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Abstract—Deep learning has proven to be particularly 

effective in tasks such as data analysis, computer vision, and 

human control. However, as this method has become more 

advanced, it has also led to the creation of DeepFake video 

sequences and images in which alterations can be made 

without immediately appealing to the viewer. These 

technological advancements have introduced new security 

threats, including in the field of education. For example, in 

online exams and tests conducted through video conferencing, 

individuals may use Deepfake technology to impersonate 

another person, potentially allowing them to cheat by having 

someone else take the exam in their place. Several detection 

approaches have been proposed to address these issues, 

including systems that use both spatial and temporal features. 

However, existing approaches have limitations regarding 

detection accuracy and overall effectiveness. The paper 

proposes a technique for detecting Deepfakes that combines 

temporal analysis with convolutional neural networks. The 

study explores various 3-D Convolutional Neural Networks-

based (CNN-based) model approaches and different 

sequence lengths of facial photos. The results indicate that 

using a 3-D CNN model with 16 sequential face images as 

input can detect Deepfakes with up to 97.3 percent accuracy 

on the FaceForensic dataset. Detecting Deepfakes is crucial 

as they pose a threat to the authenticity of visual media. The 

proposed technique offers a promising solution to this issue.  

Keywords—video forensic, deep learning, face forensic, 3-D 

convolution neural network, recurrent neural network, 

different sequence, online learning environment  

I. INTRODUCTION

The use of Deepfake technology in online exams and 

tests conducted through video conferencing can pose a 

significant security threat in the field of education. By 

using Deepfake technology, individuals can impersonate 

another person, potentially allowing them to cheat by 

having someone else take the exam in their place. This can 
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undermine the integrity of the exam and compromise the 

validity of the results. 

Deepfake technology is becoming increasingly 

sophisticated and widely accessible, making it easier for 

individuals to create and use fake videos for nefarious 

purposes. This technology can be used to manipulate audio 

and video recordings to make it appear as if someone else 

is speaking or performing a particular action. It is also 

possible to create a Deepfake video of an individual’s face, 

where an impersonator can use the video to take an exam 

in the victim’s place. This is a genuine concern and is 

becoming increasingly prevalent in the online learning 

environment. 

It is clear that the use of Deepfake technology in online 

education poses significant challenges, and various 

measures and solutions must be implemented to mitigate 

this threat. Some solutions include using AI-based 

detection tools, facial recognition software, or proctoring 

software to detect and prevent cheating during online 

exams. In addition, institutions can also introduce 

measures such as multi-factor authentication, randomized 

test questions, and a zero-tolerance cheating policy. 

Li et al. [1], Matern et al. [2], and Sabir et al. [3] 

proposed Deepfake detection methods to help address 

these issues. These techniques can be broadly classified 

into two categories [4]. First, detection based on visual 

artifacts within the video frame identifies abnormal 

features that can arise during Deepfake synthesis, such as 

teeth appearing as a single white blob instead of individual 

teeth. Second, rather than emphasizing temporal 

consistency, detection based on capturing temporal 

features across video frames is performed frame by 

frame [3]. 

There are numerous approaches to extracting this 

feature, the most commonly using a Convolution Neural 

Network (CNN) as the feature extractor [5]. CNN should 
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become more familiar with delicate modification traces in 

order to perform image forensics operations. Guo et al. 

proposed learning manipulation traces on face photos 

using the Pre-processing module (AMTEN) [6]. They use 

of CNN and Fully Connected Network (FCN) for low-

level feature extraction and categorization. Post-

processing on the input photos, such as lossy compression, 

blurring, and scaling, can boost generalization ability. The 

method outperforms Bayar and Stamm’s Constrained-

Conv at residual extraction [7]. It can be used as a 

fundamental residual predictor for various face-forensic 

tasks. 

3-D convolution kernels have been shown to learn 

spatial and temporal data simultaneously, with state-of-

the-art results, thanks to recent advances in machine 

learning [8]. Nguyen et al. proposed a 3-D CNN-based 

technique for learning information in both spatial and 

temporal dimensions from straight faces obtained from a 

frame sequence, citing similar results but using a different 

approach [9]. To detect Deepfake videos, the authors used 

3-D convolution kernels to build deep 3-D convolutional 

networks that extract spatiotemporal information from a 

short consecutive frame sequence. 

Saealal et al. proposed a system for face detection that 

utilizes the eye-blinking state in temporal video frames to 

gather distinct feature information [10]. The system 

employs the VGG16 network to extract spatial features 

from the input images, using pre-trained weight on the 

ImageNet dataset. The authors then used the Long Short-

term Memory (LSTM) network to extract temporal 

features from the input sequences, with a sampling rate of 

every 20 frames. Additionally, the authors incorporated the 

eye-blinking state as a prior probability to generate a new 

dataset for training a feed-forward network to classify the 

acquired data. 

This study presented two distinct models utilized in the 

analysis: Both use 3-D convolution kernels to train a deep 

3-D convolutional neural network to detect Deepfake 

videos by learning spatio-temporal properties in 

consecutive short frame sequences. The experiment was 

carried out on the most popular Deepfake video 

datasets [11, 12] and compared the efficiency of the 

suggested approaches for different depths of image 

sequences. The detailed analysis for each model is 

discussed in this manner. Section II describes the proposed 

method in full. 

In conclusion, this paper contributes the following: 

• Testing the efficacy of 3D convolution kernels for 

use in creating a deep 3-D CNN that can identify 

Deepfake videos by analyzing spatiotemporal 

properties extracted from relatively short 

sequences of consecutive frames; 

• Evaluation of effective use of 16 image sequences 

compared to much lower image sequences for each 

model; 

• A thorough examination of each proposed model’s 

performance for three distinct depths of image 

sequence based on the accuracy and complexity of 

the models. 

II. METHODOLOGY 

This paper presents the sequence image features 

analysis method for efficient Deepfake detection. The low-

level features of the cropped face image from each frame 

were extracted using a CNN-based model, together with 

its temporal features between 16, 8, and 4 sequence frames. 

The performance was then analyzed and tested on two 

different models. Below are the details of the approach 

used in this study. 

A. Deepfake Model Detection 

This study aimed to assess the efficacy of various 

machine learning models for detecting Deepfake videos. 

The study evaluated two models: a 3-D CNN baseline 

model (shown in Fig. 1) and a 3-D CNN extended model 

(shown in Fig. 2). The baseline model comprised 2 layers 

of 3-D CNN with a max pool before the fully connected 

network, which acted as the classifier. The extended model 

was based on the model proposed by Nguyen et al. and 

served as the core layer [9]. The FaceForensic++ dataset 

was used to train and test each model, and their 

performances were evaluated. Detailed descriptions of the 

experiment and a comprehensive analysis of the results are 

presented in the subsequent sections. 

 

 

Figure 1. Model 1: 3-D CNN baseline model. 
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Figure 2. Model 2: 3-D CNN extended model. 

B. Video Pre-processing 

The videos from the FaceForensics++ dataset had to be 

extracted into individual frames. The face was then 

detected using the dlib library, and its landmark was 

determined. Based on this landmark, the face was cropped 

by forming a rectangle region around it. The cropped 

image was then resized to 128 by 128 pixels for 

consistency across the frames. The cropped images were 

then grouped and sorted into groups of 4, 8, and 16 and fed 

into the model as 3-D input images. 

C. Spatial-Temporal Model Training 

2-D and 3-D CNNs are artificial neural network types 

that process data with a grid-like topology, including 

images and videos. Each CNN type consists of layers that 

perform convolution operations on the input data and 

pooling and activation layers that introduce nonlinearity 

and downsampling. However, significant differences 

between 2-D and 3-D CNNs make them suited for different 

tasks. 

2-D CNNs are the most commonly used type of CNN 

and are specifically designed to process 2-D data, such as 

images [7, 13]. They are composed of 2-D kernels that 

operate on 2-D inputs, sliding over the input data and 

performing a dot product with the kernel weights at each 

position (see Fig. 3). The output of this convolution 

operation is a 2-D feature map, which is then processed by 

subsequent layers in the network. 2-D CNNs are 

particularly effective at tasks such as image classification 

and object detection, where the spatial relationships 

between pixels in the input data are essential. 

 

 

Figure 3. Example of 2-D CNN. 

3-D CNNs, on the other hand, are designed to process 

3-D data such as videos or 3-D medical images. They are 

composed of 3-D kernels that operate on 3-D inputs, 

performing a 3-D convolution operation. The output of this 

operation is a 3-D feature map, which captures both spatial 

and temporal information in the input data [14]. 3-D CNNs 

are particularly useful for tasks such as video classification 

and action recognition, where the temporal relationships 

between frames in the input data are essential (see Fig. 4). 

 

 

Figure 4. Example of 3-D CNN. 

A CNN-based method extracted both spatial and 

temporal features in this study. The method employed a 3-

D CNN model that extracted spatial features by applying 

two kernel dimensions on each frame. Furthermore, the 

model convolved the third dimension of the image 

sequence depth to extract temporal features. 
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3-D CNNs typically consist of multiple convolutional 

layers stacked on top of each other, followed by one or 

more fully connected layers. The convolutional layers 

apply a series of filters to the input data to extract features, 

while the fully connected layers use these features to make 

predictions or classifications. 

The basic equation for a 3-D convolution operation is: 

(𝑓𝑔)(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ 𝑓(𝑎, 𝑏, 𝑐)𝑔(𝑥 − 𝑎, 𝑦 − 𝑏, 𝑧 − 𝑐)

∞

𝑐=−∞

∞

𝑏=−∞

∞

𝑎=−∞

 (1) 

where 𝑓 is the input volume, 𝑔 is the convolutional kernel 

(also known as a filter),   represents the convolution 

operation, and (𝑥, 𝑦, 𝑧) are the coordinates of the output 

volume [15]. 

This equation performs a summation over the elements 

of the input volume, f, and the kernel, g, using the formula 

for 3-D convolution. The result is a 3-D volume, 
(𝑓𝑔)(𝑥, 𝑦, 𝑧) , which represents the output of the 

convolution operation. 

The layer’s output value relative to the size of the input 

(N,Cin,D,H,W)(N,C in,D,H,W) and output size 

(N,Cout,Dout,Hout,Wout)( N,Cout,Dout,Hout,Wout) can be 

precisely defined as follows in the simplest possible 

scenario: 

𝑜𝑢𝑡(𝑁𝑖 , 𝐶𝑜𝑢𝑡𝑗) = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡(𝐶𝑜𝑢𝑡𝑗 , 𝑘)𝑖𝑛𝑝𝑢𝑡(𝑁𝑖

𝐶𝑖𝑛−1

𝑘=0

, 𝑘) + 𝑏𝑖𝑎𝑠(𝐶𝑜𝑢𝑡𝑗) (2) 

where out(Ni,Coutj) is the output at the position (Ni,Coutj) in 

the output volume, weight(Coutj,k) is the element at the 

position (Coutj,k) in the convolutional kernel, input(Ni,k) is 

the element at the position (Ni,k) in the input volume, 

bias(Coutj) is the element at position Coutj in the bias term, 

 represents the convolution operation, Ni is the batch size, 

k is the number of input channels, and Coutj is the number 

of output channels [16]. 

After each 3-D CNN layer, Batch Normalization (BN) 

is applied to improve the performance and stability of deep 

learning models. It was introduced by Ioffe and Szegedy 

in 2015 [17]. 

BN works by normalizing the activations of a layer for 

each minibatch. This stabilizes the learning process and 

allows higher learning rates to be used, leading to faster 

convergence. In addition, batch normalization has been 

shown to have a regularization effect that improves the 

generalization of the model to unseen data. 

BN is usually implemented by inserting a BN layer after 

the linear transformation (e.g., convolution or fully 

connected) in a deep learning model. The BN layer 

computes the mean and standard deviation of the 

activations for each minibatch and uses these statistics to 

normalize the activations. The normalized activations are 

then scaled and shifted using learned parameters so that the 

model retains some of the information from the original 

activations. 

BN has become a standard technique in Deep Learning 

and is used in many modern models. It is particularly 

useful in models with very deep architectures, where 

gradients can become unstable due to the vanishing 

gradient problem. 
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where m is the number of examples in the mini-batch, xi is 

the activation for the i-th example in the mini-batch, B is 

the mean of the activations for the mini-batch, B is the 

standard deviation of the activations for the mini-batch,  

is a small constant added to the variance to prevent 

division by zero,  and  are learned parameters that scale 

and shift the normalized activations. 

Eqs. (3) and (4) calculate the mean and variance of 

activations for a minibatch, which are used to normalize 

activations in the batch normalization Eq. (5) [17]. 

D. Classifier 

At the classification stage, using a fully connected 

network as a classifier in a model can enable the model to 

distinguish between real and fake videos. The fully 

connected network takes the previous layer’s output, 

which could be the final feature maps obtained from the 

CNN layers. It uses it to classify the input data into 

different categories. In the context of determining whether 

a video is real or fake, the fully connected network would 

receive the extracted features as input and use them to 

make a prediction about the authenticity of the video.  

To make this prediction, the fully connected network 

uses weights and biases to combine the input features and 

produce a prediction. The weights and biases are learned 

during the training process. The model is presented with 

labeled examples of real and fake videos and adjusts the 

weights and biases to minimize the error between the 

predicted and actual labels. Once the model is trained, it 

can use the learned weights and biases to predict the 

authenticity of new, unseen videos (see Fig. 5). 

 

 

Figure 5. Example of a fully connected network. 
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The following operations are performed by the FCN: 

 
0

outn I=  (6) 

 𝑛0
𝑖𝑛 = 𝑛0

𝑜𝑢𝑡  𝑊𝑖 + 𝐵𝑖 (7) 

 ( )out in

i i in F n=  (8) 

where Fi is an activation function for the i layer. After 

performing a forward pass, the network’s output can be 

computed at each layer using this method [18]. 

To update the neural network parameters during training, 

the backpropagation algorithm was employed to compute 

the gradient of the loss function with respect to the model 

weights and biases. Stochastic gradient descent was then 

used to update the parameters in the direction of the 

negative gradient, with the aim of minimizing the loss 

function. In addition, an adaptive learning rate algorithm 

called AdaGrad was utilized to adjust the learning rate 

during training. This algorithm enables the learning rate to 

be automatically scaled based on the historical gradient 

information, which can be useful for handling datasets 

with varying degrees of sparsity or uneven feature 

distributions [19]. The mathematical equation that 

describes the AdaGrad update process is shown below: 

1, ,1 ,
2

,1

( )

( ( ))
t i t i

t

i

J

J





  

 
+

=

= − 

+ 
 (9) 

where  represents a parameter consisting of the weights, 

biases, and activations,  is the learning rate, ∇ denotes the 

gradient, and J is the objective function with its features 

and labels. 

It is worth noting that the use of adaptive learning rate 

algorithms like AdaGrad can be beneficial for improving 

the convergence rate and robustness of neural network 

training. By adjusting the learning rate in a data-dependent 

manner, these algorithms can help prevent the model from 

getting stuck in local minima or overfitting to noisy or 

irrelevant features. However, it is important to carefully 

select the hyperparameters of the algorithm, such as the 

initial learning rate and decay rate, to ensure optimal 

performance on a given dataset. 

In order to start calculating the error gradients, a loss 

function must be defined to calculate the errors. In this 

work, the cross entropy loss is used because it is a loss 

function commonly used in this field [20]. The cross 

entropy loss (L) is given by: 

ˆln
C

j j

j

L y y= −  (10) 

where, the FCN utilized a loss function that was based on 

the number of classes (C), the true labels (y), and the 

predicted labels (ŷ), as defined by a previous study [20]. 

During the backpropagation steps, the gradient of the 

loss function was updated using a selected learning rate, 

and the weights and biases of the FCN were updated at the 

end of each epoch based on a batch of input data. The 

performance of the FCN was evaluated using accuracy and 

loss metrics that were calculated at the end of the training 

process. 

III. RESULT AND DISCUSSION 

In order to determine the effectiveness of the proposed 

approach in real-world applications, the FaceForensics++ 

dataset was used to provide examples of Deepfake videos. 

The deep learning framework used in this work was 

Pytorch v1.12, and the scikit-learn library was used for 

data analysis. 

The experimental procedure involved training and 

testing multiple models using a dataset consisting of 

35,648 image frames that were extracted from 450 videos. 

Performance of the models was evaluated using a range of 

evaluation metrics, including accuracy, precision, recall, 

and F1-score. The experimental design and resulting 

outcomes are described in detail in this section. 

A. Deepfake Detection Using Model 1 

Results from Table I show the performance of Model 1 

using the group input of 4, 8, and 16 depth sequences of 

images. It can be seen that the model performed best when 

the number of images in the sequence was 8 in terms of 

accuracy, recall, and F1 score, but not precision. 

TABLE I. PERFORMANCE METRICS FOR A RANGE OF DEPTH SEQUENCE 

VALUE FOR MODEL 1 

Depth 

Sequence 

Performance Metrics 

Accuracy(%) Precision(%) Recall(%) F1-Score(%) 

4 93.24 90.63 97.48 93.93 

8 95.50 93.60 98.32 95.90 

16 94.14 95.69 92.38 94.47 

 

Accuracy is a metric that measures a model’s ability to 

correctly classify or predict the output for a given set of 

input examples. It is computed by dividing the number of 

correct predictions made by the model by the total number 

of predictions. A model with an accuracy of 95.50% made 

correct predictions 95.50% of the time and had an error 

rate of only 4.50%. This indicates that the model 

performed well on the task it was trained for. 

B. Deepfake Detection Using Model 2 

Results from Table II show the performance of Model 2 

using the same group input of 4, 8, and 16 depth sequences 

of images. The model’s performance was best when the 

number of images in the sequence was 16, as indicated by 

its high accuracy, recall, and F1 score. The precision value 

was slightly lower under this condition. 

The precision of 97.48% means that only 2.52% of 

Deepfake that the system identified as positives (Deepfake) 

were false positives (not Deepfake). Recall, or the measure 

of how many Deepfake the model identifies as true 

positives compared to the number of actual Deepfake in 

the dataset is around 97.48% at 97.48% precision detection. 
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TABLE II. PERFORMANCE METRICS FOR A RANGE OF DEPTH SEQUENCE 

VALUE FOR MODEL 2 

Depth 

Sequence 

Performance Metrics 

Accuracy(%) Precision(%) Recall(%) F1-Score(%) 

4 96.40 97.44 95.80 96.61 

8 97.30 98.29 96.64 97.46 

16 97.30 97.48 97.48 97.48 

 

Suppose the recall and precision values are of the same 

number. In that case, it means that the model was able to 

correctly identify all relevant examples in the dataset (high 

recall) and that all of the examples it identified as relevant 

were actually relevant (high precision). This would 

indicate that the model performed well on the task it was 

trained for and could classify or predict the output for the 

input examples accurately. 

In general, a model should have both high recall and 

high precision, as this indicates that the model can identify 

all relevant examples in the dataset while also minimizing 

the number of false positives. 

C. Overall Comparison 

Fig. 6 compares the performances of all models across 

various image sequence sizes. Model 2 outperformed other 

models in most metrics, except for recall at image depths 

of 4 and 8. Additionally, the overall performance of both 

models improved as the image sequence size increased. 

However, Model 1 performance began to decline when the 

depth size reached 16, potentially due to the two layers of 

3-D CNN struggling to process more complex information 

compared to Model 2 five layers of 3-D CNN. 

In general, increasing the depth of a CNN by adding 

more layers can improve its performance on a given task, 

as deeper networks can learn more complex and abstract 

features from the input data. The complexity of a network 

increases with its depth, resulting in more parameters that 

the model needs to learn. This can make the training 

process more computationally intensive and may lead to 

overfitting if the model is not appropriately regularized. 

Therefore, it is possible that one of the models 

performed better than the other when the number of layers 

was increased, either because it could learn more useful 

features from the data or because it could generalize better 

to unseen examples. 

 

 

Figure 6. Comparison of the performance of Model 1 and Model 2 across various image sequence sizes. 

Fig. 7 shows two examples of cropped faces extracted 

from videos. The proposed model successfully detected 

the first image, which had no visible artifacts created 

during the Deepfake generation process. However, the 

model was unable to detect the second image. The 

observations made in this study indicate that the model 

faced difficulty in detecting images with inadequate 

artifact creation and smooth transitions between frames. 

However, despite this limitation, the failure rate for 

detecting tampered videos remained relatively low. 

 

Figure 7. Comparison between tempered frames (a) Successfully 

detected (b) Unable to class as fake image. 
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IV. CONCLUSION AND FUTURE RECOMMENDATIONS

This study presents a method for learning features from 

clips in spatial and temporal dimensions by constructing 

image sequences using two CNN-based models. Testing 

with the FaceForensic++ dataset revealed that the 

proposed 3-D CNN model, which was adapted from the 

baseline 3-D CNN model with additional neural network 

parameters, outperformed it, achieving up to 97.30% 

accuracy. 

The current work can be improved in several ways. One 

possible avenue for improvement is to examine the 

topologies of various deep neural networks to determine if 

there are more efficient methods for training face sequence 

pattern recognition. Additionally, the current method only 

utilizes face pixel information as input. However, it is 

crucial also to consider the continuity between frames, as 

unexpected changes and anomalies during transitions may 

indicate manipulation. 

Future research will aim to enhance the results by 

exploring different deep neural network architectures and 

incorporating additional input factors, such as frame 

continuity and anomalies indicative of tampering. The 

study will also look into methods for leveraging more 

information, such as temporal continuity between frames 

using the LSTM network, to further improve the models’ 

performance. 
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