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Abstract—Conditional Independence (CI) testing is a crucial 

operation in causal model discovery and validation. 

Effectively performing this requires a linearly scalable and 

robust algorithm and its implementation. Previous 

techniques, such as cross-correlation, a linear method; 

Kernel Conditional Independence Test (KCIT,) and a kernel-

based algorithm, do not scale well with dataset size and pose 

a bottleneck for CI algorithms. An improved version of 

kernel-based algorithms which use linear mapping to 

decrease computational time is the Randomized conditional 

Correlation Test (RCoT) and Randomized Conditional 

Independence Test (RCIT). This paper describes their use 

and implementation in Python. This paper then compares the 

time complexity of the RCoT algorithm with a previously 

implemented Discretization-based algorithm Probspace. The 

results show that the accuracy of the previous and current 

models is similar, but the time taken to get these results has 

been reduced by 50%. The implemented algorithm takes 

about 3s to run the testcases (the data used and testcases 

generated are described in Section IV-C).   

Keywords—causal inference, conditional independence 

testing, Randomized conditional Correlation Test (RCoT) 

algorithm, Lindsay-Pilla-Basaky approximation, Fourier 

features 

I. INTRODUCTION

Causality is the study of the causes and effects of events 

in the environment. It is fundamental in gaining 

information about the environment to model it and predict 

further events. Causal models are used to satisfactorily 

model causal relationships between variables 

(cause/effect). A Causal Model is a directed graph of the 

causal relationships of random variables and has the 

following components [1]:  

● A set of nodes (W, X, Y, Z) representing random

variables.

● A set of directed edges (W → Y, W → X, Y → Z, X

→ Z) between pairs of nodes, each edge regarded

as the hypothesis that the node to which the edge

is incident depends on the other node if values of

all other random variables were fixed.

● Joint probability distribution over the possible

values of all the variables.
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Figure 1. Example of causal model showing factors effecting the 

income of a person. 

Fig. 1 shows the observed factors that directly or 

indirectly affect a person’s income. This causal model 

shows most of the causality concepts like common affect, 

education and age affect the experience in the industry, 

common cause, experience, and income is directly affected 

by education. The purpose of creating or “fitting” a causal 

model is to derive reasonable inferences from the relations 

in the model. This process is termed causal inference. 

Causal inference is the process of separating causal from 

non-causal influences between variables in a particular 

phenomenon. Causal science makes heavy use of 

Conditional Independence testing to discover causal 

relationships and validate causal assumptions. Conditional 

Independence Tests are methods of finding the 

dependency of one random variable with respect to another 

when one or more random variables are conditioned on. It 

involves measuring the linear and non-linear correlation 

between the variables. Some popular methods used for 

Independence testing are Regression and permutation-

based tests [2]. The cross-correlation and partial cross-

correlation methods are widely used linear methods as a 

test for conditional independence [3]. Most of these 

algorithms make assumptions about the data or the 

conditioning variables that are hard to justify in the real 

world and may lead to incorrect approximations, such as 

linearity or Gaussianity [4]. 

Recently, algorithms used for independence testing of 

random variables are kernel-based methods, that detect 

non-linear dependencies. They counter the computational 

bottleneck, which is a disadvantage of using non-kernel-

based independence testing algorithms [2]. Kernel-based 

algorithms perform well and give accurate results for both 

conditional and non-conditional independence testing. But 

in the case of CI testing, the dimension of the conditioning 

variable dictates the time complexity, and thus, the 

algorithms’ time complexity scales cubically with the 
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conditioning set [5]. This paper discusses a kernel-based 

algorithm, RCoT and its first implementation in Python. 

The results of the experiment are then compared with 

previously used non-kernel-based algorithms for 

Independence Testing. 

II. LITERATURE REVIEW 

Causal interventions or randomized experiments are 

used to identify causal relationships among a set of random 

variables and generate a causal model for them. This 

method, in many cases, is expensive, time-consuming, or 

even impossible [6]. Alternatively, there are two ways for 

generating the causal model [7]: 

1. One way is to assume relationships between the 

random variables and, by verifying with the data, 

discover the causal model that generated it, known 

as Causal Discovery. These methods try revealing 

causal information by analyzing purely 

observational data [8]. 

2. The second method uses prior knowledge to create 

a causal model, but it may be missing crucial 

information, therefore, the model is validated with 

data to test whether the knowledge of the domain 

fits the data that is observed. Causal validation is a 

class of methods for determining whether the 

causal model is correctly specified [9]. 

The primary goal of causal discovery and validation is 

to determine whether the generated model is consistent 

with the data. Relationships between variables must be 

discovered to generate the causal model. To achieve this, 

dependence between variables is measured using 

independence testing. Two random variables in a causal 

model are independent if a change in one of the variables 

does not affect the other when all other variables of the 

environment are kept constant. Measuring the CI between 

different sets of variables is an essential technique for both 

Causal Discovery and Validation [10]. Independence 

Testing has two main subcategories, unconditional and 

conditional independence testing [11]. Unconditional 

independence testing considers the” variable X is 

dependent on the variable Y directly” denoted by X  Y as 

the null hypothesis and tries to approximate the p-value for 

this hypothesis from the given data [12]. For conditional 

independence, consider a scenario: let X, Y, and Z denote 

sets of random variables, then the independence between 

X and Y given Z is denoted by X  Y / Z. Both the 

conditional and unconditional independence tests are key 

in causal validation to know the relationships between 

variables. Generally, conditional independence testing is 

much more complicated and time-consuming than 

unconditional independence testing [12]. This is due to 

non-linearity and noise in the data and the “curse of 

dimensionality” for the variable Z. The test statistic for 

conditional independence is the distance between the 

estimated conditional densities p (X|Y, Z) and p(X|Y) [13]. 

A standard metric used to measure the dependence 

between two variables, which is the basis of independence 

and conditional independence testing, is the linear 

correlation between the two variables [14]. But as the 

name suggests it can only detect and map the linear 

relationship between the variables. A false negative 

detection for the correlation may indicate independence 

when the variables on verification may be dependent or 

vice versa [15]. The real world is rarely linear; thus, a 

better metric is required to map the correlation between 

variables accurately. The higher dimensions of the 

environment variables create a computational barrier for 

approximating the independence between the variables. 

The same problem is more relevant for conditional 

independence, where both the conditional variables and 

the target variable determine the dimensionality of the test 

and incur the “curse of dimensionality”. A solution to the 

curse of dimensionality is explored in [16] which uses 

kernel feature maps (functions), to map the random 

variable from its original nonlinear space to a kernel space 

where linear operations can be performed on it. 

The most useful kernel space is the Hilbert space, which 

is the complete vector space on the distance function, 

induced by the inner product, that defines the kernel  

space [17]. Two-dimensional and three-dimensional 

pictures can be used to reason about infinite-dimensional 

Hilbert spaces. 

 ⟨𝑦, 𝑥⟩  =  ⟨𝑥, 𝑦⟩ (1) 

 ⟨𝑎𝑥1 + 𝑏𝑥2,   𝑦⟩  =  𝑎⟨𝑥1,𝑦⟩  +  𝑏⟨𝑥2,𝑦⟩ (2) 

Eq. (1) shows that the inner product is conjugate 

symmetric, i.e., for real-valued variables the complex 

conjugate is equal to the complex number. This implies: 

⟨𝑥 , 𝑥⟩  >  0 | 𝑥 ≠  0 

 ⟨𝑥 , 𝑥⟩  =  0 | 𝑥 =  0 (3) 

Eq. (2) describes that the inner product is linear in its 

first argument and Eq. (3) constrains the inner product to 

be positive definite. A special type of Hilbert space that 

allows scaling of vector space from its non-linear space to 

a linear space is the Reproducing Kernel Hilbert Space 

(RKHS). An RKHS forms the mathematical base for the 

RCoT algorithm. RCoT uses RKHS to translate vectors 

from nonlinear space to linear space. An RKHS is defined 

below. 

Consider a Hilbert space F of functions from X → R. 

Then F is a reproducing kernel Hilbert space if, for each x 

∈ X, the Dirac evaluation operator δx: F → R, which maps 

f ∈ F to f(x) ∈ R, is a bounded linear functional. To each 

point x ∈ X, there corresponds an element ϕ(x) ∈ F such 

that ϕ(x), ϕ(x′) F = k (x, x′), where k: X × X → R is a unique 

positive definite kernel [18]. The above definition will 

require that F be separable (it must have a complete 

orthonormal system). Such a reproducing kernel exists if 

and only if every evaluation functional is continuous [19]. 

The Hilbert Schmidt Independence Criterion (HSIC) uses 

the distance between the kernel embeddings of probability 

measures in the Reproducing Kernel Hilbert Space 

(RKHS). RKHS theory is normally described as a 

transform theory between RKHS and positive semi-
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definite functions, called kernels [20–22]. RKHS are 

precisely the space of functions where norm convergence 

implies pointwise convergence and are, consequently, 

relatively well behaved compared to other Hilbert spaces. 

III. RCOT ALGORITHM 

The Hilbert-Schmidt norm of the normalized 

conditional cross-covariance operator is used to show that 

this operator encodes the dependence structure of random 

variables. It proves in the limit of infinite data, under 

assumptions on the richness of the RKHS, that this 

measure has an explicit integral expression that depends 

only on the probability densities of the variables, despite 

being defined in terms of kernels [4].  

The Kernel Conditional Independence Test (KCIT) is a 

widely used Conditional Independence test in the non-

parametric setting, but KCIT scales cubically with sample 

size. A solution to the above limitation of KCIT is to use 

Random Fourier features to scale down the dimension of 

KCIT to simplify the computation [23]. This paper 

introduces the Randomized Conditional Independence 

Test (RCIT) and the Randomized Conditional Correlation 

Test (RCoT). RCIT explores the partial cross-covariance 

matrix of (X, Y), and RCoT explores the correlation of X 

and Y after subjecting the variable sets to the nonlinear 

transformations and then nonlinearly regressing out the 

effect of Z.  

In practice, both proposed tests scale linearly with 

sample size and return accurate p-values much faster than 

KCIT, when tested on large sample size. 

RCoT Algorithm uses Random Fourier Features to 

significantly improve the performance by approximating 

the results of the kernel. It further optimizes the 

performance by using a powerful approximation technique, 

i.e., the Lindsay Pilla Basaky method to determine whether 

the observed dependence is statistically significant or 

caused by random variation in the data [2].  

Consider a random variable (X, Y) and RKHS Hx and Hy 

on X and Y, respectively, with measurable positive definite 

kernels kX and kY. 

 𝐸 [𝑘𝑥(𝑋 , 𝑋)]  <  𝑖𝑛𝑓,    𝐸 [𝑘𝑥(𝑌 , 𝑌)]  <  𝑖𝑛𝑓  (4) 

The cross-covariance operator Y, X: Hx → Hy is defined 

by the unique bounded operator that satisfies: 

 ⟨𝑔 ,𝛴𝑌 𝑋⟩𝐻𝑦
 =  𝐶𝑜𝑣[𝑓(𝑋), 𝑔(𝑌)] (𝐸[𝑓(𝑋), 𝑔(𝑦)]  

 − 𝐸[𝑓(𝑋)] 𝐸[ 𝑔(𝑌)]) (5) 

It is known that the cross-covariance operator can be 

decomposed into the covariance of the marginals and the 

correlation; that is, there exists a unique bounded operator 

VYX such that 

 𝛴𝑌 𝑋  =  𝛴𝑌𝑌
1/2

𝑉𝑌 𝑋 𝛴𝑌 𝑋
1/2

 (6) 

Consider another random variable Z on Z and RKHS (HZ; 

kZ). The normalized conditional cross covariance operator 

is defined as, 

 𝑉𝑌 𝑋 | 𝑍  =  𝑉𝑌 𝑋  −  𝑉𝑌 𝑍 𝑉𝑍 𝑋 (7) 

 𝑉𝑌 𝑋 | 𝑍  =  𝛴𝑌𝑌
−1/2

  (𝛴𝑌 𝑋  −  𝛴𝑌 𝑋  𝛴𝑍 𝑍
−1   𝛴𝑌 𝑋)   𝛴𝑌 𝑋

1/2
 (8) 

Using the above equations, the ΣY X operator can be used 

to determine the independence of X and Y, i.e., ΣYX = 0 if 

and only if X Y.  

After evaluating the p-value and the test statistic for the 

data, we must analyze the result to confirm whether it is 

significant or could have been caused by random chance. 

For this test, two approximation methods are used, Hall-

Buckley-Eagleson (HBE) and Lindsay-Pilla-Basak 

(LPB) [17]. HBE is a precursor to LPB, so the latter is 

explained below. It is a moment-based approximation of 

random variable distributions using mixtures, and it is used 

to improve the efficiency of the RCoT algorithm. LPB uses 

moment methods to approximate a theoretical univariate 

distribution with a mixture of unknown distributions. The 

mixture used to approximate is a finite mixture of n 

Gamma cdfs. The LPB is a complicated procedure, the 

Section IV-B goes through the algorithm sequentially. 

IV. IMPLEMENTATION 

This section describes the first implementation of the 

RCoT Algorithm and LPB approximation in Python and 

reports the results of the same. Most of the Linear algebra 

equations are not present directly in Python, so numerical 

operations such as HBE and LPB [17] approximation 

techniques were implemented. The RCoT algorithm uses 

Random Fourier Features to accelerate the training of 

kernel machines by mapping the input data to randomized 

low-dimensional feature space and then applying linear 

methods, in this case, cross-correlation to reduce the 

computation time compared to traditional kernel-based 

independence testing methods. The output of the RCoT 

algorithm is the p-value for the null hypothesis, “the 

variables are dependent on each other”. Dataset used for 

testing and the link to the implementation code are 

provided in Section IV-C. 

A. Pseudo Code for RCoT 

● Input: n datapoints of three random variables X, Y, 

Z. 

● Verify if conditional variable Z exits in given data.  

● If it does not exist run the Unconditional 

Independence Testing algorithm, i.e., Residual 

Independence Test (RIT).  

● Slice the given data to extract the fixed number of 

datapoints for the Random Fourier Features (RFF) 

method. 

● The output of the RFF algorithm is the input data 

mapped to a low-dimensional feature space in the 

form of a matrix(feat) for each of the variables.  

● Normalize the feat matrix for each of the variables 

(fx, fy, fz). 
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● Invert the normalized matrix of conditional 

variable (fz) after converting it to positive definite. 

● Find covariance of normalized matrix of X (fx) with 

respect to normalized matrix of Z (fz). Similarly for 

Z (fz) and Y (fy). 

● Evaluate the test statistic for linear partial 

correlation using the values of Cx,y,z (cross-

correlation of x with respect to y given z). 

● Find the eigenvalues of the Covariance matrix and 

apply Lindsay-Pilla-Basaky approximation with 

the eigenvalues as coeff vector and test statistic 

value for x to determine if the output of RCoT is 

statistically significant or it could have been 

generated by a random variation. 

● The RCoT algorithm return Test statistic Sta, the 

p-value for the null hypothesis. 

B. Pseudo Code for RCoT 

● Input: coeff is the coefficient vector, x is a vector.  

● If the length of coeff is less than 4 run the HBE 

approximation and return the p-value. 

● Set p, which is the number of support points, value 

to 4 (more support points increase the accuracy and 

the computational intensity). 

● Compute the weighted sum of first the 2p chi-

squared moments and solve its determinant 

equation. Use bisection method to find a 

𝑙𝑎𝑚𝑏𝑑𝑎𝑡𝑖𝑙𝑑𝑒_𝑝. 

● Generate the delta matrices for each datapoint. Use 

the calculated 𝑙𝑎𝑚𝑏𝑑𝑎𝑡𝑖𝑙𝑑𝑒_𝑝 to generate 𝑀𝑝 

which will be used to create matrix 𝑆˜. 

● Compute polynomial coefficients of the modified 

𝑀𝑝, obtain the real roots of the polynomial and 

store it as a vector.  

● Generate the Vandermonde matrix using the vector 

of roots. 

● Calculate the linear combination of the I gamma 

cdfs using 𝑙𝑎𝑚𝑏𝑑𝑎𝑡𝑖𝑙𝑑𝑒𝑝 and 𝑚𝑢𝑖 as parameters. 

Return this value. 

C. Dataset and Testing 

Synthetic Data was generated to test the implementation 

of the algorithm described above. Data is generated using 

random probability distributions like uniform distributions, 

normal distributions, logistic distributions, exponential 

distributions, and gamma distributions.  

Some exogenous variables are declared, and their values 

are generated using the linear combination of the above 

distributions from the NumPy. random library.  

Then, the values of the endogenous variables are 

generated using linear and non-linear combinations of 

exogenous variables. The paper used 10 different types of 

models with different combinations of distributions to 

generate exogenous variables and different combinations 

of exogenous and endogenous variables to generate 

endogenous variables.  

The data generated is used to test the RCoT algorithm 

and the results are compared with the results obtained from 

the Probspace algorithm. An example of the one model 

used in the data generations and its corresponding graph is 

shown in Fig. 2(a) and Fig. 2(b), respectively.  

The model shown has one exogenous variable B and 

four endogenous variables, A, C, D, and E. B is a linear 

combination of the logistic function. logistic (0,1) is added 

to every variable to simulate noise. The model array stores 

the parents of every variable in the model. The 

varEquations array stores the mathematical equations 

(using Python APIs) that are used to generate datapoints. 

The data is generated based on the number of points we 

require to run. The example shown is simple with a few 

dependencies between the variables, but much more 

complex data with multilevel chain and fork dependencies 

were used for testing. The data generated is used to test the 

RCoT algorithm and the results are compared with the 

results obtained from the Probspace algorithm. The code 

for the implementation of the RCoT algorithm and the LPB 

approximation is available at https://github.com/mayank-

agarwal-ln/RCoT. 

Then tests were generated for the data. Tests generated 

for the above model are shown in Fig. 3. Some test 

dependency and others the independence between 

variables. 
 

 
(a) Example of the model used to generate the data 

 

 
(b) Graph of the data generated using the model 

Figure 2. Example of the model used to generate the data and the 

corresponding graph. 

 

Figure 3. Tests generated for the model shown in Fig. 2(a). 
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In the tests shown in Fig. 3, the first independence test 

shows the fork (common cause) rule which states that if X 

is the common cause of Y and Z and there is only one path 

between Y and Z then Y is conditionally independent of Z 

given X. The other tests show the chain rule, that if two 

variables X and Y are connected unidirectionally with one 

or more variables in the path, then X is conditionally 

independent of Y given Z, where Z is a subset of all 

variables in the path between X and Y. 

In the list of dependents, most are direct dependents and 

multilevel dependents, except the last one which shows the 

common effect rule, which states that two exogenous 

variables X and Y are conditionally dependent given Z if 

there is a common effect of Z is the common effect of X 

and Y. The tests were run with Python 3.6 on a 64-bit 

Windows 10 machine with 8GB RAM and a 2.5 GHz Intel 

Core i5 processor. The results of the tests are shown in 

Fig. 4 are discussed in Section V. 

V. RESULTS 

The following section compares the performance of the 

Probspace algorithm with the RCoT algorithm, a kernel-

based conditional independence testing algorithm. Data 

used to test the algorithms were synthetically generated 

based on predefined causal models described in 

Section IV-C. The testcases are presented to the algorithm. 

The output of both algorithms is the dependency between 

the variables or conditional dependency when more than 

two variables are tested.  

We have chosen to compare the time taken for the test 

to complete when the number of datapoints is varied to get 

an understanding of the efficiency of the algorithm. The 

accuracy of the algorithm is tested separately and 

compared to Probspace.  

The algorithm also outputs the p-value for the test 

performed. This value is used to determine the statistical 

significance of the results produced. The paper considers 

the p-value threshold to be 0.05, which is common in the 

literature. 

The total time is then recorded for the number of 

datapoints. In Fig. 2(b), the average time Probspace takes 

to complete the testcases is ≈ 6s and for RCoT the average 

time is ≈ 3s. The results show that the RCoT algorithm, on 

average, takes less time to compute the dependency 

between variables compared to the Probspace algorithm. 

This makes the implemented Python version of the 

RCoT algorithm more useful in places where statistical 

dependence between variables is of importance. The graph 

below represents the results. There is a 50% reduction in 

the time taken for the completion of the test cases. 

The accuracy of RCoT and Probspace are comparable, 

and on average are the same. The following tests can be 

performed only for forks, chains, or multilevel 

dependencies. RCoT matches Probspace’s accuracy for all 

these tests. The paper tested both algorithms for multilevel 

dependencies. RCoT was able to detect up to 4 levels of 

direct dependency. Fig. 5 shows the testcase and Table I 

shows the results. The dependency values of 1 for the first 

four levels show that direct dependency is detected even 

with noise. 

 

Figure 4. The runtime of the algorithm against the number of datapoints, 

for RCoT and Probspace. 

 

Figure 5. Testcase generated for multilevel dependency. 

TABLE I. DEPENDENCY VALUES FOR TEST CASE 

Test Dependency Value 

A-B  

A-C  

A-D  

A-E  

A-F 

1 

1 

1 

1 

0.76 

 

In any testcase, the conditioning set usually determines 

the time taken to complete the test case. The algorithms 

were tested with different dimensionalities of the 

conditioning set to quantify its effect on the completion 

time for the algorithm. The results are given below in 

Table II. There is a sharp rise in the time taken when the 

dimensionality is > 4. Further tests must be performed to 

the reason for this increase. 

TABLE II. TIME TAKEN FOR THE ALGORITHM TO COMPLETE THE 

TESTCASES FOR DIFFERENT DIMENSIONALITY OF CONDITIONING SET 

Dimensionality 
Time —  

Probspace (s) 

Time —  

RCoT (s) 

0  

1  

2  

3  

4  

5  

6 

0.83797  

0.90799  

3.20132  

12.48197  

49.50360  

173.11749  

594.8133 

0.82909 

0.86583 

3.13366 

11.76319 

44.512780 

161.20707 

560.20229 
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VI. CONCLUSION 

Statistical methods, especially inferential statistics are 

useful for explaining the work of a machine learning model 

and finding the correlation between random variables 

much simpler. After comparing kernel and non-kernel-

based methods for conditional independence testing, it was 

identified that the kernel-based methods produce more 

accurate results. The disadvantage of using KCIT is its 

exponential scaling with dataset size, which would make it 

time inefficient for large datasets. To resolve this RCoT 

algorithm was introduced, which uses the RKHS method 

to map data to a lower-dimensional space. RCoT further 

uses the LPB approximation technique to achieve better 

accuracy. To further test and improve the model, further 

implementations should test on real-world variables. The 

implementation of RCoT in Python showed better results 

in terms of time efficiency compared to the existing 

algorithm, Probspace. 
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