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Abstract—This study aimed to use a cognition-inspired 

method following Hawkins’s approach to optimize learning 

sequences for efficiency. The model for this learning 

approach is a new, flexible associative form of memory that 

can handle keys of different lengths to address all fitting 

sequences. Furthermore, it cannot only identify existing 

sequences but also learn new ones and ensure fault-tolerant 

operations. After introducing such memory hardware, its 

practicability is approved as a new kind of spelling checker. 

The evaluation uses the TREC-5 Confusion Track standard 

dataset to automatically correct incorrect words by 

comparing them with Levenshtein Distance, pyspellchecker, 

Long Short-Term Memory (LSTM), and Semantically 

Conditioned LSTM plus Elmo Transformer (Elmosclstm). In 

a small data set and at the word level, the processing time is 

only 0.001s, which is lower than other methods. At the 

sentence level, the cognition-inspired method can achieve 

99.31% accuracy, better than Elmosclstm at 81.97% for 

training data. In a big data set and at the word level, the 

highest accuracy is 87.38% and 87.03%, beyond Elmosclstm 

at 77.44% and 74.41% for training data and testing data. At 

the sentence level, the cognition-inspired method can achieve 

96.73% and 91.42%, better than Elmosclstm at 81.50% and 

72.18% for training and testing data, respectively. 

Keywords—Artificial Intelligence (AI), Hierarchical 

Temporal Memory (HTM), spelling check 

I. INTRODUCTION

Research concerning techniques for error detection and 

correcting spelling errors is a topic in Natural Language 

Processing (NLP) that has a long and robust history. A 

spelling error makes text harder to read and process. The 

spelling check is used to correct errors and gain 

information values. Many applications in NLP must 

correct inputs before processing; otherwise, it can impact 

the result. 

At present, applications for spelling checks are utilized 

in various areas and daily life. For example, interactive 

spelling correction systems that highlight incorrect words 

and suggest corrections as well as provide the following 

words improve the productivity of work with text and 

provide convenience, especially on mobile devices. They 
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are also used in search engines [1] that provide corrected 

words if an error is detected in the search query or 

grammar checking in an office program by identifying 

errors and providing suggestions so a user can correct them. 

In some cases, interactive correction requests a person 

to interact, which takes time to process. Hence, an 

automatic spelling correction system is introduced. For 

medical records used in the diagnosis and treatment 

process, for example, any error can significantly impact 

patients, medical research, and organization processes. 

Furthermore, document digitalization to reduce the use of 

paper and keep information in a database uses optical 

character recognition (OCR) to transform images into text. 

One crucial aspect of the post-processing process is spell-

checking because OCR alone cannot provide perfect 

results. 

One difference between automatic spelling correction 

systems and interactive spelling correction systems is that 

the second system prompts the system to respond promptly, 

with no delay for a human to interact. 

The rest of the paper is organized as follows. Section II 

defines related works, some of which are used to evaluate 

the newly proposed method. Section III provides 

background and inspiration for the research. Section IV 

explains the concept of the proposed approach, while 

Section V describes the implementation in a hardware 

simulation to serve as a proof of concept by using 

commodity hardware and evaluation spelling check 

performance on a standard dataset, TREC-5 Confusion 

Track [2]. Finally, Section VI and VII summarizes the 

contributions and the findings. 

II. RELATED WORKS

The first type in spelling check, called non-word error, 

is a word in incorrect form and not in the dictionary. This 

type of error can be handled by searching from the 

dictionary that checks similarity among words such as 

Levenshtein Distance (LD) [3] or Damerau-Levenshtein 

Distance (DLD) [4]. LD uses edit, substitution, deletion, 

and insertion operations, but DLD is the same as LD, 

except it includes transposition. However, this approach 

requests computation for every input word to compare 
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with all words in the dictionary, and processing time 

increases with the number of words in the dictionary. For 

example, the Oxford dictionary contains 273,000 words 

and increases yearly. There are many techniques to 

improve the search for words, such as a search tree [5] or 

hash table [6] based on a technique called Approximate 

string matching [7]. The technique is similar to this 

research as it finds strings that match a pattern 

approximately rather than exactly. The difference is that it 

creates the proximity of a matching word as edit distance 

provides. Another approach was invented by Peter  

Norvig [8], which takes a word and brute force for all 

possible edit distances. This method is mainly used as a 

standard library or pyspellchecker [9] in Python. With 

default edit distance 2, the word “are” can be revised to 

create 182 possible words, such as ‘rae’, ‘aer’, ‘rre’, ‘ware’, 

etc. The limitation of this approach is that it is a brute force 

method; it takes time to create all possible words to match 

a word in the dictionary, and the misspelled word can also 

be more than two edit distances. Nevertheless, it is similar 

to this research, using correct words and a dictionary to 

create a word list. Another approach that can learn from 

data and error is deep learning, a machine-learning model 

that commonly uses Long Short-Term Memory  

(LSTM) [10, 11]. Its approach provides a good result but 

requests training data for correct and incorrect words. Also, 

the processing time is high if no GPU is supported. 

More than one word is often required. For example, the 

misspelled word “site” can also be “size” or “side," 

depending on the sentence. Thus, another real-world error 

type has been introduced. The word is misspelled, but it is 

still in the dictionary. A common approach to cope with 

this problem is to use its surrounding context. A common 

approach uses edit distance as an error model and n-gram 

for the context model. Deep learning is also used to cope 

with this problem by using the Sequence to Sequence 

Learning Model and integrating it with a transformer to 

improve the model [12]. This research also uses a deep 

learning model, Neuspell [13], with SC-LSTM plus 

ELMO (input), or Elmosclstm for comparison. 

III. INSPIRATION 

A. The Brain 

The concept for this research starts with the brain and 

its components [14]. The brain is comprised of many 

distinct functional areas that evolved gradually from 

invertebrates to mammals. Exactly how the brain works 

remains a mystery. Even though we have only a partial 

understanding of how the brain works, we can roughly 

estimate its functions from research and experiments, 

including examining problems caused by brain injuries. 

The following parts are crucial for a particular cognitive 

function and are the subject of considerable current 

research. Also, they are the essential parts of the brains 

used for this research as follows. 

1) Hippocampus is a crucial part of the brain that 

works with memories. The hippocampus receives inputs 

from the entire neocortex and projects back to the same 

areas. The memory in the hippocampus is only temporary. 

It can play back a sequence of events in context and 

activate the neocortex area that was activated by the event 

itself. Typically, this playback occurs during REM sleep; 

the memories stored for a short term activate back to long-

term storage in the neocortex areas that were activated 

during the original episode. The hippocampus allows 

vertebrates that are older than mammals, such as lizards 

and birds, to learn from experience, even without the 

neocortex. 

2) Thalamus is the gateway to the neocortex, which is 

very near the center of the brain by passing information to 

and from various areas of the neocortex. All senses except 

the olfactory system have almost the same process, 

involving some peripheral processing, followed by a 

projection to a specific area of the thalamus, which then 

projects to a primary area of the neocortex for that sense. 

The olfactory system is the only sensory system in which 

there is a direct projection from the olfactory bulb to the 

neocortex. However, the neocortex relays it to the 

thalamus and projects it back to the neocortex. Because the 

thalamus receives inputs from all the senses and from the 

motor control system and the reticular formation, which is 

responsible for alertness and attention, it is like the hub of 

a wheel that acts as the concentrator and distributor of all 

forces. 

3) Sensory multiple signals are sent from sensory 

neurons to the brain, allowing us to experience smell, taste, 

sight, hearing, and touch. There are five perception 

systems in humans composed of visual, auditory, skin 

sense, taste, and smell. The brain processes these five 

sensory inputs to understand the environment and decide 

the appropriate action in the motor system (movement). 

These perception systems rely on certain receptors, 

specialized neural cells that respond to a specified 

environment and send signals or action potentials to the 

brain. Even though these receptors receive different types 

of sensors, the senses are encoded with the same type of 

information before being sent to the neocortex. 

4) The Neocortex is the largest part of the brain, which 

is what we see when we look at a brain from above or the 

side. The neocortex is around a 1.5 square-foot sheet of 

cells wadded up a bit to fit inside the head, accounting for 

80 percent of its weight. Intelligent and adaptive behavior 

in mammals is associated with the neocortex. Five 

attributes of the neocortex include uniform, Invariant 

Representation, Hierarchy, and Auto-associated. 

B. Hierarchical Temporal Memory (HTM) 

HTM [15, 16] is a theory that was described initially in 

the book “On Intelligence” by Jeff Hawkins in 2004. HTM 

was built on an understanding of the neocortex from a 

neuroscience perspective. HTM is similar to the neocortex 

structure and is a uniform hierarchy that works with 

invariant representation. Each representation can be 

separated into a cortical column. A column contains 

multiple neural cells inside. HTM connects its sensory and 

other cells by using dendrites and synapses. Proximal is 

used to receive input and feedforward. Distal is used for 

prediction. Each cell can learn and connect to others by 
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learning, called Hebbian Learning, wherein the 

connections will be strengthened if active together; 

otherwise, they decay. HTM constantly predicts its inputs 

and provides its outputs by using distal connections.  

HTM provides a framework and fundamental 

mechanism for how the neocortex works by inspiring and 

simplifying this research and its efforts to create a 

cognition model inspired by the brain. However, this 

research proposes overall frameworks from the brain and 

additional improvement of fault tolerance, while HTM 

provides a theoretical framework. 

C. Sparse Distributed Representations (SDRs) 

SDRs [17] are information storage and transfer 

components in HTM. Information in SDR is kept in bits 

with “0” or “1” only. An SDR is a large vector of bits with 

only a tiny percentage active, which is the way the brain 

works with only a small amount of activity to reduce 

energy and inference. HTM can recognize both temporal 

and spatial. They use the Spatial Pooler mechanism and 

Temporal Pooling accordingly. This research uses the 

SDRs concept as the structure memory in HTM. 

1) Definition: SDR is an n-dimensional vector of 

binary elements. SDR vector: x = [b0, b1, …, bn-1], wx is the 

number of elements in x that are bit “1”. Overlap is the 

determination of the similarity between two vectors that is 

the number of bits that are 1 in the same location. For 

example:  

 

X = [0000010101000000000000101010000000000000] 

Y = [0001000101000001000000101000000000000000] 

 

X and Y vectors have n = 40 and w = 6, overlap = 4 and 

sparsity is 15%, 𝑠 =
𝑤

𝑛
 (6/40). 

2) Matching: the possibility of the number of unique 

SDRs:  

(𝑛
𝑤
) =

𝑛!

𝑤!(𝑛−𝑤)!
   (1) 

If n = 2048 and sparsity = 10% or w = 204, then the SDR 

space is 6.99×10286. Thus, the probability of two random 

vectors being identical is as follows. 
 

𝑝(𝑥 = 𝑦) = 1/(𝑛
𝑤
)  (2) 

 

With n = 2048 and w = 204, the probability that two 

random vectors are identical is very close to zero. 

3) Union: SDR can store a set of patterns in a single 

SDR using OR of all vectors. However, it increases the 

probability of false positives. With the number of union 

vector set, M, it becomes saturated with “1” bits, and 

almost random vectors will return a false positive match. 

The probability of a false positive can be written as: 

𝑝𝑓𝑝 = (1 − (1 −
𝑤

𝑛
)
𝑀

)
𝑤

                       (3) 

If n = 2048 and w = 204, storing M = 20 vectors, the 

chance of a false positive is 1 in 3.0×1011. 

IV. CONCEPTUAL 

A. Overview of the New Cognition-Inspired Sequence 

Learning Memory 

The brain processes input patterns that continue 

changing over time, called temporal patterns. A significant 

amount of data in real life also works with this kind of data 

using unique ordering and characteristics. These patterns 

are encoded into a sequence of invariant representations 

and proceed sequentially. 

How do we learn sequentially? The brain processes a 

series of inputs one by one. At first, no sequence exists in 

the brain, and it comprises short-term memory, long-term 

memory, and working memory, which is the area of 

memory in our active focus. Once the first representation 

A comes in, the brain will create that representation in the 

working memory. The representation is kept in a neural 

unit. Once we remember step A, this representation will be 

activated. Afterwards, the second representation, B, 

arrives; it will also be created in the working memory as 

another representation or neural unit. However, the first 

and second representations will be connected 

automatically, called auto-associate, as shown in Fig. 1 (a). 

Once we try to remember something from one 

representation, such as step A, it will automatically 

remember the next step B. Thus, we can learn step A and 

can go to step B. The process is repeated for the next steps 

until the task is finished. We will also see that, at first, it is 

hard to remember step A, which the brain tries to find, but 

the brain will remember step B easily once we remember 

it. 
 

 

Figure 1.  The concept of the learning sequence in the brain. 

Even though we can remember it, we are still not sure 

about this sequence. We need a filter to see if this 

information is important enough to remember. Hence, we 

move it (A->B) to the short-term memory. Then, we can 

perform trial and error to see whether this sequence can 

achieve its goal or if we can see it often enough. 

Afterwards, we can be sure that this sequence is an 

important matter and promote it (A->B) to the long-term 

memory, as in Fig. 1(b). Hence, we can say we learn the 

sequence. 

Therefore, each neural unit which is a representation in 

the brain can be activated one by one, sequential and in-

reversible, representing what we focus on and think at that 

time. Once the first step is received and information is 

retained in the neural unit, it will automatically count to 

the next connected neural unit to receive the subsequent 
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input. Once the task is finished, these neural unit sequences 

will be moved to the long-short-term memory. 

Accordingly, we keep sequence data that can contain 

many representations in a sequence table. We can define a 

set of representations, R = {r1, r2, r3, ..., rm}, A 

representation set X is a set of representations such that X 

⊆ R. |X| is the number of representations in a representation 

set X. Count represents how many times a sequence occurs, 

similar to the frequency in [18]. Each representation in a 

sequence is auto-associated automatically from left to right. 

The sequence in Table I represents sequences we keep in 

the brain that contain each sequence and its count. It is 

important to note that the input is received from sensory is 

encoded to invariant representations in a SDR vector form, 

found in Section IV-C. 

Interaction with the world requires rapid processing. 

Further, we cannot learn every time or at each step that it 

takes us to think, process information, and make a decision. 

Because we already learned sequences for how to proceed, 

however, it remains in the long-term memory. Thus, the 

brain uses that information in long-term memory and 

immediately predicts the next step. Consciousness or 

attention arises only when the prediction fails. This 

mechanism is called the predictive mind or autopilot mode. 

Once a new task occurs, the brain perceives the first 

representation. Then, it will automatically determine what 

to do next from the long-term memory or what was learned 

previously. It is how we learn and use what we learn. 

How is the situation handled if the prediction fails? 

Consciousness will arise to think and switch to learning 

mode. We can learn that this is a new thing called online 

learning. Sometimes, the input representation can contain 

a noise that makes the input sequence looks similar to a 

sequence in the long-term memory. How do we decide 

which sequence contains noise or is a new thing that 

should be learned? Hence, the difference between long-

term and working memory sequences will be measured 

and determined. If the new input representation is not a 

prediction, we will switch to learning mode and wait to 

decide until the task is complete. If we decide it is noise, 

then we will correct it or just rehearse. However, it will be 

moved to the long-short-term memory if it is a new 

sequence.  
Therefore, we need a mechanism to compare the 

sequence in the working memory and sequences in the 

long-term memory, which is a method proposed in this 

research. Each neural unit in the working memory is 

compared to each neural unit in a sequence in the long-

term memory from start to end. If the number of different 

representations is low, it is noise—otherwise, it is a new 

sequence. 

The next question is how we find related sequences and 

provide the next step when we perceive and perform a new 

task. For example, step A in the first input representation 

will be used as key “A” to find the long-term memory. 

Then, it will predict step B to be the next step from the 

long-term memory. Once step B is received, it will 

discover the next step from a new key, “A->B”. In other 

words, the shortest key is used initially to find sequences 

from the long-term memory. Then, a set of possible 

sequences is returned as candidates. The key will continue 

growing in finding information from the long-term 

memory. The candidates will also continue to be removed 

from the previous candidates. This process will continue 

until the task is finished. Besides, a representation in the 

key can also be repeated, such as “A->B->A->B”. 

Therefore, we must remember to pass steps A and B twice 

and keep them in our memory twice. 

The concept is shown in Fig. 2. Each input is received 

and created as a key in the working memory to find the 

patterns inside the neocortex. The mechanism to describe 

how information is validated and found in the brain is 

introduced in the next Sections IV-B and IV-C. 

B. Structure Memory 

The structure of memory works hierarchically. One 

representation can contain and connect many 

representations in its lower layer. This concept is 

summarized in Fig. 2, which uses NLP as an example. In 

Layer 1, each presentation is a neural cell column 

representing one character, but a connection between 

representations is also a representation we remember as a 

sequence. In the more abstract levels shown in layer two 

or at the sentence level, representations and connections 

work the same as in Layer 1. This memory structure is 

based on the brain and inspired by Hawkins’s approach, 

which uses SDR to provide a large vector of bits with only 

a small percentage. 

 

Layer 1

Layer 2

I E A T R I C

EA AT

EATI

RI IC

CE

RIC

RICE

ICE

RICE

EAT

I EAT EAT RICE

I EAT RICE

 

Figure 2.  Forming connections for each representation and sequence 
pattern. 

C. Fault Tolerance and Similarity 

A crucial part of this approach is determining whether it 

is noise, what we know, or what we should learn by 

checking similarity. Instead of using weights to connect 

cells, we use bits or logical operations to process each 

representation.   

This reduces complexity as well as processing time as it 

is easy to process, which is a problem for AI at present. 

Besides, it also supports using the modern memory 

structure that keeps information in bits. For example, not 

only are characters converted into bits but connections are 

also formed among them by using a hash function, as seen 

in Fig. 3, layer 1. Each representation or word can be 

compared by using logical operations. Furthermore, 

sentence comparison in Layer 2 or at the sentence level can 
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concatenate by using each representation of words and 

sentences from the lower layer. 

Hash(E)
Hash(EA)

Hash(AT)

Hash(T) Hash(EAT)

Hash(A)

Hash(E)
Hash(R)

Hash(RI)

Hash(RICE)

Hash(I)

Hash(IC)

Hash(C) Hash(CE)

Hash(RIC)

Hash(ICE)

Layer 1

I E A T R I C

EA AT RI IC

CE

RICICE

RICE

EAT

EAT

RICE

Hash(I)

I

 

Figure 3.  Converting representations into bits by using a hash 
function. 

The authors do not specify the number of bits or 

representations. If too little, it cannot separate for each 

representation due to overlapping with other 

representations. If too much, on the other hand, existing 

memory could be used more efficiently. From the 

experiment, it can be around 1024–4096 bits for words in 

a dictionary. 

For example, the size of SDR is 10 bits. It contains a 

zero vector [0 0 0 0 0 0 0 0 0 0]. The representation of “I” 

is hashing “I”, hash (“I”) %10=3, the output is [0 0 0 1 0 0 

0 0 0 0]. The representation of “EAT” is hashing “E”, “A”, 

“T”, “EA”, “AT” and “EAT"; the output is [0 0 1 1 0 1 0 0 

0 1]. Thus, if the misspelled word “EET” is received and 

its hashing vector is [0 0 1 0 0 1 0 1 0 1], similarity can be 

checked by AND or XOR operations to compare the 

similarity value, called the diff. For example, the diff is 3 

(AND). However, comparing the similarity of “EET” is 

performed not only for the word “EAT”, but all word 

vectors in the dictionary to find the highest number of diff 

(AND) or the lowest number (XOR). The operation is very 

fast as it operates at a bit level. 

At the sentence level, it works in the same way but 

words are concatenated, such as “I EAT RICE”. Three 

vectors are concatenated, and their size is 30, not 10. 

TABLE I.  SEQUENTIAL LEARNING TABLE 

Sequence ID Sequence Count 

1 { B, U, T} 3 

2 {B, A, L, L} 4 

3 {E, A, T} 5 

4 {B, A, T} 1 

 

D. NLP Pattern Matching 

According to Sections IV-B and IV-C, they provide 

understandings of how structure SDR vector is used and 

matched. This section is explained to summarize the 

concept and provide an NLP example as shown in Fig. 4.  

 

Working Memory (Hippocampus)

Neocortex

Short-term Memory

Long-term Memory

a)

B U T 3

B A L 4L

E A T 5

B A T 1

b)

Working Memory (Hippocampus)

Neocortex

Short-term Memory

Long-term Memory

B U T 3

B A L 4L

E A T 5

B A T 1

B

c)

Working Memory (Hippocampus)

Neocortex

Short-term Memory

Long-term Memory

B U T 3

B A L 4L

E A T 5

B A T 1

B A

d)

Working Memory (Hippocampus)

Neocortex

Short-term Memory

Long-term Memory

B U T 3

B A L 4L

E A T 5

B A T 1

B A L L

 

Figure 4.  Sequential learning in a new cognition-inspired sequence 
learning memory. 

At first, no data existed in the working memory. 

However, the neocortex comprised sequences that had 

their experiences as Table I. Each word sequence is 

encoded into a SDR vector. For example, the first word, 

“BUT” is kept in the memory by hashing, “B”, “U”, “T”, 

“BU”, “UT” and “BUT” to [0101010101010]. 

Once we perceive the first step, the brain will search any 

representations in the neocortex by using the first read 

element of hashing(“B”) as a key. Therefore, we can see 

that only the two first sequences in the long-term memory 

are SDR matched, except for the last sequence, which is 

removed since it does not match the representations, 

including the short-term memory that has not been 

remembered yet. Hence, the predicted steps are “U” and 

“A”. “U” and “A” represent associative memory as it 

connects to “B” as well as two output lines, “U” and “A”, 

which must be activated as they are predicted to be the next 

elements, meaning all output lines for a possible 

continuation of the sequence in the i+1th step will be 

activated. However, two cases are possible in case no 

continuation is found, as follows: 

a) The representations have yet to be discovered and 

goes into learning mode. 

b) An error element is read and then goes on reading 

the subsequent elements in an attempt to find out 

if possible solutions can be identified (fault 

tolerance). 
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We continue to perceive the second step, “A”; the brain 

will use both the first step, hashing(“B”), and then the 

second step, hashing(“A”) and hashing(“BA”), to search 

for a key. Thus, only the hashing pattern of “BALL” is 

matched with this key. It continues until the task is 

complete in the fourth step, “L”. Once it is completed, the 

working memory will be released. 

E. Moving from the Short-Term to Long-Term Memory 

The threshold of moving from the short-term memory 

to the long-term memory depends on the applications. In 

case of spelling check in offline learning, it can be set to 1 

as training data should be correct words. However, in the 

hardware experiment in Section V is set to three (3) due to 

intuitive selection; if a human sees something three times, 

it should be able to be remembered. However, in case of 

online learning OCR spelling check, the question arises 

whether the system can learn from the OCR text. The 

assumption is the words from OCR can contain both 

correct and incorrect words and the OCR system should 

produce correct words more than incorrect words.  For 

example, a word “eat” contains the correct word “eat” 

occurs five times and another word “ett” occurs two times. 

Thus, receiving the word “eat”, three times is enough. If 

the threshold set to three then it can use “eat” to learn 

correctly. Fig. 5 shows the number of occurring correct 

words and the average percentage of correct learning. As 

the result, setting n is 1000 can achieve the percent of the 

correct words at 74.45% because in some words the OCR 

system produces incorrect words more than correct words 

or never gives correct words. From the TREC-5 degrade5 

data set, it is around 20% that the incorrect words are more 

than the correct words. Hence, the OCR application should 

learn from correct words or sentences that the threshold 

can be set to 1. 

 

 

Figure 5.  The number of occurring words and the average percentage 
of correct learning from TREC-5 Degrade 5%. 

Nevertheless, in some application such as correction of 

search queries, the assumption is a user types the number 

of correct words more than incorrect words. Hence, it can 

learn from input of search queries. For example,  

qSpell [19], a data set from randomly sampled 11,134 

queries from the publicly available AOL and 2009 Million 

Query Track. Fig. 6 shows the number of occurring correct 

words and the average percentage of correct prediction of 

search queries and found that if setting the threshold is 10, 

the correction learning can be 98.09% and never gives 

correct words are 109 words. However, this data set is low 

volume, by search engine characteristic with big data set 

correct words should be more than incorrect words and 

improve correction learning rate. 

 

 

Figure 6.  The number of occurring words and the average percentage 
of correct learning from qSpell search queries. 

F. Big Data Set 

Even though performing in bit operations is fast, it is 

also slower as its growth is linear. As an experiment, 7 

million vectors can slow to 1 second. This research 

proposes two options to cope with and use in the 

evaluation. The first one uses parallel processing, as the 

current processor contains multiple cores and threads. The 

second option uses merge or union vectors. These options 

can work both offline and online.  

 

Figure 7.  Plotting histogram of all distance vectors to find a suitable 
percentile. 

Merging is finding the closet vector and aligning with it. 

The closest vector can be found by checking the similarity 

or distance as in Section III-C previously, after which two 

vectors will be merged into one to prevent a vector from 

containing too many presentations and not being unique. 

Two parameters are checked. The first parameter is a 

sparsity — how many percent one bit contains in a vector. 

The second parameter is how close a vector is to another 

vector. The second parameter is a distance threshold that 
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is measured by plotting a histogram of the distance of all 

vectors, as shown in Fig. 7, and selecting a percentile. For 

instance, for the Percentile at 90, the distance threshold is 

1.975. After merging, sample words for a vector can be 

found, as in Table II. 

TABLE II.  MERGING VECTOR EXAMPLE 

Vector Merged words 

1 (ACF), (ACF), (A-F), (ACK) 

2 ‘bug’, ‘bug’, ‘bag’, ‘beg’ 

3 ‘baud’, ‘bad’, ‘bad’ ‘baud’ 

4 ‘scab’, ‘scab’, ‘‘cows’, ‘scow’, ‘scans’ 
 

V. EVALUATION 

A. Hardware Simulation 

Implementation is built on MATLAB Simulink 

software and takes advantage of the HDL module. The 

HDL module can design AI hardware for FPGA and 

ASICs suitable for this algorithm as it rapidly requests 

real-time interaction with the environment. The software 

is run on an ASUS TUF A15 laptop with an AMD Ryzen 

75800H, 8 CPU cores, 16 threads, 32GB of RAM, and 

GPU RTX3060 6GB. Fig. 8 can be separated into five 

components as follows. 
 

 
Figure 8.  Overall hardware architecture of the cognition-inspired 

sequence learning memory on MATLAB Simulink. 

1) Sensory or input connects to a comport and waits to 

receive input characters. Once the input is received, it will 

pass to the thalamus to proceed. 

2) Motor system or output connects to a comport to 

provide output from the algorithm via the thalamus. 

3) Hippocampus, or working memory, is used to keep 

information for a task until it is finished. Each input is 

processed via the thalamus or controller before being 

shifted to the working memory. The information is kept in 

a sequence. 

4) Neocortex or long/short-term memory is where 

some information in the working memory will be moved 

to learn once the task is finished. If the sequence already 

exists, the word counter will be added by one. Otherwise, 

it will be added to the neocortex as a new sequence and the 

word counter is set to one. If the word count is higher than 

the threshold (3), it will be in the long-term memory. 

Otherwise, it will be in the short-term memory. The 

sequence can be forgotten as the information can be lost 

over time when not rehearsed. The neocortex 

implementation architecture is shown in Fig. 8. In this 

research, the threshold for moving information from short-

term to long-term memory is set to three (3). 

5) Thalamus or controller encodes and sends for both 

the encoded input and the input to the working memory 

each time an input is received to compare the 

representations of the working memory with all the 

sequences of the long-term memory. If the representations 

in the working memory is matched, it will use the next 

sequence in the long-term memory to predict and send it to 

the output. If not matched, however, it will send out “*”, 

which represents “unknown” to the output. Once the task 

is completed, the controller will correct it automatically if 

the information is incorrect but close to a long-term 

memory pattern. This measurement is from checking the 

similarity of patterns and output as a score, called the diff. 

If the diff is not higher than the threshold, it is treated as 

an incorrect word, and the algorithm corrects it and has no 

learning. If the diff is higher than the threshold, however, 

the algorithm switches to learning mode and decides it is a 

new word, then moves to the neocortex to learn. The 

thalamus also is used to move and forget information from 

the working memory to the neocortex. A comparison 

among representations that checks similarity to find the 

score can be found in Fig. 9. The threshold diff can be 

calculated depending on the application or training data. 

For example, the threshold diff can be calculated from data 

set experiment such as degrade5 and used the average 

difference between ground words and input words of all 

training data set. The average is 45 but it can be adjusted 

according to an application. 

 

 

Figure 9.  The concept for the architecture of the new cognition-
inspired learning model hardware. 

 

Figure 10.  Working memory in the new cognition-inspired sequence 
learning memory. 

This research sets each input to 2048 bits integer data 

type, which is more efficient than floating-point and 

reduces the bit-width to save energy and area, including 

increased throughput. Each input of data is fed into the 

algorithm one by one. Once one piece of data is received, 

the input data will be kept in a shift register or an address 

in the working memory. A counter in the controller will be 
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added by one for moving to the following address in the 

working memory. Each input data is kept in sequence until 

the task is finished or full. Addressing shall be increased at 

every step of the sequence reading. This mechanism can 

be found in Fig. 10. 

One important note is that the input data is kept in 

sequence and auto-associated from left to right, which 

works like the brain that keeps patterns in sequences and 

reverse. Connecting for each input data or a shift register 

is controlled by the thalamus or controller. Once it needs 

to process information in a sequence, it will activate that 

information only. Besides, each sequence has a counter to 

support counting, called a data count, which represents the 

importance of information and remembers it via rehearsal. 

If the data count is more than three, the sequence will be 

promoted to the long-term memory. Otherwise, it remains 

in the short-term memory. If the memory is full, the short-

term memory with a lower data count will be removed first. 

Otherwise, the long-term memory with a lower data count 

will be deleted next. 

Each received data input will be auto-associated with 

the previous input in the working memory to become 

sequence data. The algorithm will always predict the next 

step, which is the following pattern. If an unexpected 

prediction occurs, the brain will pay attention and decide 

to switch to learning mode or correct it when the task is 

completed. This representations in the working memory is 

compared with all sequence data in the long-term memory. 

For example, suppose all representations for the sequence 

in the working memory is matched with representations in 

the long-term memory. The found words will be used and 

predicted for the next pattern. If it is unpredictable, 

information will be kept in the working memory until the 

task is finished. Once complete, a correct decision as the 

following will be used. 

Once the task is finished, the representations in the 

working memory will be compared with all the 

representations in the long-term memory (Neocortex). If 

they are exactly matched, the data count in the match 

sequence will be added by one. If the amount of different 

representations is not higher than the threshold, the data in 

the working memory will be corrected by a sequence of 

data in the long-term memory that has the lowest 

difference as we decide on a noise included. If the amount 

of different representations in the long-term memory is 

higher than the threshold, however, it will switch to the 

learning mode. The sequence in the working memory will 

be kept in the short-term memory as a new sequence and 

set the data count to one. However, if the sequence existed 

in the short-term memory, then the data count would be 

added by one. 

For the experiment shown in Fig. 11, the Simulink 

MATLAB simulation is run on a laptop and connects the 

algorithm via a virtual comport to the experiment. There is 

no information in the algorithm, both the neocortex and the 

working memory at first. The first input is “c”. The 

algorithm shifts the input to the working memory and 

compares its representations with others in the long-term 

memory, after which the algorithm sends “*” or unknown 

to the output as no information existed. The next inputs are 

“a” and “t”, which are also unknown. We press <space bar> 

to end the task. The algorithm switches to the learning 

mode and learns the word “cat.” The sequence “cat” in the 

working memory is then moved to the short-term memory 

in the neocortex, and the word count is set to one. We 

repeat typing “cat” twice. This will promote the sequence 

“cat” in the neocortex to the long-term memory as the 

word count is changed to three (3). We type "c” again, and 

then the algorithm finds a match between the working and 

long-term memory to predict the next character, “a.” Then, 

typing “a” gives a prediction of “t.” We do the same with 

the word “abandon.” However, this time, we made a typo 

on the last word of the word abandon from “n” to “m” 

(abandom). The algorithm automatically corrects the 

pattern, and the correct output is "abandon,” as the score is 

less than the threshold. 

 

Figure 11.  Experiment to connect to the algorithm via comport for both 

input and output. 

B. Performance Evaluation 

Two evaluation metrics are used to verify effectiveness 

and efficiency by using accuracy and average processing 

time. All measurements are performed on an ASUS TUF 

A15 laptop with an AMD Ryzen 7 5800H, 8 CPU cores, 

16 threads, and 32GB of RAM, including GPU RTX3060 

6GB. TREC-5 Confusion Track [2], the standard set, is 

used for evaluating an OCR spelling correction system. 

TREC-5 Confusion Track contains two corrupted versions 

of 55,600 documents that are created by applying OCR to 

page images. The first version is the scanned image page, 

estimated at approximately 5% of the error rate (degrade5). 

The second version is a down-sample of the page images, 

resulting in an estimated 20% (degrade20). After cleaning, 

it comprises 3,532,743 lines and 33,255,482 words, 

including 701,217 unique words. 

Table III shows each method used to compare with the 

new method that contains the state-of-the-art, Neuspell 

(SC-LSTM plus ELMO at the input; Elmosclstm) and 

LSTM as well as standard methods, pyspellchecker, and 

Levenshtein Distance. Each method provides different 

types, as shown in the table. Only pyspellchecker is similar 

to this new method as it learns from dictionaries. In this 

experiment, pyspellchecker does not use the built-in 

dictionary, but rather the new vocabulary from the TREC-

5 data set. In comparison, LSTM and SC-LSTM plus 

ELMO need to learn the error model for both correct and 

incorrect words. Therefore, a comparison between the 

error models and the methods learned from the correct 

words (the correct word methods) might not be appropriate 
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as the correct word methods will never know the correct 

words it never sees. Hence, the results from training data 

will be shown as well. Elmosclstm and LSTM use a GPU 

for training and running. LD, pyspellchecker, and the new 

cognition-inspired method use a CPU for training and 

running.  

TABLE III.  DIFFERENT TYPES FOR EACH METHOD 

Method Training 

Correct words 

Training 

Incorrect Words 
Learning 

Levenshtein 
Distance 

Yes No Offline 

pyspellchecker Yes No Offline 

LSTM Yes Yes Offline 

SC-LSTM plus 

ELMO (at input) 
Yes Yes Offline 

The new 
cognition-inspired 

Yes No 
Offline/ 
Online 

 

In measurement, accuracy can be separated into three 

types. Accuracy means selecting the best score of words 

with only one, while AccuracyMax means selecting 

multiple words with the highest score if they have the same 

score. It can then sort the words with Levenshtein Distance. 

Finally, AccuracyRange means selecting some words 

(configured to 30 words) with n top scores, which can also 

be rechecked with Levenshtein Distance. For example, 

Input word = “W0rd”, candidate words with a score 

composed of “Word” (4), “Ward” (4), “W0ad” (3), and 

“Wo9a” (1). “Word” (4) and “Ward” (4) have the same 

score. Accuracy selects only one, “Word”, but 

AccuracyMax selects both “Word” and “Ward". 

AccuracyRange selects “Word”, “Ward”, and “W0ad” if 

the configuration is three words. 

The evaluation is separated into small and big data sets 

using the degrade5 data set. The small data set that trains 

and tests sizes is 100,000 words and 12,961 unique words. 

The big data set uses training at 80% and testing at 20% of 

the entire degrade5 data set. The reason for evaluating both 

the small and big data sets is that some applications request 

only words in a dictionary that contains only a small 

amount of vocabulary, such as correcting search queries. 

Thus, there is no requirement for big data. In some cases, 

however, OCR words might contain not only a word in a 

dictionary but also an item number, page number, and 

specific patterns. Hence, the number of words can be too 

large. 

1) Small data set 

Table IV shows the performance of word level for each 

method. The new cognition-inspired method shows faster 

response over LD, pyspellchecker and LSTM by 

approximately 300 times, and Elmosclstm by 14 times 

because operations in bits are faster than other methods by 

creating 12,961 SDR vectors and use 2048-bit sizes. The 

accuracy of the cognition-inspired method shows an 

excellent result with the training data at 91.62%, meaning 

that the new method will get a good result if it learned the 

correct words. Otherwise, it will only get 75.02%, similar 

to methods. On the other hand, the accuracy of pretrained 

Elmosclstm is only 54.18% as it pretrained from random 

noise that does not contain this OCR data set characteristic. 

However, it got a better result after training of 82.18%. 

TABLE IV.  WORD-LEVEL PERFORMANCE ON A SMALL DATA SET 

Method Data Accuracy Accuracy 

max 

Accuracy 

range 

Time 

(s)/word 

Levenshtein 
Distance (LD) 

Test 71.06% 75.11% 79.49% 0.390 

pyspellchecker Train 70.75%   0.33 

LSTM trained Test  73.77%   0.328 

LSTM trained Test 71.94%   0.326 

Elmosclstm 
pretrained 

Test 54.18%   0.014 

Elmosclstm 

trained 
Train 82.18%   0.014 

Elmosclstm 

trained 
Test 75.29%   0.014 

cognition-

inspired 2048 
Train 84.92% 91.06% 91.62% 0.001 

cognition-

inspired 2048 
Test 71.07% 74.67% 75.02% 0.001 

TABLE V.  SENTENCE-LEVEL PERFORMANCE ON A SMALL DATA SET 

Method Data Accuracy Accuracy 

max 

Accuracy 

range 

Time 

(s)/word 

Elmosclstm 

trained 
Train 81.97%   0.023 

Elmosclstm 

trained 
Test 77.65%   0.025 

cognition-
inspired 2-

gram 

Train 93.33% 96.98% 99.31% 0.021 

cognition-

inspired 2-

gram 

Test 56.55% 64.03% 64.03% 0.022 

cognition-

inspired 3-
gram 

Train 97.24% 98.64% 99.08% 0.024 

cognition-

inspired 3-
gram 

Test 46.83% 49.42% 55.93% 0.024 

 

While word level can fix non-word error types, it cannot 

fix real-word error types as it uses sentence level to handle 

them. This research compares Elmosclstm and the 

cognition-inspired method only for the sentence level as 

LD and pyspellchecker commonly work at the word level, 

and Elmosclstm is a similar approach to LSTM but newer 

and better for both accuracy and time. Table V shows the 

performance of sentence level for Elmosclstm and the 

cognition-inspired method. The cognition-inspired 2-gram 

is a concatenation between two words for every 2048 bits. 

Hence, the length of 2-gram is 4096 bits. Each word is 

concatenated as training sentences, and the number of 

vectors is 46,295 vectors. 3-gram is 2048 bits for each 

vector and it contains 64,432 vectors. As a result, 

cognition-inspired works well if it knows the correct words. 

The best accuracy is 99.31%. However, the accuracy of 

test data is only 64.03% for 2-gram and 55.93% for 3-gram 

because some words in testing data have yet to be learned. 

However, Elmosclstm provides a good result for testing 

data as it is already trained from pretraining. In summary, 

sentence level can give a better result than word level as it 

can correct the word from its surroundings. 

2) Big data set 

The big data set is separated into 80% for training data 

and 20% for testing data, as shown in Table VI. 
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TABLE VI.  BIG DATA SET 

 Line All Words Unique Words 

Training 80% 2,780,211 26,604,373 701,217 

Testing 20% 752,532 6651109 349,524 

 

The big data set with word level in Table VII, LD is very 

slow at 13.14 s per word as it contains 701,217 unique 

words to search. Pyspellchecker provides the same result 

and works with the same concept as the small data set. 

LSTM is not tested for large data sets as it consumes both 

computing resources and time, while Elmosclstm can be 

represented better for both results and time. Elmosclstm 

pretrained does provide a poor result as it has yet to learn 

the OCR pattern. After training, the accuracy performance 

is better at 74.41% for testing data and 77.44% for training. 

However, the time performance of Elmosclstm still 

produces a good result as its architecture and parameters 

are the same. This result is close to its original paper, 

which works at around 79.8%. 

TABLE VII.  WORD-LEVEL PERFORMANCE ON A BIG DATA SET 

Method Data Accuracy Accuracy 

max 

Accuracy 

Range 

Time 

(s)/word 

Levenshtein 
Distance (LD) 

Train 80.83% 88.83% 94.83% 13.14 

pyspellchecker Train 76.02%   0.30 

Elmosclstm 

pretrained 
Test 58.88%   0.017 

Elmosclstm 

trained 
Train 77.44%   0.019 

Elmosclstm 

trained 
Test 74.41%   0.020 

cognition-

inspired 2048 
Train 81.10% 87.38% 87.38% 0.05 

cognition-
inspired 2048 

Test 79.35% 87.03% 87.03% 0.05 

TABLE VIII.  WORD-LEVEL PERFORMANCE ON A BIG DATA SET WITH 

MERGING 

Bit 

size 

Data Merge 

Vector 

Size 

Accuracy Accuracy 

max 

Accuracy 

Range 

Time 

(s)/word 

4096 Train 39,811 80.27% 87.48% 87.86% 0.01 

4096 Test 39,811 76.45% 83.85% 84.31% 0.01 

2048 Train 78,074 78.57% 81.83% 82.02% 0.02 

2048 Test 78,074 79.02% 82.22% 82.49% 0.02 

 

The cognition-inspired with 2048 bits and using 

701,217 SDR vectors gives a better result than Elmosclstm 

with an accuracy of around 5%, the accuracy max, and a 

range of around 10%. However, the performance time is 

approximately twice as slow. The result is different from 

the small data set because the cognition-inspired already 

learned enough correct words. 

Improvement by multiprocessing can contain overhead 

that also limits processing time. Thus, merging SDR is 

used first. The experiment set sparsity threads at 20% and 

distance threshold at 0.2 as plotting the histogram and set 

percentile at 90. The SDR vector size is also adjusted for 

merging with 2048 and 4096 bits. After merging, the 

vector sizes are reduced from 701,217 to 39,811 for 2048 

bits and 78,074 for 4096 bits. In Table VIII, the accuracy 

for 4096-bit sizes produces similar results before merging, 

but the time is reduced significantly as the number of 

vectors is reduced by 20 times. However, 2048 bits give 

lower accuracy because extending the size of the vectors 

helps to reduce false positives. 

TABLE IX.  SENTENCE-LEVEL PERFORMANCE ON A BIG DATA SET 

Method Data Accuracy Accuracy 

max 

Accuracy 

Range 

Time 

(s)/word 

Elmosclstm 

trained 
Train 81.50%   0.015 

Elmosclstm 

trained 
Test 72.18%   0.017 

cognition-
inspired 

4096 

Train 84.97% 92.00% 96.73% 1.26 

cognition-
inspired 

4096 

Test 90.75% 90.83% 91.42% 1.95 

 

Table IX shows the result of the sentence level in the 

big data set; Elmosclstm gives a better result as it uses 

sentence level to predict. Besides, its performance time is 

the same, which is a very good result. The cognition-

inspired uses the word vectors from the previous 

experiment (701,217 SDR vectors) to construct the 

sentence vector and concatenate 2 words (2-ngram). After 

concatenation, the number of 2-ngram vectors is 3,972,879, 

converting a 4096-bit word vector to a 2048-bit word 

vector. Thus, 2-ngram that uses two-word vector 

concatenation still uses only 4096 bits. As a result, the 

accuracy is better than Elmosclstm for both training and 

testing data sets. Particularly, the accuracy range can 

provide 96.73% for training data and 91.42% for testing 

data.  

Another experiment proves that cognition-inspired 

learning can provide high noise-tolerant attributes with no 

requirement for retraining the error model. Although the 

experiment uses a degrade20 data set, the cognition-

inspired still uses the same training from degrade5 as it can 

learn from correct words only. Elmosclstm with retraining 

from degrade5 is used for evaluation. Elmosclstm shows 

low accuracy as it never retrains incorrect words from 

degrade20 to adjust the error model. However, the 

cognition-inspired still shows a good result of 90% and 

94.50% for the accuracy ranges of both training and testing 

data, respectively, as shown in Table X. 

TABLE X.  SENTENCE-LEVEL PERFORMANCE ON A BIG DATA SET 

WITH A DEGRADE20 DATA SET 

Method Data Accuracy Accuracy 

max 

Accuracy 

Range 

Time 

(s)/word 

Elmosclstm 
trained 

Train 55.31%   0.016 

Elmosclstm 

trained 
Test 52.39%   0.017 

cognition-
inspired 

4096 

Train 69.17% 79.33% 90.00% 1.13 

cognition-
inspired 

4096 

Test 76.57% 81.67% 94.50% 1.25 

 

The cognition-inspired shows a slow processing time of 

1.26s for training data and 1.95 for testing data, however, 
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which is unacceptable for applications. To improve this, 

parallel processing is provided with threading that the 

method can apply easily. After submitting input to each 

thread, the result will be returned and combined in the 

main thread for sorting the score again. The parallel 

processing result can be found in Table XI. Currently, the 

number of threads is set to 10. 

TABLE XI.  SENTENCE-LEVEL PERFORMANCE ON A BIG DATA SET 

WITH PARALLEL PROCESSING 

Method Data Accuracy Accuracy 

max 

Accuracy 

Range 

Time 

(s)/word 

cognition-

inspired 

4096 

Train 85.10% 91.77% 93.24% 0.10 

cognition-
inspired 

4096 

Test 82.00% 83.12% 84.69% 0.13 

 

In Table XI, the data is separated into ten parts after 

parallel processing. Thus, the processing time is reduced 

to about 0.1s. In some cases, however, the result might 

differ from one process because the method first calculates 

the scores from all SDR vectors and then ranges with LD. 

In other words, it finds word patterns similar to the input 

and then sorts them with edit distance. However, 

candidates will be selected from a part of all word patterns 

by separating information patterns into each thread. Hence, 

lower scores for checking SDR similarity can be in a 

candidate list and ultimately selected as it provides the 

lowest LD distance (but a different pattern). Nevertheless, 

the result is still better than Elmosclstm. 

TABLE XII.  SENTENCE-LEVEL PERFORMANCE ON A BIG DATA SET 

WITH MERGING 

Method Data Accuracy Accuracy 

max 

Accuracy 

Range 

Time 

(s)/word 

cognition-
inspired 

4096 

Train 75.80% 85.95% 89.62% 0.36 

cognition-

inspired 

4096 

Test 73.73% 77.39% 82.03% 0.357 

 

Another approach is merging vectors as SDR attributes; 

two parameters are set, including sparsity and distance 

threshold. The vectors will not be merged by setting a low 

sparsity or high distance threshold. Setting high sparsity 

and distance threshold is low, vectors cannot be separated, 

and accuracy will be low. Merging from word vectors to 

SDR sentence vectors uses merged SDR vectors from the 

results in Table IX and concatenates them at the sentence 

level. This experiment set sparsity = 0.15 or 15%, and the 

distance threshold is 1.5. The number of vectors can be 

reduced from 3,972,879 to 908,410 or around 4.37 times. 

The result can be found in Table XII. The accuracy, 

accuracy max, and accuracy range give a good result over 

Elmosclstm, and even SDR vectors are merged and 

reduced. However, the time is still over Elmosclstm, but 

the cognition-inspired is still acceptable for most 

applications. 

VI. CONTRIBUTIONS 

This research provides a new cognition-inspired 

learning model inspired by the brain that provides benefits 

as follows: 

1) The cognition-inspired model can work in offline 

and online learning modes, which is different from other 

methods that work in offline modes such as LSTM, 

Neuspell, LM, and LD or dictionary that cannot learn. 

2) There is no requirement to learn from error words. 

Training error words can be an issue. Even if it can be 

generated randomly, each application has particular 

hidden patterns. Sometimes, it is almost impossible to 

produce correct and incorrect words to train. Learning only 

from correct words and sentences can be provided easily. 

3) It can work in interactive spelling correction 

systems as it provides feedback and prediction. 

4) It provides a new method for both small and big data 

sets. It works well for small data sets in terms of speed and 

accuracy if the correct words and sentences are trained. On 

the other hand, big data provides better accuracy with 

acceptable time. 

5) The method can be implemented on commodity 

hardware. 

6) The new approach provides high noise tolerance. 

VII. CONCLUSION 

This paper provides a new approach that was inspired 

by the brain and Hawkins. The approach proposes an 

overall framework that controls information (Thalamus) 

from working memory (hippocampus) to long-short term 

memory (Neocortex) that includes mechanisms, attention, 

and filtering. The information is kept in sequential and 

invariant representation structure as well as hierarchy level, 

similar to the neocortex in the brain. The paper also 

introduces a new method for determining the similarity 

between inputs and information in the brain that can 

tolerate noise by hashing it into bits and performing logical 

operations.  

In a small data set and at the word level, the new method 

offers a faster response compared to other methods and 

still gets comparable accuracy. However, it performs with 

very low accuracy at the sentence level as it does not learn 

enough data. However, it provides excellent accuracy in 

training data. In big data sets, the accuracy is better 

compared with other methods, but the processing time is 

very slow. However, it can cope by using parallel 

processing or merging. The time is reduced significantly 

and it still provides a better result.  

This research is open-source and available at 

https://github.com/thasayus/cognition-inspired. 
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