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Abstract—In recent years, accelerating convolutional neural 

networks on Field Programmable Gate Array (FPGA) to 

improve the performance of the inference phase of artificial 

intelligent edge computing applications is a promising 

approach. This paper presents our proposed architecture for 

building a convolution neural network acceleration core on 

FPGA. The proposed FPGA-based core targets edge 

computing platforms where hardware resources and power 

efficiency are essential requirements. We use the MobileNet 

neural network model for image classification as a case study 

to evaluate our proposed system. We compare our work with 

a quad-core ARM Cortex processor at 1.2GHz and achieve 

speed-ups by up to 14.77× convolution operators. Although 

our system is worse than a 6-core Intel Core i7 processor, it 

is more energy-efficiency than the Intel processor. Our 

proposed system is the best fit for edge computing.  

Keywords—Field Programmable Gate Array (FPGA), 

convolutional neural network, hardware accelerator, 

MobileNet  

I. INTRODUCTION

Recently, with the rapid development of Artificial 

Intelligence (AI), many research fields such as 

image/voice recognition, object detection, anomaly-based 

detection systems, etc., have been applied in many 

different areas of life from IoTs-based applications 

processed on edge computing devices to expert systems 

executed on high-performance computers. Among famous 

neural network models, Convolutional Neural Network 

(CNN) attracts more studies in various application 

domains and dominates hardware accelerator-based 

research due to their effectiveness. However, recent CNNs 

have become deeper and thus require more and more 

computing power and storage of the processing platforms. 

CNN models are becoming increasingly accurate by 

utilizing considerable amounts of data and needing 

enormous computational power [1]; for instance, the 

VGG19 CNN model takes over 500MB of memory for 

parameters and processes up to 39B+ Floating-Point 

Operations (FLOPs) to classify images with the resolution 

of 224 × 224 pixels [2]. In contrast, edge computing 
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devices only provide good performance, less memory, and 

a modest energy budget [3]. Even conventional CPUs are 

incapable of delivering sufficient computational power for 

CNN-based applications without consuming more than 1 

joule (J) of energy per 1 GOP. The training phase of AI-

based applications can be done with many high-

performance computing platforms like GPUs or 

supercomputers. Meanwhile, the inference phase for edge 

computing platforms, e.g., IoT-based applications, still 

needs to be executed on small devices with low processing 

ability and limited power consumption. 

At the end of Moore’s Law [4], the hardware accelerator 

architecture that includes General Purpose Processors 

(GPP) augmented with some unique hardware-based 

computing cores for a particular purpose is a promising 

approach. The strategy of co-designing the hardware 

(special cores) and software (GPP) of computing systems, 

which includes embedded and edge computing, has the 

potential to continue increasing computing efficiency in 

terms of processing time. The paradigm’s most promising 

strategy involves using specialized hardware cores to 

handle the intensive application functions. These 

processing units have been tuned for the tasks and the 

targeting system. Currently, researchers typically focus on 

the two best-known products: Application Specific 

Integrated Circuits (ASICs) and Field Programmable Gate 

Arrays (FPGAs). However, due to their reconfigurability, 

FPGAs provide more significant optimization and reuse 

opportunities than ASICs. 

This paper proposes an efficient FPGA-based 

architecture for developing CNN-based systems targeting 

edge computing platforms. Our work aims to accelerate the 

performance and use hardware resources efficiently so that 

edge devices can process the inference phase in real time. 

To validate the proposed FPGA-based system, we deploy 

the MobileNet model [5, 6] on an Ultrascale+Xilinx FPGA 

board [7] as our experiments. The experimental results 

show that our system achieves 14.77× higher performance 

than a Quadcore ARM processor while using fewer 

hardware resources than other work in the literature. The 

main contributions of our work include three folds. 
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(1) We propose an architecture to build CNN on 

FPGA devices targeting edge computing systems 

efficiently. 

(2) We build the MobileNet on a low-cost FPGA 

device suitable for edge computing. 

(3) We present our experimental results for other 

researchers to reference in the future. 

The rest of the paper is organized as follows. Section II 

presents the background on CNN, the MobileNet model, 

and literature-related work. We then introduce the 

proposed FPGA-based architecture for CNN targeting 

edge computing platforms in Section III. We show our 

FPGA-based system implementation with the MobileNet 

model to validate the architecture in Section IV. Section V 

introduces our experimental results and compares them 

with other studies. Finally, we conclude our paper in 

Section VI. 

II. BACKGROUND AND RELATED WORK 

In this section, we first briefly introduce the background 

of CNN and MobileNet. Then, we summarize related work 

in the literature. 

A. Convolutional Neural Networks 

As mentioned above, Convolution Neural Network 

(CNN) model is mainly used for deep learning-based 

applications due to its efficiency. Therefore, many CNN-

based models have been proposed in recent years for 

different purposes. In general, the principal operation of 

the standard convolution is shown in Fig. 1 (adapted  

from [8]). 

 

 

Figure 1. The standard convolution operation. 

As illustrated in Fig. 1, the input feature map includes C 

channels, each of them is a matrix of F × F size. 

Convolution operations will be conducted between the 

input feature maps and K kernels (also called filters) which 

are W×W matrices (W < F). Each kernel also consists of C 

W×W matrices for convoluting with C matrices of each 

feature map channel. Kernels are applied to different 

elements of the input feature map to create 2D matrices 

output feature maps through multiple Multiply-

Accumulate Operators (MAC). The convolution operator 

is depicted in Eq. (1), where act_func is an activation 

function (usually Tanh, Sigmoid, etc.) and b is a bias 

number. 

𝐹′[𝑖, 𝑗] = 𝑎𝑐𝑡_𝑓𝑢𝑛𝑐(∑ ∑ 𝐹[𝑚, 𝑛] × 𝐾[𝑚

𝑛+𝑤

𝑛=𝑗

𝑚+𝑤

𝑚=𝑖

− 𝑖, 𝑛 − 𝑗]) + 𝑏 

(1) 

B. MobileNet Model 

MobileNet model [5, 6], initially developed by Google, 

is one of the well-known CNN models that is effective for 

mobile-computing applications. It is hence a good fit for 

edge computing. As a result, we decided to utilize the 

MobileNet model as our case study to support the 

architecture designed in this paper. The model has 13 

layers of depth-wise separable convolution, one layer with 

an average-pooling function, and a wholly linked layer. 

Two operations—depth-wise and pointwise 

convolutions—make up a depth-wise separable 

convolution layer. 

The former operation, depth-wise, applies each filter (Ki) 

to each channel (Ci) of feature maps (F) in depth-wise 

convolution, which computes the same operations as the 

standard convolution. However, unlike the standard 

convolution operator, depth-wise convolution merely 

filters a feature map’s channels to produce different 

multiple matrices. Meanwhile, the standard one combines 

them to generate a new single feature map (i.e., we get C 

feature maps F per kernel instead of one as in Fig. 1). 

Consequently, a new feature map is constructed using a 

pointwise convolution layer and a 1×1 kernel. As a result, 

a computation reduction of 
1

𝐶
+

1

𝑊2 can be achieved when 

compared to the standard convolution, where C represents 

the number of feature maps and W is the kernel size. For 

example, if we consider nine feature maps and kernel size 

is 3×3, we can reduce computing time by 4.5 times. 

Meanwhile, the pointwise convolution uses only 1× 1 

kernel. Therefore, a processing core can do both depth-

wise and pointwise convolutions. 

C. Related Work 

This section briefly analyzes FPGA-based CNN 

accelerators proposed in the literature. In recent years, 

many studies have been conducted to improve the 

performance of the CNN inference phase on FPGA 

devices. However, they mainly focus on high-performance 

or high-end computing platforms instead of edge 

computing like our work. These proposals can be classified 

into three groups according to the primary optimization 

technique including: (1) exploiting massive FPGA 

resources to create multiple computing modules; (2) 

reducing computation complexity by accepting less 

accuracy; and (3) caching input data to reduce 

communication overhead. 

1) Exploiting massive FPGA resources 

The most significant advantage of FPGA devices is the 

massive number of resources for building computing 

modules. Hence, many approaches in the literature define 

an array of computing nodes or un-roll computationally 
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intensive loops to achieve higher performance in terms of 

processing time due to throughput increasing. To reach a 

throughput of 1 pixel per cycle, Guo and Han et al. 

presented the Aristotle architecture to improve CNNs 

computation’s performance on FPGA [9]. Based on the 

systolic array form, this architecture connected many 

Processing Elements (PE) in FPGA fabrics.  

Li and Fan et al. demonstrated their CNN accelerator core, 

which enables the pipeline to compute all layers 

simultaneously [10]. An FPGA-based CNN core with 

several layer clusters was created by Lin and Yin et al. [11]. 

A calculating core for CNN using parallel structures and 

reconfigurable PEs was developed by Liu and Dou  

et al. [12]. Ma and Cao et al. synthesized an FPGA-based 

CNN architecture using all available hardware resources 

to get the best feasible performance [13]. Yang and He et 

al. presented the innovative parallel convolution with a 

binarized architecture [14]. An FPGA-based CNN 

acceleration pipeline system with a fine-grained and layer-

based architecture was proposed by Zhang and  

Wang et al. [15]. Podili and Zhang et al. created a 

computing engine for the standard convolution using the 

Winograd technique, which is highly parallelized [16]. 

Motamedi and Gysel et al. used every hardware resource 

to create a parallel deep CNN processing core [17]. 

2) Reducing computation complexity 

Although the previous approach can offer high 

throughput due to parallelism computing, it needs to 

improve its working frequency since several resources are 

used. Then, system performance in terms of processing 

time needs to improve, especially for real-time processing. 

Therefore, the second group of proposals in the literature 

tries to reduce the complexity of CNN computation to 

enhance further system performance and exploit 

parallelism. One of the most promising techniques for this 

approach is the Binarized Neural Network (BNN) [18]. In 

this approach, 1-bit kernels and the XNOR binary operator 

are used instead of floating-point and the MAC  

operators [19–25]. However, accuracy compared to the 

standard neural network with floating-point computation 

is the biggest drawback of this technique. Therefore, to 

improve the accuracy, some proposals only reduce the 

number of bits for representing kernel values instead of 

using binary [26–30]. 

3) Caching input data 

Although FPGAs offer many hardware resources for 

computation, they suffer from the cache (Block RAM) 

limitation for storing feature maps and kernels. Hence, 

well-caching will improve system performance because 

data communication overhead may contribute up to 50% 

of execution time [31]. Researchers have taken this issue 

into account and proposed several techniques for caching 

data to reduce additional processing time [32–38]. 

III. PROPOSED ARCHITECTURE 

This section proposes an FPGA-based architecture for 

computing convolution operators in a pipeline model to 

improve performance. Then, we introduce a dataflow for 

processing data in a pipeline model with the proposed 

FPGA core. 

A. The FPGA-Based Pipeline Convolution Operator 

Core 

As depicted in Section II.A, the standard convolution 

includes multiple multiply-accumulate operators where 

multiplications can be done in parallel. Therefore, we 

propose a so-called row-oriented FPGA-based pipeline 

architecture for efficiently calculating the standard 

convolution on FPGA devices. In this architecture, several 

MAC modules are organized in a matrix-based form for 

computing required operations. Ideally, the number of 

MAC modules equals the number of kernel elements to 

achieve the most optimized execution time.  

Fig. 2 illustrates the proposed architecture for 3×3 

kernels where nine MAC modules are organized in three 

rows and three columns (MACs are responsible for 

calculating all operators). Two pipeline registers are used 

to separate the columns so that the core can compute in the 

pipeline model. These registers help the core process 

convolution in the pipeline model to improve performance. 

For storing input feature maps, a buffer is organized as 

multiple FIFO; each FIFO stores one row of input maps 

(F). Finally, a summing module is responsible for adding 

values from MAC and a bias to create the results of output 

feature maps (F). 

 

 

Figure 2. The proposed architecture for 33 kernels. 

1) Buffer 

The most optimized buffer size is the size of an input 

feature map (F). However, as mentioned in Section II.B, 

the amount of local memory in FPGA devices is a 

limitation. Therefore, the buffer usually cannot 

simultaneously store the entire input feature maps. 

Our buffer is organized in a row-oriented form with 

several FIFOs; each of them hosts a row of F. In each FIFO, 

all elements in an Fs row are stored from right to left. The 

FIFOs will be shifted to the right after each cycle to get the 

next element. As shown in Fig. 2 (an example of core for 

3×3 kernel), the three first elements in FIFOs are collected 

per cycle to send to three columns of MACs. The first 

element is directly sent to the first column, while the next 

two are forwarded to the second and the third columns 

through pipeline registers. When the core finishes 

processing all elements of the first three rows, the buffer 

will shift data in FIFOs up to remove the first row and fetch 
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a new row to the last FIFO. In this way, data is cached from 

beginning to end. We only need to transfer data of the 

feature map from external memory to buffer one time. 

2) Multiply-Accumulate (MAC) module 

Fig. 3 depicts the micro-architecture of the MAC 

module used in the core. The primary purpose of this 

module is to first compute a multiplication of a kernel’s 

element K[i,j] with an input map’s element F[x,y]. The 

multiplying result is then added with the result of the 

previous column MAC[i,j−1], except the first column of 

MACs (0 input for the first column of MACs, as shown in 

Fig. 2). Next, the result of each MAC (MAC[i,j]) will be 

forwarded to the next column through pipeline registers 

except the last column. Finally, the output of MACs in the 

final column will be accumulated together and added with 

the bias (b) value by an accumulator (the ∑ block in Fig. 

2). The result of the accumulator block is the value of one 

element in the output feature map F. 

 

 

Figure 3. The MAC module architecture. 

Since elements of a kernel are not changed for entire 

convolution, the core needs to collect them only one time 

and store each element into each MAC (MAC[i,j] keeps 

value of K[i,j]). Due to data-independence, all MACs in 

the core can be executed in parallel. Next section will 

illustrate the processing of these MACs in a pipeline model. 

B. The Pipeline Dataflow 

In this subsection, we explain the processing of the 

pipeline convolution computing core by introducing the 

execution data flow. Consider a convolution with a 3×3 

kernel like Fig. 2, Fig. 4 shows the processing flow of the 

first four cycles. We group the MACs of the core into 

columns and separate processing cycles by a rectangle 

(representing the pipeline registers). 

 

 

Figure 4. The dataflow example with 33 kernels in the first 4 cycles. 

1) Cycle 1 

In the first cycle, MAC modules in Column 1 (Col 1) 

get the first elements of the first three rows (F[1,1], F[2,1], 

and F[3,1]) to multiply with the kernel’s first column 

(K[1,1], K[2,1], and K[3,1]). Please note that the values of 

kernels are stored in the MAC modules for the entire 

process. In this cycle, the second and third elements of 

each FIFO are sent to MAC modules in the two following 

columns (F[1,2], F[2,2], and F[3,2] to the second column 

while F[1,3], F[2,3], and F[3,3] to the third column). 

However, due to the pipeline registers, these elements will 

arrive in the second and third columns of MAC modules in 

Cycle 2 and Cycle 4, respectively. Therefore, in Cycle 1, 

MAC modules in Cols 2 and 3 do nothing (<NOP>). 

Finally, as mentioned above, MAC modules in Col 1 do 

not need to add the multiplication results to anything. 

Instead, the outputs of these MAC modules are forwarded 

to the next column through the Col-1/2 pipeline register. 

2) Cycle 2 

In Cycle 2, FIFOs shift elements to the right for the 

subsequent cycle computation. The MAC modules in Col 

1 continue to fetch the first elements from FIFOs (the 

second one of each row F[1,2], F[2,2], and F[3,2]) for 

computing multiplication with the kernel’s first row, like 

in Cycle 1. At this time, Cycle 2, values F[i,2] and results 

of MAC modules in Col 1 (MAC[i,1])) have passed the 

Col-1/2 pipeline register and arrived at Col 2 in the second 

row. Therefore, Cols 1 and 2 can compute in parallel with 

different data inputs. As shown in Fig. 4, values in the first 

column of the kernel (K[i,1]) are multiplied with elements 

at the second position of the first three rows from input 

maps (F[i,2]). Meanwhile, MAC modules in the second 

column (MACi,2) compute the multiply-accumulate 

operator of F[i,2] (second elements of each input feature 

maps’ row), K[i,2] (the second column of the kernel), and 

the results of MACi,1 (first column of MAC modules). 

Again, like the first cycle, MAC modules in the last 

column are still idle in Cycle 2 because data inputs still 

have been delayed by the Col-2/3 pipeline register. 

3) Cycle 3 

From this cycle, as illustrated in Fig. 4, the three 

columns of MAC modules can fully compute in parallel 

for multiple-accumulate operators between different data 

input feature maps (F[x,y]) and kernel (K[i,j]). Like the 

previous cycle, FIFOs also shift elements to the right for 

continuing computation. MAC modules in the first column 

(MACi,1) now fetch and compute multiplication between 

elements at the third position of the input feature maps’ 

three top rows (F[i,3]). At the same time, MAC modules 

in the second and third columns process data for the two 

following columns of the kernel. The core produces the 

convolution result per cycle from this cycle because the 

MAC modules in the third column have been done. As 

depicted in Fig. 4, we get output feature map element  

F [1,1] (the first element in the first row) at the end of 

Cycle 3 (from the output of the ∑ block). 

4) Cycle 4 to (F+2) 

From Cycle 4 to Cycle F+2, where F is the number of 

elements in one row of the input feature maps, the data 

flow continues with the same model discussed in Cycle 3. 
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At each cycle, the core can compute one element of the 

output feature map F [1,j]. After F+2 cycles, the first row 

of the output feature maps has been created successfully. 

Consequently, the buffer will shift FIFOs up (remove the 

first row of input feature maps and fetch the fourth one) to 

further processing with the next batch of rows. Assume 

that the size of input feature maps is F×F (F rows and F 

columns), the number of cycles that the core needs to 

compute all multiple-accumulate operators is depicted in 

Eq. (2). 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝐹 × (𝐹 + 2) + 𝑡𝑐𝑜𝑚𝑚 (2) 

where, 𝑡𝑐𝑜𝑚𝑚 is the number of cycles for fetching next row 

of input feature maps to the buffer. This value depends on 

the size of the input feature maps and the communication 

infrastructure for transferring data from external memory 

to the local buffer. 

IV. SYSTEM IMPLEMENTATION 

This section introduces our implementation with the 

MobileNet model [5, 6] as our case study to verify and 

validate the proposed hardware architecture for the CNN 

computing core. Although our system is designed for all 

versions of MobileNet (including standard convolution, 

depth-wise, and pointwise operators), currently, we test the 

system with MobileNetV2 only for comparison. We use 

the Zynq FPGA UltraScale+MPSoC platform [7] for 

hosting the system. The testing platform includes a 4-core 

ARM Cortex processor and FPGA fabrics for building 

various components including DMA Controller, Buffers, 

and convolution cores. Fig. 5 briefly depicts our testing 

system with the MobileNet model on the platform. This 

picture only shows the system’s main components due to 

space limitations. 

 

 

Figure 5. The MPSoC FPGA-based system for the MobileNet model 

using our hardware computing core. 

In this implementation, we follow the hardware 

accelerator architecture in which part of the program will 

be executed by the host processor (the ARM one in our 

system), and the time-consuming part will be processed by 

the accelerator cores (the convolution cores in our work). 

Input feature maps, kernels, and other data are stored in the 

external memory that communicates with the core on 

FPGA and the ARM processor through an AXI bus, a 

specific type of bus for Xilinx FPGA. The ARM Cortex is 

responsible for handling the computing cores and DMA 

controller and processing non-critical parts of the 

application. 

We build a DMA controller in the FPGA fabrics to 

transfer input feature maps (F) from the external memory 

to our local buffer and output feature maps (F ) back to the 

external memory after processing. With DMA support, 

data communication overhead can be reduced because the 

host processor can do other tasks while data is being 

transferred. The convolution computing cores can start 

processing when the required data is fetched enough to the 

input buffer. 

As mentioned above, the MobileNet model conducts 

several interleaved depth-wise and pointwise convolutions. 

While the depth-wise convolution will be done by our 

proposed computing core presented in the previous section, 

the pointwise computation takes only 1 × 1 kernel. 

Therefore, a MAC module is used for processing the 

pointwise convolution. This MAC module receives the 

depth-wise convolution core results to multiply with the 

1×1 kernel. The multiplication results are then added with 

bias value (b), like the standard convolution operator. The 

final results will be stored in the output buffer so that the 

DMA can transfer back to the external memory to process 

further by the host processor. 

While the DMA controller and AXI-bus are supported 

by Xilinx IP core, other components on FPGA (MAC, 

buffers, connections, accumulator) are developed 

manually by Verilog-HDL (a hardware description 

language). The entire system is then synthesized and 

mapped onto the FPGA MPSoC platform by tools 

provided by Xilinx. The following section will analyze the 

experiments regarding hardware resource usage, execution 

time, and power consumption. 

V. EXPERIMENTS 

In this section, we introduce the experiments we 

conducted to validate the system implemented in the 

previous section. We present the setup of our experiment 

first. We then report various results of our experiments. 

A. Experimental Setup 

The Ultra96v2 board that houses a Xilinx Zynq FPGA 

with 70K+ Look-up Tables, 950 KB Block RAMs, and a 

4-core ARM Cortex functioning at up to 1.5 GHz, is used 

to evaluate the system described in Section IV. All the 

computing cores and buffers in the FPGA chip’s 

programmable logic section are created using Verilog-

HDL. Additionally, an AXI bus is used by the ARM 

Cortex to connect to the computational cores as a host 

processor. 

The Ultra96v2 board that houses a Xilinx Zynq FPGA 

with 70K+ Look-up Tables, 950 KB Block RAMs, and a 

4-core ARM Cortex functioning at up to 1.5 GHz, is used 

to evaluate the system described in Section IV. All the 

computing cores and buffers in the FPGA chip’s 

programmable logic section are created using Verilog-
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HDL. Additionally, an AXI bus is used by the ARM 

Cortex to connect to the computational cores as a host 

processor. 

To evaluate the efficiency of the proposed convolution 

core and the system for the MobileNet model, we compare 

our system with the processing of only an ARM processor 

and an Intel processor. In more detail, experiments with 

the following platforms are conducted. 

(1) The proposed system with hardware accelerator 

architecture (so-called “Our system” ): both ARM 

processor and the hardware cores for depth-wise 

and pointwise are used for processing the 

MobileNet model. While the hardware cores are 

responsible for executing convolutions operators of 

the model, the ARM processor processes all other 

parts of the model. In this system, the ARM 

processor functions at the maximum working 

frequency (1.5 GHz) while the hardware cores run 

at 150 MHz. 

(2) The 4-core ARM processor (so-called “ARM 

system”): all the cores of the processor are used for 

processing the MobileNet model in parallel with 

the Pytorch library [39]. Like Our system, the ARM 

processor functions at the maximum working 

frequency of 1.5 GHz to make a fair comparison. 

However, due to only the ARM processor used, the 

FPGA fabrics (hardware cores) are set to idle. 

(3) A high-end Intel processor (so-called “Intel 

system”: like the ARM system, the entire 

MobileNet model is processed by a 6-core Intel 

Core-i7 9750H processor functioning at 2.4 GHz in 

parallel with the Pytorch library. We conduct this 

experiment to demonstrate the goodness of our 

system because the Intel Core-i7 represents high-

performance platforms. 

In our experiments, we do not compare the accuracy of 

our proposed system because our system produces the 

same output feature maps as the two other platforms. 

B. Experimental Results 

In this section, we present the experimental results with 

the system implemented in the previous section. We 

synthesize the system first to get the working frequency 

and usage of hardware resources. We also compare our 

system with state-of-the-art ones in terms of synthesis 

results. We then compare the three systems (Our system, 

ARM system, and Intel system) to show the goodness of 

our proposed system in terms of the system performance. 

1) Synthesis results 

As mentioned above, we use Verilog-HDL for building 

the proposed system. We then synthesize our project by 

Vivado Design Suite provided by Xilinx with the target 

frequency of 150MHz. Our hardware resource usage and 

the maximum working frequency are summarized in Table 

I. As shown in the table, we manage to use almost all 

available resources of the platform, especially the on-chip 

memory (BRAM). The synthesis report shows that our 

system can work with 159 MHz working frequency while 

consumes at most 4.15 W power consumption. 

TABLE I. SYNTHESIS RESULTS OF THE PROPOSED SYSTEM IN TERM OF 

HARDWARE RESOURCES USAGE 

Resource types Used Available 
Utilization 

(%) 

Look-up table (LUT) 57,887 70,560 82.04 

Flip-flop (FF) 80,325 141,120 56.92 

Block RAM (BRAM) 210.5 216 97.45 

Digital signal processing 

unit (DSP) 
244 360 67.78 

 

2) State-of-the-art comparison 

Table II compares our proposed system and state-of-the-

art FPGA-based MobileNet implementations regarding 

hardware resources, working frequency, and power 

consumption. As shown in the table, our system uses the 

cheapest device (~250 USD [7]) and requires fewer 

hardware resources than work in [40–43]. Currently, our 

system is not better than the work in [44], but the system 

in [44] target high-end device (LUTs’ size is bigger) 

instead of low-cost as ours. Therefore, our proposed 

system and platform are the most suitable for edge 

computing compared to the others. This is the ultimate 

goal of our work. 

In terms of Giga Operation Per Second (GOPS), we 

achieve up to 96.3 GOPS, better than [40, 42] ([43] and 

[44] do not provide this value). However, our system is 

worse than the system in [41] because it uses extremely 

huge resources with a high-end FPGA family. The 

resources used for the system in [41] are 16.2× higher than 

ours. Therefore, it is not suitable for edge computing 

systems. Meanwhile, although we cannot achieve such a 

high performance in terms of GOPS, we use less resources 

and low-cost FPGA devices that are the best for edge 

computing. In terms of Digital Signal Processing (DSP) 

units, our system is better than all compared works when 

only 244 DSP units are used. The lower amount of DSP 

used can help the system’s working frequency increase 

because DSP units in FPGA devices can be placed in a 

broad range of areas. In addition, more DSP used may lead 

to more extended wire connection that reduces operating 

frequency due to the longer critical paths. 

TABLE II. COMPARISON WITH STATE-OF-THE-ART FPGA-BASED 

MOBILENET IMPLEMENTATIONS 

 [40]  [41]  [42]  [43]  [44]  Ours 

FPGA 

device 

XCZU1

9EG 

Stratix 

10 

Zynq 

7100 

XCZU

19EG 

Virtex 

7 

Zynq 

7000 

LUT 139K 926K 142K 369K 57K 57K 

FF 55K 583K 187K 391K 79K 80K 

DSP 1452 297 1926 1020 937 244 

Frequency 

(MHz) 
150 156 100 200 225 150 

Power (W) - - 4.083 7.35 3.25 4.15 

GOPS 91.2 3536  17.11 - - 96.3 
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C. Performance Evalution 

To evaluate the proposed system in terms of execution 

time (performance), we use images of 128×128×3 as input 

feature maps and 3 × 3 × 3 kernels for depth-wise 

convolutions. In contrast, output feature maps of depth-

wise layers are convoluted with 1×1 kernel in pointwise 

layers. The same data set is used for the three systems 

mentioned above (Our system, ARM system, and Intel 

system). Table III shows our experimental results (size of 

each convolution and total execution time) of the three 

systems and the speed-up of our system compared to the 

ARM system. Although the size of input feature maps and 

kernels are fixed for each layer, as shown in the table, 

execution times jitter due to the shared bus and system 

services on the host processor. Therefore, to collect the 

execution time for each system, we test with a data set 

containing 256 images and get the average execution time. 

As shown in the table, our system outperforms the ARM 

system in execution time. We achieve a speed-up of 

14.77×  when compared to the ARM processor only. 

However, our system is worse than the Intel one 1.56× 

since the Intel processor used in this experiment is the 

high-end one.  

In terms of power consumption, our system and the 

ARM system require the same power consumption of 

4.15W (power consumption of the MPSoC platform), 

while the Intel processor consumes 45W. Therefore, our 

system is much more energy-efficient than the Intel 

processor when it needs only 0.04J per frame instead of 

0.3J of the Intel processor. 

TABLE III. PERFORMANCE ANALYSIS AND COMPARISON 

Layer No. Convolution Type of data Size (H×W×C) Our system (ms) ARM system (ms) Intel system (ms) Speed-up 

1 Standard 
Input 

Kernel 

128×128×3 

3×3×3 

9.47 139.88 6.09 14.77× 

2 

Depth-wise  
Input 

Kernel 

64×64×32 

3×3×32 

Pointwise 
Input 

Kernel 

64×64×32 

1×1×32 

3 

Depth-wise  
Input 

Kernel 

64×64×64 

3×3×64 

Pointwise 
Input 

Kernel 

32×32×64 

1×1×64 

4 

Depth-wise  
Input 

Kernel 

32×32×128 

3×3×128 

Pointwise 
Input 

Kernel 

32×32×128 

1×1×128 

5 

Depth-wise  
Input 

Kernel 

32×32×128 

3×3×128 

Pointwise 
Input 

Kernel 

16×16×128 

1×1×128 

6 

Depth-wise  
Input 

Kernel 

16×16×256 

3×3×256 

Pointwise 
Input 

Kernel 

16×16×256 

1×1×256 

7 

Depth-wise  
Input 

Kernel 

16×16×256 

3×3×256 

Pointwise 
Input 

Kernel 

8×8×256 

1×1×256 

8 

Depth-wise  
Input 

Kernel 

8×8×512 

3×3×512 

Pointwise 
Input 

Kernel 

8×8×512 

1×1×512 

9 

Depth-wise  
Input 

Kernel 

8×8×512 

3×3×512 

Pointwise 
Input 

Kernel 

8×8×512 

1×1×512 

10 

Depth-wise  
Input 

Kernel 

8×8×512 

3×3×512 

Pointwise 
Input 

Kernel 

8×8×512 

1×1×512 

11 

Depth-wise  
Input 

Kernel 

8×8×512 

3×3×512 

Pointwise 
Input 

Kernel 

8×8×512 

1×1×512 

12 

Depth-wise  
Input 

Kernel 

8×8×512 

3×3×512 

Pointwise 
Input 

Kernel 

8×8×512 

1×1×512 

13 

Depth-wise  
Input 

Kernel 

4×4×1024 

3×3×1024 

Pointwise 
Input 

Kernel 

4×4×1024 

1×1×1024 
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VI. CONCLUSION 

In this paper, we proposed an efficient FPGA-based 

convolution computing core that can process data in a 

pipeline model to improve performance. We develop a 

hardware accelerator system that utilizes our convolution 

core for the MobileNet model. Experiments with 256 

128×128×3 images and 3×3×3 kernels are conducted to 

verify and evaluate the system. Experimental results show 

that we obtain a speed-up of 14.77× when compared to the 

4-core ARM processor functioning at 1.2 GHz. Although 

our proposed system is worse than the 6-core Intel Core i7 

processor, we achieve more energy efficiency than the 

Intel processor. It proves that our system best fits the edge 

computing system. 
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