
Efficient FPGA-Based Convolutional Neural

Network Implementation for Edge Computing

Cuong Pham-Quoc 1,2,* and Tran Ngoc Thinh 1,2

1 Department of Computer Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City,

Vietnam
2 Department of Computer Engineering, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh

City, Vietnam

*Correspondence: cuongpham@hcmut.edu.vn (C.P.-Q.)

Abstract—In recent years, accelerating convolutional neural

networks on Field Programmable Gate Array (FPGA) to

improve the performance of the inference phase of artificial

intelligent edge computing applications is a promising

approach. This paper presents our proposed architecture for

building a convolution neural network acceleration core on

FPGA. The proposed FPGA-based core targets edge

computing platforms where hardware resources and power

efficiency are essential requirements. We use the MobileNet

neural network model for image classification as a case study

to evaluate our proposed system. We compare our work with

a quad-core ARM Cortex processor at 1.2GHz and achieve

speed-ups by up to 14.77× convolution operators. Although

our system is worse than a 6-core Intel Core i7 processor, it

is more energy-efficiency than the Intel processor. Our

proposed system is the best fit for edge computing.

Keywords—Field Programmable Gate Array (FPGA),

convolutional neural network, hardware accelerator,

MobileNet

I. INTRODUCTION

Recently, with the rapid development of Artificial

Intelligence (AI), many research fields such as

image/voice recognition, object detection, anomaly-based

detection systems, etc., have been applied in many

different areas of life from IoTs-based applications

processed on edge computing devices to expert systems

executed on high-performance computers. Among famous

neural network models, Convolutional Neural Network

(CNN) attracts more studies in various application

domains and dominates hardware accelerator-based

research due to their effectiveness. However, recent CNNs

have become deeper and thus require more and more

computing power and storage of the processing platforms.

CNN models are becoming increasingly accurate by

utilizing considerable amounts of data and needing

enormous computational power [1]; for instance, the

VGG19 CNN model takes over 500MB of memory for

parameters and processes up to 39B+ Floating-Point

Operations (FLOPs) to classify images with the resolution

of 224 × 224 pixels [2]. In contrast, edge computing

Manuscript received January 16, 2023; revised March 2, 2023; accepted

April 5, 2023; published May 24, 2023.

devices only provide good performance, less memory, and

a modest energy budget [3]. Even conventional CPUs are

incapable of delivering sufficient computational power for

CNN-based applications without consuming more than 1

joule (J) of energy per 1 GOP. The training phase of AI-

based applications can be done with many high-

performance computing platforms like GPUs or

supercomputers. Meanwhile, the inference phase for edge

computing platforms, e.g., IoT-based applications, still

needs to be executed on small devices with low processing

ability and limited power consumption.

At the end of Moore’s Law [4], the hardware accelerator

architecture that includes General Purpose Processors

(GPP) augmented with some unique hardware-based

computing cores for a particular purpose is a promising

approach. The strategy of co-designing the hardware

(special cores) and software (GPP) of computing systems,

which includes embedded and edge computing, has the

potential to continue increasing computing efficiency in

terms of processing time. The paradigm’s most promising

strategy involves using specialized hardware cores to

handle the intensive application functions. These

processing units have been tuned for the tasks and the

targeting system. Currently, researchers typically focus on

the two best-known products: Application Specific

Integrated Circuits (ASICs) and Field Programmable Gate

Arrays (FPGAs). However, due to their reconfigurability,

FPGAs provide more significant optimization and reuse

opportunities than ASICs.

This paper proposes an efficient FPGA-based

architecture for developing CNN-based systems targeting

edge computing platforms. Our work aims to accelerate the

performance and use hardware resources efficiently so that

edge devices can process the inference phase in real time.

To validate the proposed FPGA-based system, we deploy

the MobileNet model [5, 6] on an Ultrascale+Xilinx FPGA

board [7] as our experiments. The experimental results

show that our system achieves 14.77× higher performance

than a Quadcore ARM processor while using fewer

hardware resources than other work in the literature. The

main contributions of our work include three folds.

479

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

doi: 10.12720/jait.14.3.479-487

(1) We propose an architecture to build CNN on

FPGA devices targeting edge computing systems

efficiently.

(2) We build the MobileNet on a low-cost FPGA

device suitable for edge computing.

(3) We present our experimental results for other

researchers to reference in the future.

The rest of the paper is organized as follows. Section II

presents the background on CNN, the MobileNet model,

and literature-related work. We then introduce the

proposed FPGA-based architecture for CNN targeting

edge computing platforms in Section III. We show our

FPGA-based system implementation with the MobileNet

model to validate the architecture in Section IV. Section V

introduces our experimental results and compares them

with other studies. Finally, we conclude our paper in

Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we first briefly introduce the background

of CNN and MobileNet. Then, we summarize related work

in the literature.

A. Convolutional Neural Networks

As mentioned above, Convolution Neural Network

(CNN) model is mainly used for deep learning-based

applications due to its efficiency. Therefore, many CNN-

based models have been proposed in recent years for

different purposes. In general, the principal operation of

the standard convolution is shown in Fig. 1 (adapted

from [8]).

Figure 1. The standard convolution operation.

As illustrated in Fig. 1, the input feature map includes C

channels, each of them is a matrix of F × F size.

Convolution operations will be conducted between the

input feature maps and K kernels (also called filters) which

are W×W matrices (W < F). Each kernel also consists of C

W×W matrices for convoluting with C matrices of each

feature map channel. Kernels are applied to different

elements of the input feature map to create 2D matrices

output feature maps through multiple Multiply-

Accumulate Operators (MAC). The convolution operator

is depicted in Eq. (1), where act_func is an activation

function (usually Tanh, Sigmoid, etc.) and b is a bias

number.

𝐹′[𝑖, 𝑗] = 𝑎𝑐𝑡_𝑓𝑢𝑛𝑐(∑ ∑ 𝐹[𝑚, 𝑛] × 𝐾[𝑚

𝑛+𝑤

𝑛=𝑗

𝑚+𝑤

𝑚=𝑖

− 𝑖, 𝑛 − 𝑗]) + 𝑏

(1)

B. MobileNet Model

MobileNet model [5, 6], initially developed by Google,

is one of the well-known CNN models that is effective for

mobile-computing applications. It is hence a good fit for

edge computing. As a result, we decided to utilize the

MobileNet model as our case study to support the

architecture designed in this paper. The model has 13

layers of depth-wise separable convolution, one layer with

an average-pooling function, and a wholly linked layer.

Two operations—depth-wise and pointwise

convolutions—make up a depth-wise separable

convolution layer.

The former operation, depth-wise, applies each filter (Ki)

to each channel (Ci) of feature maps (F) in depth-wise

convolution, which computes the same operations as the

standard convolution. However, unlike the standard

convolution operator, depth-wise convolution merely

filters a feature map’s channels to produce different

multiple matrices. Meanwhile, the standard one combines

them to generate a new single feature map (i.e., we get C

feature maps F per kernel instead of one as in Fig. 1).

Consequently, a new feature map is constructed using a

pointwise convolution layer and a 1×1 kernel. As a result,

a computation reduction of
1

𝐶
+

1

𝑊2 can be achieved when

compared to the standard convolution, where C represents

the number of feature maps and W is the kernel size. For

example, if we consider nine feature maps and kernel size

is 3×3, we can reduce computing time by 4.5 times.

Meanwhile, the pointwise convolution uses only 1× 1

kernel. Therefore, a processing core can do both depth-

wise and pointwise convolutions.

C. Related Work

This section briefly analyzes FPGA-based CNN

accelerators proposed in the literature. In recent years,

many studies have been conducted to improve the

performance of the CNN inference phase on FPGA

devices. However, they mainly focus on high-performance

or high-end computing platforms instead of edge

computing like our work. These proposals can be classified

into three groups according to the primary optimization

technique including: (1) exploiting massive FPGA

resources to create multiple computing modules; (2)

reducing computation complexity by accepting less

accuracy; and (3) caching input data to reduce

communication overhead.

1) Exploiting massive FPGA resources

The most significant advantage of FPGA devices is the

massive number of resources for building computing

modules. Hence, many approaches in the literature define

an array of computing nodes or un-roll computationally

480

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

intensive loops to achieve higher performance in terms of

processing time due to throughput increasing. To reach a

throughput of 1 pixel per cycle, Guo and Han et al.

presented the Aristotle architecture to improve CNNs

computation’s performance on FPGA [9]. Based on the

systolic array form, this architecture connected many

Processing Elements (PE) in FPGA fabrics.

Li and Fan et al. demonstrated their CNN accelerator core,

which enables the pipeline to compute all layers

simultaneously [10]. An FPGA-based CNN core with

several layer clusters was created by Lin and Yin et al. [11].

A calculating core for CNN using parallel structures and

reconfigurable PEs was developed by Liu and Dou

et al. [12]. Ma and Cao et al. synthesized an FPGA-based

CNN architecture using all available hardware resources

to get the best feasible performance [13]. Yang and He et

al. presented the innovative parallel convolution with a

binarized architecture [14]. An FPGA-based CNN

acceleration pipeline system with a fine-grained and layer-

based architecture was proposed by Zhang and

Wang et al. [15]. Podili and Zhang et al. created a

computing engine for the standard convolution using the

Winograd technique, which is highly parallelized [16].

Motamedi and Gysel et al. used every hardware resource

to create a parallel deep CNN processing core [17].

2) Reducing computation complexity

Although the previous approach can offer high

throughput due to parallelism computing, it needs to

improve its working frequency since several resources are

used. Then, system performance in terms of processing

time needs to improve, especially for real-time processing.

Therefore, the second group of proposals in the literature

tries to reduce the complexity of CNN computation to

enhance further system performance and exploit

parallelism. One of the most promising techniques for this

approach is the Binarized Neural Network (BNN) [18]. In

this approach, 1-bit kernels and the XNOR binary operator

are used instead of floating-point and the MAC

operators [19–25]. However, accuracy compared to the

standard neural network with floating-point computation

is the biggest drawback of this technique. Therefore, to

improve the accuracy, some proposals only reduce the

number of bits for representing kernel values instead of

using binary [26–30].

3) Caching input data

Although FPGAs offer many hardware resources for

computation, they suffer from the cache (Block RAM)

limitation for storing feature maps and kernels. Hence,

well-caching will improve system performance because

data communication overhead may contribute up to 50%

of execution time [31]. Researchers have taken this issue

into account and proposed several techniques for caching

data to reduce additional processing time [32–38].

III. PROPOSED ARCHITECTURE

This section proposes an FPGA-based architecture for

computing convolution operators in a pipeline model to

improve performance. Then, we introduce a dataflow for

processing data in a pipeline model with the proposed

FPGA core.

A. The FPGA-Based Pipeline Convolution Operator

Core

As depicted in Section II.A, the standard convolution

includes multiple multiply-accumulate operators where

multiplications can be done in parallel. Therefore, we

propose a so-called row-oriented FPGA-based pipeline

architecture for efficiently calculating the standard

convolution on FPGA devices. In this architecture, several

MAC modules are organized in a matrix-based form for

computing required operations. Ideally, the number of

MAC modules equals the number of kernel elements to

achieve the most optimized execution time.

Fig. 2 illustrates the proposed architecture for 3×3

kernels where nine MAC modules are organized in three

rows and three columns (MACs are responsible for

calculating all operators). Two pipeline registers are used

to separate the columns so that the core can compute in the

pipeline model. These registers help the core process

convolution in the pipeline model to improve performance.

For storing input feature maps, a buffer is organized as

multiple FIFO; each FIFO stores one row of input maps

(F). Finally, a summing module is responsible for adding

values from MAC and a bias to create the results of output

feature maps (F).

Figure 2. The proposed architecture for 33 kernels.

1) Buffer

The most optimized buffer size is the size of an input

feature map (F). However, as mentioned in Section II.B,

the amount of local memory in FPGA devices is a

limitation. Therefore, the buffer usually cannot

simultaneously store the entire input feature maps.

Our buffer is organized in a row-oriented form with

several FIFOs; each of them hosts a row of F. In each FIFO,

all elements in an Fs row are stored from right to left. The

FIFOs will be shifted to the right after each cycle to get the

next element. As shown in Fig. 2 (an example of core for

3×3 kernel), the three first elements in FIFOs are collected

per cycle to send to three columns of MACs. The first

element is directly sent to the first column, while the next

two are forwarded to the second and the third columns

through pipeline registers. When the core finishes

processing all elements of the first three rows, the buffer

will shift data in FIFOs up to remove the first row and fetch

481

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

a new row to the last FIFO. In this way, data is cached from

beginning to end. We only need to transfer data of the

feature map from external memory to buffer one time.

2) Multiply-Accumulate (MAC) module

Fig. 3 depicts the micro-architecture of the MAC

module used in the core. The primary purpose of this

module is to first compute a multiplication of a kernel’s

element K[i,j] with an input map’s element F[x,y]. The

multiplying result is then added with the result of the

previous column MAC[i,j−1], except the first column of

MACs (0 input for the first column of MACs, as shown in

Fig. 2). Next, the result of each MAC (MAC[i,j]) will be

forwarded to the next column through pipeline registers

except the last column. Finally, the output of MACs in the

final column will be accumulated together and added with

the bias (b) value by an accumulator (the ∑ block in Fig.

2). The result of the accumulator block is the value of one

element in the output feature map F.

Figure 3. The MAC module architecture.

Since elements of a kernel are not changed for entire

convolution, the core needs to collect them only one time

and store each element into each MAC (MAC[i,j] keeps

value of K[i,j]). Due to data-independence, all MACs in

the core can be executed in parallel. Next section will

illustrate the processing of these MACs in a pipeline model.

B. The Pipeline Dataflow

In this subsection, we explain the processing of the

pipeline convolution computing core by introducing the

execution data flow. Consider a convolution with a 3×3

kernel like Fig. 2, Fig. 4 shows the processing flow of the

first four cycles. We group the MACs of the core into

columns and separate processing cycles by a rectangle

(representing the pipeline registers).

Figure 4. The dataflow example with 33 kernels in the first 4 cycles.

1) Cycle 1

In the first cycle, MAC modules in Column 1 (Col 1)

get the first elements of the first three rows (F[1,1], F[2,1],

and F[3,1]) to multiply with the kernel’s first column

(K[1,1], K[2,1], and K[3,1]). Please note that the values of

kernels are stored in the MAC modules for the entire

process. In this cycle, the second and third elements of

each FIFO are sent to MAC modules in the two following

columns (F[1,2], F[2,2], and F[3,2] to the second column

while F[1,3], F[2,3], and F[3,3] to the third column).

However, due to the pipeline registers, these elements will

arrive in the second and third columns of MAC modules in

Cycle 2 and Cycle 4, respectively. Therefore, in Cycle 1,

MAC modules in Cols 2 and 3 do nothing (<NOP>).

Finally, as mentioned above, MAC modules in Col 1 do

not need to add the multiplication results to anything.

Instead, the outputs of these MAC modules are forwarded

to the next column through the Col-1/2 pipeline register.

2) Cycle 2

In Cycle 2, FIFOs shift elements to the right for the

subsequent cycle computation. The MAC modules in Col

1 continue to fetch the first elements from FIFOs (the

second one of each row F[1,2], F[2,2], and F[3,2]) for

computing multiplication with the kernel’s first row, like

in Cycle 1. At this time, Cycle 2, values F[i,2] and results

of MAC modules in Col 1 (MAC[i,1])) have passed the

Col-1/2 pipeline register and arrived at Col 2 in the second

row. Therefore, Cols 1 and 2 can compute in parallel with

different data inputs. As shown in Fig. 4, values in the first

column of the kernel (K[i,1]) are multiplied with elements

at the second position of the first three rows from input

maps (F[i,2]). Meanwhile, MAC modules in the second

column (MACi,2) compute the multiply-accumulate

operator of F[i,2] (second elements of each input feature

maps’ row), K[i,2] (the second column of the kernel), and

the results of MACi,1 (first column of MAC modules).

Again, like the first cycle, MAC modules in the last

column are still idle in Cycle 2 because data inputs still

have been delayed by the Col-2/3 pipeline register.

3) Cycle 3

From this cycle, as illustrated in Fig. 4, the three

columns of MAC modules can fully compute in parallel

for multiple-accumulate operators between different data

input feature maps (F[x,y]) and kernel (K[i,j]). Like the

previous cycle, FIFOs also shift elements to the right for

continuing computation. MAC modules in the first column

(MACi,1) now fetch and compute multiplication between

elements at the third position of the input feature maps’

three top rows (F[i,3]). At the same time, MAC modules

in the second and third columns process data for the two

following columns of the kernel. The core produces the

convolution result per cycle from this cycle because the

MAC modules in the third column have been done. As

depicted in Fig. 4, we get output feature map element

F [1,1] (the first element in the first row) at the end of

Cycle 3 (from the output of the ∑ block).

4) Cycle 4 to (F+2)

From Cycle 4 to Cycle F+2, where F is the number of

elements in one row of the input feature maps, the data

flow continues with the same model discussed in Cycle 3.

482

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

At each cycle, the core can compute one element of the

output feature map F [1,j]. After F+2 cycles, the first row

of the output feature maps has been created successfully.

Consequently, the buffer will shift FIFOs up (remove the

first row of input feature maps and fetch the fourth one) to

further processing with the next batch of rows. Assume

that the size of input feature maps is F×F (F rows and F

columns), the number of cycles that the core needs to

compute all multiple-accumulate operators is depicted in

Eq. (2).

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝐹 × (𝐹 + 2) + 𝑡𝑐𝑜𝑚𝑚 (2)

where, 𝑡𝑐𝑜𝑚𝑚 is the number of cycles for fetching next row

of input feature maps to the buffer. This value depends on

the size of the input feature maps and the communication

infrastructure for transferring data from external memory

to the local buffer.

IV. SYSTEM IMPLEMENTATION

This section introduces our implementation with the

MobileNet model [5, 6] as our case study to verify and

validate the proposed hardware architecture for the CNN

computing core. Although our system is designed for all

versions of MobileNet (including standard convolution,

depth-wise, and pointwise operators), currently, we test the

system with MobileNetV2 only for comparison. We use

the Zynq FPGA UltraScale+MPSoC platform [7] for

hosting the system. The testing platform includes a 4-core

ARM Cortex processor and FPGA fabrics for building

various components including DMA Controller, Buffers,

and convolution cores. Fig. 5 briefly depicts our testing

system with the MobileNet model on the platform. This

picture only shows the system’s main components due to

space limitations.

Figure 5. The MPSoC FPGA-based system for the MobileNet model

using our hardware computing core.

In this implementation, we follow the hardware

accelerator architecture in which part of the program will

be executed by the host processor (the ARM one in our

system), and the time-consuming part will be processed by

the accelerator cores (the convolution cores in our work).

Input feature maps, kernels, and other data are stored in the

external memory that communicates with the core on

FPGA and the ARM processor through an AXI bus, a

specific type of bus for Xilinx FPGA. The ARM Cortex is

responsible for handling the computing cores and DMA

controller and processing non-critical parts of the

application.

We build a DMA controller in the FPGA fabrics to

transfer input feature maps (F) from the external memory

to our local buffer and output feature maps (F) back to the

external memory after processing. With DMA support,

data communication overhead can be reduced because the

host processor can do other tasks while data is being

transferred. The convolution computing cores can start

processing when the required data is fetched enough to the

input buffer.

As mentioned above, the MobileNet model conducts

several interleaved depth-wise and pointwise convolutions.

While the depth-wise convolution will be done by our

proposed computing core presented in the previous section,

the pointwise computation takes only 1 × 1 kernel.

Therefore, a MAC module is used for processing the

pointwise convolution. This MAC module receives the

depth-wise convolution core results to multiply with the

1×1 kernel. The multiplication results are then added with

bias value (b), like the standard convolution operator. The

final results will be stored in the output buffer so that the

DMA can transfer back to the external memory to process

further by the host processor.

While the DMA controller and AXI-bus are supported

by Xilinx IP core, other components on FPGA (MAC,

buffers, connections, accumulator) are developed

manually by Verilog-HDL (a hardware description

language). The entire system is then synthesized and

mapped onto the FPGA MPSoC platform by tools

provided by Xilinx. The following section will analyze the

experiments regarding hardware resource usage, execution

time, and power consumption.

V. EXPERIMENTS

In this section, we introduce the experiments we

conducted to validate the system implemented in the

previous section. We present the setup of our experiment

first. We then report various results of our experiments.

A. Experimental Setup

The Ultra96v2 board that houses a Xilinx Zynq FPGA

with 70K+ Look-up Tables, 950 KB Block RAMs, and a

4-core ARM Cortex functioning at up to 1.5 GHz, is used

to evaluate the system described in Section IV. All the

computing cores and buffers in the FPGA chip’s

programmable logic section are created using Verilog-

HDL. Additionally, an AXI bus is used by the ARM

Cortex to connect to the computational cores as a host

processor.

The Ultra96v2 board that houses a Xilinx Zynq FPGA

with 70K+ Look-up Tables, 950 KB Block RAMs, and a

4-core ARM Cortex functioning at up to 1.5 GHz, is used

to evaluate the system described in Section IV. All the

computing cores and buffers in the FPGA chip’s

programmable logic section are created using Verilog-

483

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

HDL. Additionally, an AXI bus is used by the ARM

Cortex to connect to the computational cores as a host

processor.

To evaluate the efficiency of the proposed convolution

core and the system for the MobileNet model, we compare

our system with the processing of only an ARM processor

and an Intel processor. In more detail, experiments with

the following platforms are conducted.

(1) The proposed system with hardware accelerator

architecture (so-called “Our system”): both ARM

processor and the hardware cores for depth-wise

and pointwise are used for processing the

MobileNet model. While the hardware cores are

responsible for executing convolutions operators of

the model, the ARM processor processes all other

parts of the model. In this system, the ARM

processor functions at the maximum working

frequency (1.5 GHz) while the hardware cores run

at 150 MHz.

(2) The 4-core ARM processor (so-called “ARM

system”): all the cores of the processor are used for

processing the MobileNet model in parallel with

the Pytorch library [39]. Like Our system, the ARM

processor functions at the maximum working

frequency of 1.5 GHz to make a fair comparison.

However, due to only the ARM processor used, the

FPGA fabrics (hardware cores) are set to idle.

(3) A high-end Intel processor (so-called “Intel

system”: like the ARM system, the entire

MobileNet model is processed by a 6-core Intel

Core-i7 9750H processor functioning at 2.4 GHz in

parallel with the Pytorch library. We conduct this

experiment to demonstrate the goodness of our

system because the Intel Core-i7 represents high-

performance platforms.

In our experiments, we do not compare the accuracy of

our proposed system because our system produces the

same output feature maps as the two other platforms.

B. Experimental Results

In this section, we present the experimental results with

the system implemented in the previous section. We

synthesize the system first to get the working frequency

and usage of hardware resources. We also compare our

system with state-of-the-art ones in terms of synthesis

results. We then compare the three systems (Our system,

ARM system, and Intel system) to show the goodness of

our proposed system in terms of the system performance.

1) Synthesis results

As mentioned above, we use Verilog-HDL for building

the proposed system. We then synthesize our project by

Vivado Design Suite provided by Xilinx with the target

frequency of 150MHz. Our hardware resource usage and

the maximum working frequency are summarized in Table

I. As shown in the table, we manage to use almost all

available resources of the platform, especially the on-chip

memory (BRAM). The synthesis report shows that our

system can work with 159 MHz working frequency while

consumes at most 4.15 W power consumption.

TABLE I. SYNTHESIS RESULTS OF THE PROPOSED SYSTEM IN TERM OF

HARDWARE RESOURCES USAGE

Resource types Used Available
Utilization

(%)

Look-up table (LUT) 57,887 70,560 82.04

Flip-flop (FF) 80,325 141,120 56.92

Block RAM (BRAM) 210.5 216 97.45

Digital signal processing

unit (DSP)
244 360 67.78

2) State-of-the-art comparison

Table II compares our proposed system and state-of-the-

art FPGA-based MobileNet implementations regarding

hardware resources, working frequency, and power

consumption. As shown in the table, our system uses the

cheapest device (~250 USD [7]) and requires fewer

hardware resources than work in [40–43]. Currently, our

system is not better than the work in [44], but the system

in [44] target high-end device (LUTs’ size is bigger)

instead of low-cost as ours. Therefore, our proposed

system and platform are the most suitable for edge

computing compared to the others. This is the ultimate

goal of our work.

In terms of Giga Operation Per Second (GOPS), we

achieve up to 96.3 GOPS, better than [40, 42] ([43] and

[44] do not provide this value). However, our system is

worse than the system in [41] because it uses extremely

huge resources with a high-end FPGA family. The

resources used for the system in [41] are 16.2× higher than

ours. Therefore, it is not suitable for edge computing

systems. Meanwhile, although we cannot achieve such a

high performance in terms of GOPS, we use less resources

and low-cost FPGA devices that are the best for edge

computing. In terms of Digital Signal Processing (DSP)

units, our system is better than all compared works when

only 244 DSP units are used. The lower amount of DSP

used can help the system’s working frequency increase

because DSP units in FPGA devices can be placed in a

broad range of areas. In addition, more DSP used may lead

to more extended wire connection that reduces operating

frequency due to the longer critical paths.

TABLE II. COMPARISON WITH STATE-OF-THE-ART FPGA-BASED

MOBILENET IMPLEMENTATIONS

 [40] [41] [42] [43] [44] Ours

FPGA

device

XCZU1

9EG

Stratix

10

Zynq

7100

XCZU

19EG

Virtex

7

Zynq

7000

LUT 139K 926K 142K 369K 57K 57K

FF 55K 583K 187K 391K 79K 80K

DSP 1452 297 1926 1020 937 244

Frequency

(MHz)
150 156 100 200 225 150

Power (W) - - 4.083 7.35 3.25 4.15

GOPS 91.2 3536 17.11 - - 96.3

484

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

C. Performance Evalution

To evaluate the proposed system in terms of execution

time (performance), we use images of 128×128×3 as input

feature maps and 3 × 3 × 3 kernels for depth-wise

convolutions. In contrast, output feature maps of depth-

wise layers are convoluted with 1×1 kernel in pointwise

layers. The same data set is used for the three systems

mentioned above (Our system, ARM system, and Intel

system). Table III shows our experimental results (size of

each convolution and total execution time) of the three

systems and the speed-up of our system compared to the

ARM system. Although the size of input feature maps and

kernels are fixed for each layer, as shown in the table,

execution times jitter due to the shared bus and system

services on the host processor. Therefore, to collect the

execution time for each system, we test with a data set

containing 256 images and get the average execution time.

As shown in the table, our system outperforms the ARM

system in execution time. We achieve a speed-up of

14.77× when compared to the ARM processor only.

However, our system is worse than the Intel one 1.56×

since the Intel processor used in this experiment is the

high-end one.

In terms of power consumption, our system and the

ARM system require the same power consumption of

4.15W (power consumption of the MPSoC platform),

while the Intel processor consumes 45W. Therefore, our

system is much more energy-efficient than the Intel

processor when it needs only 0.04J per frame instead of

0.3J of the Intel processor.

TABLE III. PERFORMANCE ANALYSIS AND COMPARISON

Layer No. Convolution Type of data Size (H×W×C) Our system (ms) ARM system (ms) Intel system (ms) Speed-up

1 Standard
Input

Kernel

128×128×3

3×3×3

9.47 139.88 6.09 14.77×

2

Depth-wise
Input

Kernel

64×64×32

3×3×32

Pointwise
Input

Kernel

64×64×32

1×1×32

3

Depth-wise
Input

Kernel

64×64×64

3×3×64

Pointwise
Input

Kernel

32×32×64

1×1×64

4

Depth-wise
Input

Kernel

32×32×128

3×3×128

Pointwise
Input

Kernel

32×32×128

1×1×128

5

Depth-wise
Input

Kernel

32×32×128

3×3×128

Pointwise
Input

Kernel

16×16×128

1×1×128

6

Depth-wise
Input

Kernel

16×16×256

3×3×256

Pointwise
Input

Kernel

16×16×256

1×1×256

7

Depth-wise
Input

Kernel

16×16×256

3×3×256

Pointwise
Input

Kernel

8×8×256

1×1×256

8

Depth-wise
Input

Kernel

8×8×512

3×3×512

Pointwise
Input

Kernel

8×8×512

1×1×512

9

Depth-wise
Input

Kernel

8×8×512

3×3×512

Pointwise
Input

Kernel

8×8×512

1×1×512

10

Depth-wise
Input

Kernel

8×8×512

3×3×512

Pointwise
Input

Kernel

8×8×512

1×1×512

11

Depth-wise
Input

Kernel

8×8×512

3×3×512

Pointwise
Input

Kernel

8×8×512

1×1×512

12

Depth-wise
Input

Kernel

8×8×512

3×3×512

Pointwise
Input

Kernel

8×8×512

1×1×512

13

Depth-wise
Input

Kernel

4×4×1024

3×3×1024

Pointwise
Input

Kernel

4×4×1024

1×1×1024

485

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

VI. CONCLUSION

In this paper, we proposed an efficient FPGA-based

convolution computing core that can process data in a

pipeline model to improve performance. We develop a

hardware accelerator system that utilizes our convolution

core for the MobileNet model. Experiments with 256

128×128×3 images and 3×3×3 kernels are conducted to

verify and evaluate the system. Experimental results show

that we obtain a speed-up of 14.77× when compared to the

4-core ARM processor functioning at 1.2 GHz. Although

our proposed system is worse than the 6-core Intel Core i7

processor, we achieve more energy efficiency than the

Intel processor. It proves that our system best fits the edge

computing system.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

C.P.-Q.: design, implement the system, and write the

paper; T.N.T.: conduct experiments and proofread the

paper; all authors had approved the final version.

FUNDING

This research is funded by Vietnam National University,

Ho Chi Minh City (VNU-HCM) under grant number

B2021-20-02.

ACKNOWLEDGMENT

We acknowledge Ho Chi Minh City University of

Technology (HCMUT), VNU-HCM for supporting this

study.

REFERENCES

[1] G. Lacey, G. W. Taylor, and S. Areibi, “Deep learning on FPGAS:

Past, present, and future,” arxiv:1602.04283, 2016.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional

networks for large-scale image recognition,” arxiv:1409.1556, 2015.

[3] R. Wu, X. Guo, J. Du, and J. Li, “Accelerating neural network

inference on FPGA-based platforms — A survey,” Electronics, vol.

10, no. 9, 2021.

[4] R. Williams, “What’s next? The end of moore’s law,” Computer

Science Engineering, vol. 19, no. 2, pp. 7–13, 2017.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T.

Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient

convolutional neural networks for mobile vision applications,”

arXiv:1704.04861, 2017.

[6] S. Bouguezzi, H. Faiedh, and C. Souani, “Slim MobileNet: An

enhanced deep convolutional neural network,” in Proc. the 2021

18th International Multi-Conference on Systems, Signals & Devices

(SSD), Monastir, Tunisia, pp. 12–16, 2021.

[7] Avnet. Ultra96-v2 board. Arm-based, Xilinx Zynq UltraScale+

MPSoC development board based on the Linaro 96Boards

Consumer Edition specification. [Online]. Available:

https://www.avnet.com/wps/portal/us/products/new-product-

introductions/npi/aes-ultra96-v2/

[8] C. Pham-Quoc, X. Q. Nguyen, and T. N. Thinh, “Towards an

FPGA-targeted hardware/software co-design framework for CNN-

based edge computing,” Mobile Network and Application, vol. 27,

pp. 2024–2035, 2022.

[9] K. Guo, S. Han, S. Yao, Y. Wang, Y. Xie, and H. Yang, “Software-

hardware codesign for efficient neural network acceleration,” IEEE

Micro, vol. 37, no. 2, pp. 18–25, 2017.

[10] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A high

performance FPGA-based accelerator for large-scale convolutional

neural networks,” in Proc. the International Conference on Field

Programmable Logic and Applications (FPL), 2016, pp. 1–9.

[11] X. Lin, S. Yin, F. Tu, L. Liu, X. Li, and S. Wei, “LCP: A layer

clusters paralleling mapping method for accelerating inception and

residual networks on FPGA,” in Proc. the 55th ACM/ESDA/IEEE

Design Automation Conference (DAC), 2018, pp. 1–6.

[12] Z. Liu, Y. Dou, J. Jiang, and J. Xu, “Automatic code generation of

convolutional neural networks in FPGA implementation,” in Proc.

the International Conference on Field-Programmable Technology

(FPT), 2016, pp. 61–68.

[13] Y. Ma, Y. Cao, S. Vrudhula, and J. S. Seo, “Optimizing loop

operation and dataflow in fpga acceleration of deep convolutional

neural networks,” in Proc. the ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, FPGA’17, 2017,

pp. 45–54.

[14] L. Yang, Z. He, and D. Fan, “A fully on-chip binarized

convolutional neural network fpga implementation with accurate

inference,” in Proc. the International Symposium on Low Power

Electronics and Design, ISLPED’18. ACM, New York, NY, USA,

2018.

[15] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W. M. Hwu, and D.

Chen, “Dnnbuilder: An automated tool for building high-

performance DNN hardware accelerators for FPGAS,” in Proc. the

International Conference on Computer-Aided Design, ICCAD’18.

ACM, New York, NY, USA, 2018.

[16] A. Podili, C. Zhang, and V. Prasanna, “Fast and efficient

implementation of convolutional neural networks on FPGA,” in

Proc. IEEE 28th International Conference on Application-Specific

Systems, Architectures and Processors (ASAP), 2017, pp. 11–18.

[17] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi, “Design space

exploration of fpga-based deep convolutional neural networks,” in

Proc. 21st Asia and South Pacific Design Automation Conference

(ASP-DAC), 2016, pp. 575–580.

[18] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary

neural networks: A survey,” arXiv:2004.03333, 2020,

[19] Y. Yang, Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gambardella, M.

Blott, L. Lavagno, K. Vissers, J. Wawrzynek, and K. Keutzer,

“Synetgy: Algorithm-hardware co-design for convnet accelerators

on embedded FPGAS,” in Proc. the 2019 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays,

FPGA’19, ACM, New York, NY, USA, 2019, pp. 23–32.

[20] M. Ghasemzadeh, M. Samragh, and F. Koushanfar, “Rebnet:

Residual binarized neural network,” in Proc. IEEE 26th Annual

International Symposium on Field-Programmable Custom

Computing Machines (FCCM), 2018, pp. 57–64.

[21] D. J. M. Moss, E. Nurvitadhi, J. Sim, A. Mishra, D. Marr, S.

Subhaschandra, and P. H. W. Leong, “High performance binary

neural networks on the XEON+FPGA™ platform,” in Proc. the

27th International Conference on Field Programmable Logic and

Applications (FPL), 2017, pp. 1–4.

[22] H. Nakahara, T. Fujii, and S. Sato, “A fully connected layer

elimination for a binarizec convolutional neural network on an

FPGA,” in Proc. the 27th International Conference on Field

Programmable Logic and Applications (FPL), 2017, pp. 1–4.

[23] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and

D. Marr, “Accelerating binarized neural networks: Comparison of

FPGA, CPU, GPU, and ASIC,” in Proc. the International

Conference on Field-Programmable Technology (FPT), 2016, pp.

77–84.

[24] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M.

Jahre, K. Vissers, “Finn: A framework for fast, scalable binarized

neural network inference,” in Proc. the ACM/ SIGDA International

Symposium on Field-Programmable Gate Arrays, FPGA’17, ACM,

New York, NY, USA, 2017, pp. 65–74.

[25] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “FP-BNN: Binarized

neural network on FPGA,” Neurocomputing, vol. 275, pp. 1072–

1086, 2018.

[26] L. Jiao, C. Luo, W. Cao, X. Zhou, and L. Wang, “Accelerating low

bit-width convolutional neural networks with embedded FPGA,” in

Proc. the 27th International Conference on Field Programmable

Logic and Applications (FPL), 2017, pp. 1–4.

486

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

[27] A. Prost-Boucle, A. Bourge, F. Pétrot, H. Alemdar, N. Caldwell,

and V. Leroy, “Scalable high-performance architecture for

convolutional ternary neural networks on FPGA,” in Proc. the 27th

International Conference on Field Programmable Logic and

Applications (FPL), 2017, pp. 1–7.

[28] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu, M. Wu,

and L. Zhang, “Efficient and effective sparse LSTM on FPGA with

bank-balanced sparsity,” in Proc. the 2019 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays,

FPGA’19, Association for Computing Machinery, 2019, pp. 63–72.

[29] S. Kala, B. R. Jose, J. Mathew, and S. Nalesh, “High-performance

CNN accelerator on FPGA using unified WINOGRAD-GEMM

architecture,” IEEE Trans Very Large Scale Integration (VLSI)

Systems, vol. 27, no. 12, pp. 2816–2828, 2019

[30] J. Wang, Q. Lou, X. Zhang, C. Zhu, Y. Lin, and D. Chen, “Design

flow of accelerating hybrid extremely low bit-width neural network

in embedded FPGA,” in Proc. the 28th International Conference on

Field Programmable Logic and Applications (FPL), 2018, pp. 163–

166.

[31] P.-Q. Cuong, J. Heisswolf, S. Werner, Z. Al-Ars, J. Becker, and K.

Bertels, “Hybrid interconnect design for heterogeneous hardware

accelerators,” in Proc. 2013 Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2013.

[32] J. Wang, J. Lin, and Z. Wang, “Efficient hardware architectures for

deep convolutional neural network,” IEEE Trans. Circ. Syst. I:

Regular Papers, vol. 65, no. 6, pp. 1941–1953, 2018.

[33] L. Lu, Y. Liang, Q. Xiao, and S. Yan, “Evaluating fast algorithms

for convolutional neural networks on FPGAs,” in Proc. the 2017

IEEE 25th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2017, pp.

101–108.

[34] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W.

Zhang, J. Cong, “FP-DNN: An automated framework for mapping

deep neural networks onto FPGAS with RTL-HLS hybrid

templates,” in Proc. the IEEE 25th Annual International

Symposium on Field-Programmable Custom Computing Machines

(FCCM), 2017, pp. 152–159.

[35] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N.

Xu, S. Song, Y. Wang, and H. Yang, “Going deeper with embedded

fpga platform for convolutional neural network,” in Proc. the

ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, FPGA’16, ACM, New York, NY, USA, 2016, pp. 26–

35.

[36] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,

and J. Cong, “Automated systolic array architecture synthesis for

high throughput CNN inference on FPGAs,” in Proc. the 54th

ACM/EDAC/IEEE Design Automation Conference (DAC), 2017,

pp. 1–6.

[37] Y. Shen, M. Ferdman, and P. Milder, “Escher: A CNN accelerator

with flexible buffering to minimize off-chip transfer,” in Proc. the

IEEE 25th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2017, pp.

93–100.

[38] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang,

and H. Yang, “Angel-eye: A complete design flow for mapping cnn

onto embedded FPGA,” IEEE Trans Comput-Aided Des Integr.

Circuits Syst., vol. 37, no. 1, pp. 35–47, 2017.

[39] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, et

al., “PyTorch: An imperative style, high-performance deep learning

library,” in Proc. 33rd Conference on Neural Information

Processing Systems (NeurIPS 2019), 2019.

[40] J. Su, J. Faraone, J. Liu, Y. Zhao, D. B. Thomas, P. H. Leong, and

P. Y. Cheung, “Redundancy-reduced MobileNet acceleration on

reconfigurable logic for ImageNet classification,” in Lecture Notes

in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics),

Springer: Cham, Switzerland, 2018.

[41] Y. Zhao, X. Gao, X. Guo, J. Liu, E. Wang, R. Mullins, P. Y. Cheung,

G. Constantinides, and C. Z. Xu, “Automatic generation of multi-

precision multi-arithmetic CNN accelerators for FPGAs,” in Proc.

the 2019 International Conference on Field-Programmable

Technology, ICFPT 2019, Tianjin, China, 9–13 December 2019.

[42] B. Liu, D. Zou, L. Feng, S. Feng, P. Fu, and J, Li, “An FPGA-Based

CNN accelerator integrating depth-wise separable convolution,”

Electronics, vol. 8, p. 281, 2019.

[43] I. Pérez and M. A. Figueroa, “Heterogeneous hardware accelerator

for image classification in embedded systems,” Sensors, vol. 21,

2637, 2021.

[44] S. Bouguezzi, H. B. Fredj, T. Belabed, C. Valderrama, H. Faiedh,

and C. Souani, “An efficient FPGA-based convolutional neural

network for classification: Ad-MobileNet,” Electronics, vol. 10, no.

18, 2272, 2021.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

487

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N3-479

