and the results are compared with the results obtained from

the Probspace algorithm. An example of the one model

used in the data generations and its corresponding graph is

shown in Fig. 2(a) and Fig. 2(b), respectively.

The model shown has one exogenous variable B and

four endogenous variables, A, C, D, and E. B is a linear

combination of the logistic function. logistic (0,1) is added

to every variable to simulate noise. The model array stores

the parents of every variable in the model. The

varEquations array stores the mathematical equations

(using Python APIs) that are used to generate datapoints.

The data is generated based on the number of points we

require to run. The example shown is simple with a few

dependencies between the variables, but much more

complex data with multilevel chain and fork dependencies

were used for testing. The data generated is used to test the

RCoT algorithm and the results are compared with the

results obtained from the Probspace algorithm. The code

for the implementation of the RCoT algorithm and the LPB

approximation is available at https://github.com/mayank-

agarwal-ln/RCoT.

Then tests were generated for the data. Tests generated

for the above model are shown in Fig. 3. Some test

dependency and others the independence between

variables.

(a) Example of the model used to generate the data

(b) Graph of the data generated using the model

Figure 2. Example of the model used to generate the data and the

corresponding graph.

Figure 3. Tests generated for the model shown in Fig. 2(a).

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

498

https://github.com/mayank-agarwal-ln/RCoT
https://github.com/mayank-agarwal-ln/RCoT

In the tests shown in Fig. 3, the first independence test

shows the fork (common cause) rule which states that if X

is the common cause of Y and Z and there is only one path

between Y and Z then Y is conditionally independent of Z

given X. The other tests show the chain rule, that if two

variables X and Y are connected unidirectionally with one

or more variables in the path, then X is conditionally

independent of Y given Z, where Z is a subset of all

variables in the path between X and Y.

In the list of dependents, most are direct dependents and

multilevel dependents, except the last one which shows the

common effect rule, which states that two exogenous

variables X and Y are conditionally dependent given Z if

there is a common effect of Z is the common effect of X

and Y. The tests were run with Python 3.6 on a 64-bit

Windows 10 machine with 8GB RAM and a 2.5 GHz Intel

Core i5 processor. The results of the tests are shown in

Fig. 4 are discussed in Section V.

V. RESULTS

The following section compares the performance of the

Probspace algorithm with the RCoT algorithm, a kernel-

based conditional independence testing algorithm. Data

used to test the algorithms were synthetically generated

based on predefined causal models described in

Section IV-C. The testcases are presented to the algorithm.

The output of both algorithms is the dependency between

the variables or conditional dependency when more than

two variables are tested.

We have chosen to compare the time taken for the test

to complete when the number of datapoints is varied to get

an understanding of the efficiency of the algorithm. The

accuracy of the algorithm is tested separately and

compared to Probspace.

The algorithm also outputs the p-value for the test

performed. This value is used to determine the statistical

significance of the results produced. The paper considers

the p-value threshold to be 0.05, which is common in the

literature.

The total time is then recorded for the number of

datapoints. In Fig. 2(b), the average time Probspace takes

to complete the testcases is ≈ 6s and for RCoT the average

time is ≈ 3s. The results show that the RCoT algorithm, on

average, takes less time to compute the dependency

between variables compared to the Probspace algorithm.

This makes the implemented Python version of the

RCoT algorithm more useful in places where statistical

dependence between variables is of importance. The graph

below represents the results. There is a 50% reduction in

the time taken for the completion of the test cases.

The accuracy of RCoT and Probspace are comparable,

and on average are the same. The following tests can be

performed only for forks, chains, or multilevel

dependencies. RCoT matches Probspace’s accuracy for all

these tests. The paper tested both algorithms for multilevel

dependencies. RCoT was able to detect up to 4 levels of

direct dependency. Fig. 5 shows the testcase and Table I

shows the results. The dependency values of 1 for the first

four levels show that direct dependency is detected even

with noise.

Figure 4. The runtime of the algorithm against the number of datapoints,

for RCoT and Probspace.

Figure 5. Testcase generated for multilevel dependency.

TABLE I. DEPENDENCY VALUES FOR TEST CASE

Test Dependency Value

A-B

A-C

A-D

A-E

A-F

1

1

1

1

0.76

In any testcase, the conditioning set usually determines

the time taken to complete the test case. The algorithms

were tested with different dimensionalities of the

conditioning set to quantify its effect on the completion

time for the algorithm. The results are given below in

Table II. There is a sharp rise in the time taken when the

dimensionality is > 4. Further tests must be performed to

the reason for this increase.

TABLE II. TIME TAKEN FOR THE ALGORITHM TO COMPLETE THE

TESTCASES FOR DIFFERENT DIMENSIONALITY OF CONDITIONING SET

Dimensionality
Time —

Probspace (s)

Time —

RCoT (s)

0

1

2

3

4

5

6

0.83797

0.90799

3.20132

12.48197

49.50360

173.11749

594.8133

0.82909

0.86583

3.13366

11.76319

44.512780

161.20707

560.20229

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

499

VI. CONCLUSION

Statistical methods, especially inferential statistics are

useful for explaining the work of a machine learning model

and finding the correlation between random variables

much simpler. After comparing kernel and non-kernel-

based methods for conditional independence testing, it was

identified that the kernel-based methods produce more

accurate results. The disadvantage of using KCIT is its

exponential scaling with dataset size, which would make it

time inefficient for large datasets. To resolve this RCoT

algorithm was introduced, which uses the RKHS method

to map data to a lower-dimensional space. RCoT further

uses the LPB approximation technique to achieve better

accuracy. To further test and improve the model, further

implementations should test on real-world variables. The

implementation of RCoT in Python showed better results

in terms of time efficiency compared to the existing

algorithm, Probspace.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

M. Agarwal and A. Kashyap conducted the research

together and wrote the paper. They were assisted and

adviced by G. Shobha, J. Shetty and R. Dev.

ACKNOWLEDGMENT

We would like to thank LexisNexis Risk Solution,

Alpharetta, GA, USA, and R. V. College of Engineering,

for their support and encouragement during this research.

All authors approved the final version.

REFERENCES

[1] J. Pearl, Causality, 2nd ed. Cambridge University Press, 2009.

[2] C. Li and X. Fan, “On nonparametric conditional independence

tests for continuous variables,” Wiley Interdisciplinary Reviews:

Computational Statistics, vol. 12, 2019.

[3] K. Baba, R. Shibata, and M. Sibuya, “Partial correlation and

conditional correlation as measure of conditional independence,”

Australian and New Zealand Journal of Statistics, vol. 46, pp. 657–

664, 2004.

[4] K. Zhang, J. Peters, D. Janzing, and B. Schölkopf, “Kernel-based

conditional independence test and application in causal discovery,”

arXiv pre-print, arXiv:1202.3775, 2012,

doi: 10.48550/arXiv.1202.3775

[5] J. P. Ryan, S. Ament, C. P. Gomes, and A. Damle, “The fast kernel

transform,” in Proc. the 25th International Conference on Artificial

Intelligence and Statistics, 2021, pp. 11669–11690.

[6] J. Pearl, “Causal inference,” in Proc. the Workshop on Causality:

Objectives and Assessment at NIPS 2008, I. Guyon, D. Janzing, and

B. Schölkopf, Eds. 2010, pp. 39–58.

[7] P. Judea, “The seven tools of causal inference, with reflections on

machine learning,” Commun. ACM, vol. 62, pp. 54–60, 2019.

[8] D. Malinsky and D. Danks, “Causal discovery algorithms: A

practical guide,” Philosophy Compass, vol. 13, no. 1, p. e12470,

2018, doi: 10.1111/phc3.12470

[9] R. H. Heck, T. J. Larsen, and G. A. Marcoulides, “Instructional

leadership and school achievement: Validation of a causal model,”

Educational Administration Quarterly, vol. 26, no. 2, pp. 94–125,

1990.

[10] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and

Search, MIT Press, 1993.

[11] H. Zhang, S. Zhou, K. Zhang, and J. Guan, “Causal discovery using

regression-based conditional independence tests,” in Proc. the

Thirty-First AAAI Conference on Artificial Intelligence, 2017, pp.

1250–1256.

[12] W. Bergsma, “Testing conditional independence for continuous

random variables,” in Eurandom Report, 2004.

[13] L. Su and H. White, “A nonparametric Hellinger metric test for

conditional independence,” Econometric Theory, vol. 24, no. 4, pp.

829–864, 2008.

[14] K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf, “Kernel

measures of conditional dependence,” in Proc. the 20th

International Conference on Neural Information Processing

Systems, 2007, pp. 489–496.

[15] A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B. Scholkopf,

“Kernel methods for measuring independence,” Journal of Machine

Learning Research, vol. 6, pp. 2075–2129, January 2005.

[16] W. Rudin, Real and Complex Analysis (Higher Mathematics Series),

McGraw-Hill, 1987.

[17] B. Levitan, “Hilbert space,” Encyclopedia of Mathematics, 2001.

[18] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, “Measuring

statistical dependence with Hilbert-Schmidt norms,” in Algorithmic

Learning Theory, S. Jain, H. U. Simon, and E. Tomita, Eds. Berlin,

Heidelberg: Springer, 2005, pp. 63–77.

[19] J. H. Manton and P.-O. Amblard, “A primer on reproducing kernel

Hilbert spaces,” arXiv:1408.0952, 2015,
doi: 10.48550/arXiv.1408.0952

[20] A. Gretton, K. Borgwardt, M. J. Rasch, B. Scholkopf, and A. J.

Smola, “A kernel method for the two-sample problem,” arXiv pre-

print, arXiv:0805.2368, 2008, doi: 10.48550/arXiv.0805.2368

[21] D. D. Zhang, H. F. Lee, C. Wang, B. Li, Q. Pei, J. Zhang, and Y.

An, “The causality analysis of climate change and large-scale

human crisis,” in Proc. the National Academy of Sciences, vol. 108,

no. 42, pp. 17296–17301, 2011.

[22] A. Smola, A. Gretton, L. Song, and B. Schölkopf, “A Hilbert space

embedding for distributions,” in Algorithmic Learning Theory, M.

Hutter, R. A. Servedio, and E. Takimoto, Eds. Berlin, Heidelberg:

Springer, 2007, pp. 13–31.

[23] E. V. Strobl, V. Shyam, and Z. Kun, “Approximate kernel-based

conditional independence tests for fast non-parametric causal

discovery,” Journal of Causal Inference, vol. 7, pp. 1–24, March

2019.

[24] B. Lindsay, R. Pilla, and P. Basak, “Moment-based approximations

of distributions using mixtures: Theory and applications,” Annals

of the Institute of Statistical Mathematics, vol. 52, no. 2, pp. 215–

230, 2000.

[25] C. Glymour, K. Zhang, and P. Spirtes, “Review of causal discovery

methods based on graphical models,” Frontiers in Genetics, vol. 10,

p. 524, 2019.

[26] M. Petersen and M. Laan, “Causal models and learning from data

integrating causal modeling and statistical estimation,”

Epidemiology, vol. 25, pp. 418–426, 2014.

[27] M. Hein and O. Bousquet, “Kernels, associated structures and

generalizations,” Tech. Rep. 127, Max Planck Institute for

Biological Cybernetics, Tübingen, Germany, July 2004.

[28] Q. Zhang, S. Filippi, A. Gretton, and D. Sejdinovic, “Large-scale

kernel methods for independence testing,” Statistics and Computing,

vol. 28, pp. 113–130, Jan 2017.

[29] P. Hall, “Chi squared approximations to the distribution of a sum of

independent random variables,” The Annals of Probability, vol. 11,

no. 4, pp. 1028–1036, 1983.

[30] D. Bodenham and N. Adams, “A comparison of efficient

approximations for a weighted sum of chi-squared random

variables,” Statistics and Computing, vol. 26, 2015.

[31] M. Buckley and G. Eagleson, “An approximation to the distribution

of quadratic forms in normal random variables,” Australian Journal

of Statistics, vol. 30A, pp. 150–159, 2008.

[32] M. J. Anderson and P. Legendre, “An empirical comparison of

permutation methods for tests of partial regression coefficients in a

linear model,” Journal of Statistical Computation and Simulation,

vol. 62, no. 3, pp. 271–303, 1999.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

500

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N3-495

