
Three-Dimensional Convolutional Approaches

for the Verification of Deepfake Videos: The

Effect of Image Depth Size on Authentication

Performance

Muhammad Salihin Saealal 1, Mohd Zamri Ibrahim 2,*, Marlina Yakno 2, and Nurul Wahidah Arshad 2

1 Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka, Melaka,

Malaysia; Email: salihin@utem.edu.my (M.S.M.)
2 Faculty of Electric and Electronics Engineering Technology, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia;

Email: marlinayakno@ump.edu.my (M.Y.), wahidah@ump.edu.my (N.W.A.)

*Correspondence: zamri@ump.edu.my (M.Z.I.)

Abstract—Deep learning has proven to be particularly

effective in tasks such as data analysis, computer vision, and

human control. However, as this method has become more

advanced, it has also led to the creation of DeepFake video

sequences and images in which alterations can be made

without immediately appealing to the viewer. These

technological advancements have introduced new security

threats, including in the field of education. For example, in

online exams and tests conducted through video conferencing,

individuals may use Deepfake technology to impersonate

another person, potentially allowing them to cheat by having

someone else take the exam in their place. Several detection

approaches have been proposed to address these issues,

including systems that use both spatial and temporal features.

However, existing approaches have limitations regarding

detection accuracy and overall effectiveness. The paper

proposes a technique for detecting Deepfakes that combines

temporal analysis with convolutional neural networks. The

study explores various 3-D Convolutional Neural Networks-

based (CNN-based) model approaches and different

sequence lengths of facial photos. The results indicate that

using a 3-D CNN model with 16 sequential face images as

input can detect Deepfakes with up to 97.3 percent accuracy

on the FaceForensic dataset. Detecting Deepfakes is crucial

as they pose a threat to the authenticity of visual media. The

proposed technique offers a promising solution to this issue.

Keywords—video forensic, deep learning, face forensic, 3-D

convolution neural network, recurrent neural network,

different sequence, online learning environment

I. INTRODUCTION

The use of Deepfake technology in online exams and

tests conducted through video conferencing can pose a

significant security threat in the field of education. By

using Deepfake technology, individuals can impersonate

another person, potentially allowing them to cheat by

having someone else take the exam in their place. This can

Manuscript received January 12, 2023; revised February 23, 2023;

accepted March 20, 2023; published May 24, 2023.

undermine the integrity of the exam and compromise the

validity of the results.

Deepfake technology is becoming increasingly

sophisticated and widely accessible, making it easier for

individuals to create and use fake videos for nefarious

purposes. This technology can be used to manipulate audio

and video recordings to make it appear as if someone else

is speaking or performing a particular action. It is also

possible to create a Deepfake video of an individual’s face,

where an impersonator can use the video to take an exam

in the victim’s place. This is a genuine concern and is

becoming increasingly prevalent in the online learning

environment.

It is clear that the use of Deepfake technology in online

education poses significant challenges, and various

measures and solutions must be implemented to mitigate

this threat. Some solutions include using AI-based

detection tools, facial recognition software, or proctoring

software to detect and prevent cheating during online

exams. In addition, institutions can also introduce

measures such as multi-factor authentication, randomized

test questions, and a zero-tolerance cheating policy.

Li et al. [1], Matern et al. [2], and Sabir et al. [3]

proposed Deepfake detection methods to help address

these issues. These techniques can be broadly classified

into two categories [4]. First, detection based on visual

artifacts within the video frame identifies abnormal

features that can arise during Deepfake synthesis, such as

teeth appearing as a single white blob instead of individual

teeth. Second, rather than emphasizing temporal

consistency, detection based on capturing temporal

features across video frames is performed frame by

frame [3].

There are numerous approaches to extracting this

feature, the most commonly using a Convolution Neural

Network (CNN) as the feature extractor [5]. CNN should

488

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

doi: 10.12720/jait.14.3.488-494

become more familiar with delicate modification traces in

order to perform image forensics operations. Guo et al.

proposed learning manipulation traces on face photos

using the Pre-processing module (AMTEN) [6]. They use

of CNN and Fully Connected Network (FCN) for low-

level feature extraction and categorization. Post-

processing on the input photos, such as lossy compression,

blurring, and scaling, can boost generalization ability. The

method outperforms Bayar and Stamm’s Constrained-

Conv at residual extraction [7]. It can be used as a

fundamental residual predictor for various face-forensic

tasks.

3-D convolution kernels have been shown to learn

spatial and temporal data simultaneously, with state-of-

the-art results, thanks to recent advances in machine

learning [8]. Nguyen et al. proposed a 3-D CNN-based

technique for learning information in both spatial and

temporal dimensions from straight faces obtained from a

frame sequence, citing similar results but using a different

approach [9]. To detect Deepfake videos, the authors used

3-D convolution kernels to build deep 3-D convolutional

networks that extract spatiotemporal information from a

short consecutive frame sequence.

Saealal et al. proposed a system for face detection that

utilizes the eye-blinking state in temporal video frames to

gather distinct feature information [10]. The system

employs the VGG16 network to extract spatial features

from the input images, using pre-trained weight on the

ImageNet dataset. The authors then used the Long Short-

term Memory (LSTM) network to extract temporal

features from the input sequences, with a sampling rate of

every 20 frames. Additionally, the authors incorporated the

eye-blinking state as a prior probability to generate a new

dataset for training a feed-forward network to classify the

acquired data.

This study presented two distinct models utilized in the

analysis: Both use 3-D convolution kernels to train a deep

3-D convolutional neural network to detect Deepfake

videos by learning spatio-temporal properties in

consecutive short frame sequences. The experiment was

carried out on the most popular Deepfake video

datasets [11, 12] and compared the efficiency of the

suggested approaches for different depths of image

sequences. The detailed analysis for each model is

discussed in this manner. Section II describes the proposed

method in full.

In conclusion, this paper contributes the following:

• Testing the efficacy of 3D convolution kernels for

use in creating a deep 3-D CNN that can identify

Deepfake videos by analyzing spatiotemporal

properties extracted from relatively short

sequences of consecutive frames;

• Evaluation of effective use of 16 image sequences

compared to much lower image sequences for each

model;

• A thorough examination of each proposed model’s

performance for three distinct depths of image

sequence based on the accuracy and complexity of

the models.

II. METHODOLOGY

This paper presents the sequence image features

analysis method for efficient Deepfake detection. The low-

level features of the cropped face image from each frame

were extracted using a CNN-based model, together with

its temporal features between 16, 8, and 4 sequence frames.

The performance was then analyzed and tested on two

different models. Below are the details of the approach

used in this study.

A. Deepfake Model Detection

This study aimed to assess the efficacy of various

machine learning models for detecting Deepfake videos.

The study evaluated two models: a 3-D CNN baseline

model (shown in Fig. 1) and a 3-D CNN extended model

(shown in Fig. 2). The baseline model comprised 2 layers

of 3-D CNN with a max pool before the fully connected

network, which acted as the classifier. The extended model

was based on the model proposed by Nguyen et al. and

served as the core layer [9]. The FaceForensic++ dataset

was used to train and test each model, and their

performances were evaluated. Detailed descriptions of the

experiment and a comprehensive analysis of the results are

presented in the subsequent sections.

Figure 1. Model 1: 3-D CNN baseline model.

489

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

Figure 2. Model 2: 3-D CNN extended model.

B. Video Pre-processing

The videos from the FaceForensics++ dataset had to be

extracted into individual frames. The face was then

detected using the dlib library, and its landmark was

determined. Based on this landmark, the face was cropped

by forming a rectangle region around it. The cropped

image was then resized to 128 by 128 pixels for

consistency across the frames. The cropped images were

then grouped and sorted into groups of 4, 8, and 16 and fed

into the model as 3-D input images.

C. Spatial-Temporal Model Training

2-D and 3-D CNNs are artificial neural network types

that process data with a grid-like topology, including

images and videos. Each CNN type consists of layers that

perform convolution operations on the input data and

pooling and activation layers that introduce nonlinearity

and downsampling. However, significant differences

between 2-D and 3-D CNNs make them suited for different

tasks.

2-D CNNs are the most commonly used type of CNN

and are specifically designed to process 2-D data, such as

images [7, 13]. They are composed of 2-D kernels that

operate on 2-D inputs, sliding over the input data and

performing a dot product with the kernel weights at each

position (see Fig. 3). The output of this convolution

operation is a 2-D feature map, which is then processed by

subsequent layers in the network. 2-D CNNs are

particularly effective at tasks such as image classification

and object detection, where the spatial relationships

between pixels in the input data are essential.

Figure 3. Example of 2-D CNN.

3-D CNNs, on the other hand, are designed to process

3-D data such as videos or 3-D medical images. They are

composed of 3-D kernels that operate on 3-D inputs,

performing a 3-D convolution operation. The output of this

operation is a 3-D feature map, which captures both spatial

and temporal information in the input data [14]. 3-D CNNs

are particularly useful for tasks such as video classification

and action recognition, where the temporal relationships

between frames in the input data are essential (see Fig. 4).

Figure 4. Example of 3-D CNN.

A CNN-based method extracted both spatial and

temporal features in this study. The method employed a 3-

D CNN model that extracted spatial features by applying

two kernel dimensions on each frame. Furthermore, the

model convolved the third dimension of the image

sequence depth to extract temporal features.

490

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

3-D CNNs typically consist of multiple convolutional

layers stacked on top of each other, followed by one or

more fully connected layers. The convolutional layers

apply a series of filters to the input data to extract features,

while the fully connected layers use these features to make

predictions or classifications.

The basic equation for a 3-D convolution operation is:

(𝑓𝑔)(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ 𝑓(𝑎, 𝑏, 𝑐)𝑔(𝑥 − 𝑎, 𝑦 − 𝑏, 𝑧 − 𝑐)

∞

𝑐=−∞

∞

𝑏=−∞

∞

𝑎=−∞

 (1)

where 𝑓 is the input volume, 𝑔 is the convolutional kernel

(also known as a filter), represents the convolution

operation, and (𝑥, 𝑦, 𝑧) are the coordinates of the output

volume [15].

This equation performs a summation over the elements

of the input volume, f, and the kernel, g, using the formula

for 3-D convolution. The result is a 3-D volume,
(𝑓𝑔)(𝑥, 𝑦, 𝑧) , which represents the output of the

convolution operation.

The layer’s output value relative to the size of the input

(N,Cin,D,H,W)(N,C in,D,H,W) and output size

(N,Cout,Dout,Hout,Wout)(N,Cout,Dout,Hout,Wout) can be

precisely defined as follows in the simplest possible

scenario:

𝑜𝑢𝑡(𝑁𝑖 , 𝐶𝑜𝑢𝑡𝑗) = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡(𝐶𝑜𝑢𝑡𝑗 , 𝑘)𝑖𝑛𝑝𝑢𝑡(𝑁𝑖

𝐶𝑖𝑛−1

𝑘=0

, 𝑘) + 𝑏𝑖𝑎𝑠(𝐶𝑜𝑢𝑡𝑗) (2)

where out(Ni,Coutj) is the output at the position (Ni,Coutj) in

the output volume, weight(Coutj,k) is the element at the

position (Coutj,k) in the convolutional kernel, input(Ni,k) is

the element at the position (Ni,k) in the input volume,

bias(Coutj) is the element at position Coutj in the bias term,

 represents the convolution operation, Ni is the batch size,

k is the number of input channels, and Coutj is the number

of output channels [16].

After each 3-D CNN layer, Batch Normalization (BN)

is applied to improve the performance and stability of deep

learning models. It was introduced by Ioffe and Szegedy

in 2015 [17].

BN works by normalizing the activations of a layer for

each minibatch. This stabilizes the learning process and

allows higher learning rates to be used, leading to faster

convergence. In addition, batch normalization has been

shown to have a regularization effect that improves the

generalization of the model to unseen data.

BN is usually implemented by inserting a BN layer after

the linear transformation (e.g., convolution or fully

connected) in a deep learning model. The BN layer

computes the mean and standard deviation of the

activations for each minibatch and uses these statistics to

normalize the activations. The normalized activations are

then scaled and shifted using learned parameters so that the

model retains some of the information from the original

activations.

BN has become a standard technique in Deep Learning

and is used in many modern models. It is particularly

useful in models with very deep architectures, where

gradients can become unstable due to the vanishing

gradient problem.

1

1 m

B i

i

x
m

=

= (3)

2 2

1

1
()

m

B i B

i

x
m

=

= − (4)

2

ˆ i B
i

B

x
x

−
= +

+
 (5)

where m is the number of examples in the mini-batch, xi is

the activation for the i-th example in the mini-batch, B is

the mean of the activations for the mini-batch, B is the

standard deviation of the activations for the mini-batch,

is a small constant added to the variance to prevent

division by zero, and are learned parameters that scale

and shift the normalized activations.

Eqs. (3) and (4) calculate the mean and variance of

activations for a minibatch, which are used to normalize

activations in the batch normalization Eq. (5) [17].

D. Classifier

At the classification stage, using a fully connected

network as a classifier in a model can enable the model to

distinguish between real and fake videos. The fully

connected network takes the previous layer’s output,

which could be the final feature maps obtained from the

CNN layers. It uses it to classify the input data into

different categories. In the context of determining whether

a video is real or fake, the fully connected network would

receive the extracted features as input and use them to

make a prediction about the authenticity of the video.

To make this prediction, the fully connected network

uses weights and biases to combine the input features and

produce a prediction. The weights and biases are learned

during the training process. The model is presented with

labeled examples of real and fake videos and adjusts the

weights and biases to minimize the error between the

predicted and actual labels. Once the model is trained, it

can use the learned weights and biases to predict the

authenticity of new, unseen videos (see Fig. 5).

Figure 5. Example of a fully connected network.

491

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

The following operations are performed by the FCN:

0

outn I= (6)

 𝑛0
𝑖𝑛 = 𝑛0

𝑜𝑢𝑡 𝑊𝑖 + 𝐵𝑖 (7)

 ()out in

i i in F n= (8)

where Fi is an activation function for the i layer. After

performing a forward pass, the network’s output can be

computed at each layer using this method [18].

To update the neural network parameters during training,

the backpropagation algorithm was employed to compute

the gradient of the loss function with respect to the model

weights and biases. Stochastic gradient descent was then

used to update the parameters in the direction of the

negative gradient, with the aim of minimizing the loss

function. In addition, an adaptive learning rate algorithm

called AdaGrad was utilized to adjust the learning rate

during training. This algorithm enables the learning rate to

be automatically scaled based on the historical gradient

information, which can be useful for handling datasets

with varying degrees of sparsity or uneven feature

distributions [19]. The mathematical equation that

describes the AdaGrad update process is shown below:

1, ,1 ,
2

,1

()

(())
t i t i

t

i

J

J

+

=

= −

+
 (9)

where represents a parameter consisting of the weights,

biases, and activations, is the learning rate, ∇ denotes the

gradient, and J is the objective function with its features

and labels.

It is worth noting that the use of adaptive learning rate

algorithms like AdaGrad can be beneficial for improving

the convergence rate and robustness of neural network

training. By adjusting the learning rate in a data-dependent

manner, these algorithms can help prevent the model from

getting stuck in local minima or overfitting to noisy or

irrelevant features. However, it is important to carefully

select the hyperparameters of the algorithm, such as the

initial learning rate and decay rate, to ensure optimal

performance on a given dataset.

In order to start calculating the error gradients, a loss

function must be defined to calculate the errors. In this

work, the cross entropy loss is used because it is a loss

function commonly used in this field [20]. The cross

entropy loss (L) is given by:

ˆln
C

j j

j

L y y= − (10)

where, the FCN utilized a loss function that was based on

the number of classes (C), the true labels (y), and the

predicted labels (ŷ), as defined by a previous study [20].

During the backpropagation steps, the gradient of the

loss function was updated using a selected learning rate,

and the weights and biases of the FCN were updated at the

end of each epoch based on a batch of input data. The

performance of the FCN was evaluated using accuracy and

loss metrics that were calculated at the end of the training

process.

III. RESULT AND DISCUSSION

In order to determine the effectiveness of the proposed

approach in real-world applications, the FaceForensics++

dataset was used to provide examples of Deepfake videos.

The deep learning framework used in this work was

Pytorch v1.12, and the scikit-learn library was used for

data analysis.

The experimental procedure involved training and

testing multiple models using a dataset consisting of

35,648 image frames that were extracted from 450 videos.

Performance of the models was evaluated using a range of

evaluation metrics, including accuracy, precision, recall,

and F1-score. The experimental design and resulting

outcomes are described in detail in this section.

A. Deepfake Detection Using Model 1

Results from Table I show the performance of Model 1

using the group input of 4, 8, and 16 depth sequences of

images. It can be seen that the model performed best when

the number of images in the sequence was 8 in terms of

accuracy, recall, and F1 score, but not precision.

TABLE I. PERFORMANCE METRICS FOR A RANGE OF DEPTH SEQUENCE

VALUE FOR MODEL 1

Depth

Sequence

Performance Metrics

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

4 93.24 90.63 97.48 93.93

8 95.50 93.60 98.32 95.90

16 94.14 95.69 92.38 94.47

Accuracy is a metric that measures a model’s ability to

correctly classify or predict the output for a given set of

input examples. It is computed by dividing the number of

correct predictions made by the model by the total number

of predictions. A model with an accuracy of 95.50% made

correct predictions 95.50% of the time and had an error

rate of only 4.50%. This indicates that the model

performed well on the task it was trained for.

B. Deepfake Detection Using Model 2

Results from Table II show the performance of Model 2

using the same group input of 4, 8, and 16 depth sequences

of images. The model’s performance was best when the

number of images in the sequence was 16, as indicated by

its high accuracy, recall, and F1 score. The precision value

was slightly lower under this condition.

The precision of 97.48% means that only 2.52% of

Deepfake that the system identified as positives (Deepfake)

were false positives (not Deepfake). Recall, or the measure

of how many Deepfake the model identifies as true

positives compared to the number of actual Deepfake in

the dataset is around 97.48% at 97.48% precision detection.

492

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

TABLE II. PERFORMANCE METRICS FOR A RANGE OF DEPTH SEQUENCE

VALUE FOR MODEL 2

Depth

Sequence

Performance Metrics

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

4 96.40 97.44 95.80 96.61

8 97.30 98.29 96.64 97.46

16 97.30 97.48 97.48 97.48

Suppose the recall and precision values are of the same

number. In that case, it means that the model was able to

correctly identify all relevant examples in the dataset (high

recall) and that all of the examples it identified as relevant

were actually relevant (high precision). This would

indicate that the model performed well on the task it was

trained for and could classify or predict the output for the

input examples accurately.

In general, a model should have both high recall and

high precision, as this indicates that the model can identify

all relevant examples in the dataset while also minimizing

the number of false positives.

C. Overall Comparison

Fig. 6 compares the performances of all models across

various image sequence sizes. Model 2 outperformed other

models in most metrics, except for recall at image depths

of 4 and 8. Additionally, the overall performance of both

models improved as the image sequence size increased.

However, Model 1 performance began to decline when the

depth size reached 16, potentially due to the two layers of

3-D CNN struggling to process more complex information

compared to Model 2 five layers of 3-D CNN.

In general, increasing the depth of a CNN by adding

more layers can improve its performance on a given task,

as deeper networks can learn more complex and abstract

features from the input data. The complexity of a network

increases with its depth, resulting in more parameters that

the model needs to learn. This can make the training

process more computationally intensive and may lead to

overfitting if the model is not appropriately regularized.

Therefore, it is possible that one of the models

performed better than the other when the number of layers

was increased, either because it could learn more useful

features from the data or because it could generalize better

to unseen examples.

Figure 6. Comparison of the performance of Model 1 and Model 2 across various image sequence sizes.

Fig. 7 shows two examples of cropped faces extracted

from videos. The proposed model successfully detected

the first image, which had no visible artifacts created

during the Deepfake generation process. However, the

model was unable to detect the second image. The

observations made in this study indicate that the model

faced difficulty in detecting images with inadequate

artifact creation and smooth transitions between frames.

However, despite this limitation, the failure rate for

detecting tampered videos remained relatively low.

Figure 7. Comparison between tempered frames (a) Successfully

detected (b) Unable to class as fake image.

493

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

IV. CONCLUSION AND FUTURE RECOMMENDATIONS

This study presents a method for learning features from

clips in spatial and temporal dimensions by constructing

image sequences using two CNN-based models. Testing

with the FaceForensic++ dataset revealed that the

proposed 3-D CNN model, which was adapted from the

baseline 3-D CNN model with additional neural network

parameters, outperformed it, achieving up to 97.30%

accuracy.

The current work can be improved in several ways. One

possible avenue for improvement is to examine the

topologies of various deep neural networks to determine if

there are more efficient methods for training face sequence

pattern recognition. Additionally, the current method only

utilizes face pixel information as input. However, it is

crucial also to consider the continuity between frames, as

unexpected changes and anomalies during transitions may

indicate manipulation.

Future research will aim to enhance the results by

exploring different deep neural network architectures and

incorporating additional input factors, such as frame

continuity and anomalies indicative of tampering. The

study will also look into methods for leveraging more

information, such as temporal continuity between frames

using the LSTM network, to further improve the models’

performance.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

All the authors conducted the research together.

Particularly, M. S. Saealal, and M. Z. Ibrahim generated

the problems, analyzed the data, and wrote the paper. M.

Yakno, and N. W. Arshad supervised the method

implementation.; all authors had approved the final version.

ACKNOWLEDGMENT

This research is financially supported by the

Fundamental Research Grant Scheme

(FRGS/1/2021/ICT07/UMP/02/1) with the RDU number

RDU210136 which is awarded by the Ministry of Higher

Education (MOHE) and Postgraduate Research Grants

Scheme (PGRS) PGRS210338 via the Research and

Innovation Department, Universiti Malaysia Pahang

(UMP) Malaysia.

REFERENCES

[1] Y. Li, M.-C. Chang, and S. Lyu, “In ictu oculi: Exposing AI created

fake videos by detecting eye blinking,” in Proc. IEEE International

Workshop on Information Forensics and Security (WIFS), 2019.

[2] F. Matern, C. Riess, and M. Stamminger, “Exploiting visual

artifacts to expose deepfakes and face manipulations,” in Proc.

IEEE Winter Applications and Computer Vision Workshops

(WACVW), 2019, pp. 83–92.

[3] E. Sabir, J. Cheng, A. Jaiswal, W. AbdAlmageed, I. Masi, and P.

Natarajan, “Recurrent convolutional strategies for face

manipulation detection in videos,” in Proc. CVPR Workshops, 2019.

[4] T. T. Nguyen, Q. V. H. Nguyen, D. T. Nguyen, D. T. Nguyen, T.

Huynh-The, S. Nahavandi, T. T. Nguyen, Q.-V. Pham, and C. M.

Nguyen, “Deep learning for deepfakes creation and detection: A

survey,” Computer Vision and Image Understanding, vol. 223,

2022.

[5] P. Kumar, M. Vatsa, and R. Singh, “Detecting face2face facial

reenactment in videos,” in Proc. IEEE Workshop on Applications

of Computer Vision (WACV), 2020, pp. 2578–2586.

[6] Z. Guo, G. Yang, J. Chen, and X. Sun, “Fake face detection via

adaptive manipulation traces extraction network,” Computer Vision

and Image Understanding, vol. 204, p. 103170, 2021.

[7] B. Bayar and M. C. Stamm, “Constrained convolutional neural

networks: A new approach towards general purpose image

manipulation detection,” IEEE Transactions on Information

Forensics and Security, vol. 13, pp. 2691–2706, 2018.

[8] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri,

“Learning spatiotemporal features with 3d convolutional networks,”

in Proc. 2015 IEEE International Conference on Computer Vision

(ICCV), 2015, pp. 4489–4497.

[9] X. H. Nguyen, T. S. Tran, V. T. Le, K. D. Nguyen, and D. T. Truong,

“Learning spatio-temporal features to detect manipulated facial

videos created by the deepfake techniques,” Forensic Science

International: Digital Investigation, vol. 36, 301108, 2021.

[10] M. S. Saealal, M. Z. Ibrahim, D. J. Mulvaney, M. I. Shapiai, and N.

Fadilah, “Using cascade cnn-lstm-fcns to identify ai-altered video

based on eye state sequence,” Plos One, vol. 17, no. 12, p. e0278989,

2022.

[11] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M.

Niessner, “Faceforensics++: Learning to detect manipulated facial

images,” in Proc. 2019 IEEE/CVF International Conference on

Computer Vision (ICCV), 2019, pp. 1–11.

[12] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M.

Nießner, “Faceforensics: A large-scale video dataset for forgery

detection in human faces,” arXiv Preprint, arXiv:1803.09179, 2018.

[13] N. Bonettini, L. Bondi, E. D. Cannas, P. Bestagini, S. Mandelli, and

S. Tubaro, “Video face manipulation detection through ensemble of

CNNs,” in Proc. 2020 25th International Conference on Pattern

Recognition (ICPR), 2021, pp. 5012–5019,

doi: 10.1109/icpr48806.2021.9412711

[14] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural

networks for human action recognition,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 35, 2013.

[15] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for

deep learning,” arXiv preprint, arXiv:1603.07285, 2016.

[16] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for

deep learning,” arXiv preprint. arXiv:1603.07285, 2016.

[17] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” in Proc. the

32nd International Conference on International Conference on

Machine Learning, 2015, pp. 448–456.

[18] J. Schmidhuber, “Deep learning in neural networks: An overview,”

Neural Networks, vol. 61, pp. 85–117, 2015,

doi: 10.1016/j.neunet.2014.09.003

[19] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods

for online learning and stochastic optimization,” J. Mach. Learn.

Res., vol. 12, pp. 2121–2159, Jul. 2011.

[20] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,

“Rethinking the inception architecture for computer vision,” in

Proc. the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 2818–2826.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

494

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N3-488

