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Abstract—Recently, it has become possible to execute 

various digital multimedia applications, such as image 

compression, video compression, and audio processing, on 

mobile devices — as long as the processing core in the 

mobile device has the required high levels of performance, 

versatility, and programmability. Generally speaking, 

multimedia applications operate by performing repeated 

arithmetic and table-lookup coding operations. Therefore, 

to make it easier to achieve those required high levels of 

performance, versatility, and programmability, we propose 

an accelerator for mobile Central Processing Units (CPUs) 

known as a Content Addressable Memory-based massive-

parallel Single Instruction Multiple Data (SIMD) Matrix 

Core (CAMX) that improves the processing speeds of both 

arithmetic and table-lookup coding operations. Our 

proposed CAMX, which is equipped with two CAM 

modules, has highly parallel processing capabilities that 

facilitate fast table-lookup coding operations. In fact, the 

results of Advanced Encryption Standard (AES) encryption 

simulations conducted in this study show that its AES 

encryption total clock cycles are 1,362,699. Additionally, a 

detailed breakdown of the number of clock cycles shows 

1,312,160 for SubBytes, a combined total of 17,161 for 

ShiftRows and MixColumns, and 2519 for AddRoundKey. 

This paper also confirmed that CAMX could process AES 

encryptions at a rate of 83.17 clock cycles/byte. Also, the 

performance of CAMX, related works, and existing mobile 

processors are compared. The related works do not have a 

dedicated circuit for AES processing. From the comparison 

results, CAMX provides a performance improvement of 

approximately 4.4- and 3569.1-times over the related works. 

The existing mobile processors are Texas Instruments (TI) 

DM3730 and a TI OMAP3530. From the comparison 

results, CAMX provides a performance improvement of 

approximately 2.1 times over TI DM3730 and TI 

OMAP3530.  
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I. INTRODUCTION 

Recently, spread by rapid advancements in 

semiconductor technology performance, smartphones that 

can quickly process sounds and images have entered 

widespread use in our daily lives. In addition, 

applications hosted on Internet websites are often 

downloaded onto such smartphones where they are 

expected to perform functions that include executing 

secure encrypted communications [1, 2]. This means 

current smartphones must provide increasingly high 

levels of performance, versatility, and programmability 

within the constraints of small size and low power 

consumption [3, 4]. Therefore, it is becoming 

increasingly important for smartphones, as well as other 

mobile devices, to be capable of processing multimedia 

applications on a single core. This concept is called 

“digital convergence” [5]. Such multimedia applications 

need the ability to process both repeated arithmetic 

operations and table-lookup coding operations at high 

speed. Note that in this study, repeated arithmetic 

operations are defined as AND, OR, XOR, addition, and 

multiplication operations, while table-lookup coding 

operations are used for input data to output data 

conversions via search operation. Furthermore, while 

parallel processing capabilities of both repeated 

arithmetic operations and table-lookup coding are needed 

for high-performance mobile devices, table-lookup 

coding operations are particularly difficult to process in 

parallel [6–8]. 

Accordingly, to make it easier to achieve those 

required performance levels, we propose an accelerator 

for mobile CPUs known as a Content Addressable 

Memory-based massive-parallel Single Instruction 

Multiple Data (SIMD) matrix core (hereafter, CAMX). 

Our proposed CAMX core readily handles basic 

instructions, which include AND, OR, XOR, addition, 

search, etc., and can process repeated arithmetic and 

table-lookup coding operations in parallel because it 
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features two CAM modules specialized for use in search 

operations. CAMX can use simple instructions to execute 

various processing at high levels of performance via a 

concept referred to as “cellular automaton on content 

addressable memory” (CAM2) and MX-1 [9–12]. Our 

previous researches confirmed the repeated arithmetic 

operation mainly, on the other hand, this paper confirms 

the table-lookup coding operation. Therefore, this paper 

focuses on simulations involving the Advanced 

Encryption Standard (AES), which is a well-known 

process for performing basic table-lookup coding 

operations. This paper also explains the CAMX 

architecture and compares CAMX with existing 

technologies. 

The rest of this paper is organized as follows: Section 

II surveys two related works that do not have dedicated 

circuits of AES processing, like CAMX. Section III 

explains the CAMX architecture. Section IV shows AES 

encryption processing. Section V explains the processing 

flows of AES encryption using CAMX. Section VI shows 

AES encryption results using CAMX. Section VII 

compares the results of Section VI and other techniques, 

and Section VIII shows our conclusions. 

II. RELATED WORKS 

In this section, the related works are introduced. The 

CAMX architecture can execute various processing to 

provide versatility as an accelerator for mobile CPUs. 

Therefore, it does not have a dedicated circuit for AES 

processing. For this reason, the related works without 

dedicated circuits for AES processing are surveyed. 

Muri and Fortier explain a Processor-in-Memory (PIM) 

computer architecture, and PIM is implemented in AES 

processing [13]. PIM can execute various processing 

types in memory. Therefore, PIM can execute processing 

between memory performance and processor 

performance without delays. In the results of [13], PIM 

execute AES encryption at 5797 clock cycles. 

Sideris and Sanida et al. explain the AES processing 

implementation using a NIOS-II processor [14]. This 

implementation is compared using two techniques, 

without custom instruction and with floating point 2. 

NIOS-II processors are used in embedded devices, and 

floating point 2, which executes basic arithmetic 

operations at a low clock cycle, has custom instruction 

implementations for additional floating point operations. 

In the results of [14], the clock cycle of the technique 

without custom instruction is 6,120,265, and the clock 

cycle of the technique with floating point 2 is 4,749,510. 

III. CONTENT ADDRESSABLE MEMORY-BASED MASSIVE-

PARALLEL SIMD MATRIX CORE ARCHITECTURE 

In this section, the architecture and operational 

concepts for our proposed CAMX are shown. Fig. 1 

shows CAMX architecture, which consists of two content 

addressable memories (left and right CAM modules), n 

Processing Elements (PEs), an interface module, and a 

controller. A large number of small 1-bit PEs are located 

between the left and right CAM modules. CAMX adopts 

bit-serial and word-parallel processing concepts to 

achieve highly parallel processing and uses PE processes 

for x-bit stored data, which means pipeline processing can 

be executed because the two CAM modules are 

controlled alternately. In addition, the CAM module size 

(x-bit) and the number of PEs (n entries) can be changed 

adaptably. 
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Figure 1.  CAMX architecture. 

A. Bit-Serial and Word-Parallel Processing 

CAMX can process a large volume of stored data in 

parallel as bit-serial and word-parallel. Generally 

speaking, most conventional architectures operate with 

bit-parallel and word-serial operations. Therefore, 

multimedia data are processed sequentially in pipeline 

processing. On the other hand, our proposed CAMX 

supports n-way bit-serial and word-parallel operations. 

Thus, all PEs can be synchronized with a single 

command, and all stored data can be processed 

simultaneously. The internal processing of PE also 

executes pipeline processing. For example, when the left 

CAM module sends 1-bit data to PEs at some clock cycle, 

the right CAM module sends 1-bit data to the PEs at next 

clock cycle. These processing can be executed repeatedly 

to calculate the required bit width. 

B. SIMD Processing Operation 

The CAMX core can execute multiple processing with 

one instruction command. Hence, when the controller 

outputs an instruction to all PEs, it is executed by all PEs 

in parallel. Furthermore, because CAMX is equipped 

with two CAM modules, it can select whether to use a 

search operation to execute PEs for each entry. CAM 

module search operations are explained in Fig. 2. Note 

that both CAM modules can search the matched data 

from a contents table by comparing data [15]. 

When stored data in either the left or right CAM 

modules are matched with comparison data, the CAM 

module outputs the match signal results. In addition, 

since each CAM module can use mask data to determine 

which search-bit position to use when either the left or 
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right CAM module uses match data to output match 

signals in the valid flag (V in Fig. 2), only the matched 

entries become active and can be used when performing 

calculations in the processing element (PE in Fig. 2). This 

makes it possible for CAMX to simultaneously execute 

any entries data in parallel. 
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Figure 2.  Block diagram and function of CAM module. 

C. Basic Processing Flow 

The PEs can calculate all stored data in either the left 

and right CAM modules, and, as shown in Fig. 1, each 

CAM module has n entries x-bit data. Since CPU core 

and CAMX are connected on the system bus, CAMX 

works as an accelerator for the embedded processor. The 

CPU core processes sequential operations and CAMX 

executes parallel operations in all programming codes. 

The basic processing procedure is shown in the items 

below and Fig. 1. 

 

 

Figure 3.  Detailed block diagram of PE and CAMX cell. 

(1) The CPU reads target data from a synchronous 

dynamic random-access memory (SDRAM) and 

sends the data to CAMX for processing via the 

interface module. The CPU can also access stored 

data with read and write addresses in CAMX. 

Note that all read-out data are stored vertically in 

both the left and right CAM modules. 

(2) These data are sent to PEs, where they are 

calculated simultaneously in arithmetic logic 

units (ALUs). These operations continue 

sequentially until the least significant bit (LSB) of 

the x-bit stored data is obtained. To facilitate 

understanding of the operation flow, Fig. 3 shows 

the structure of the PE and CAMX cells. When 1-

bit data in a CAM cell are sent to PEs, the 1-bit 

data are deposited in the store registers. In the 

next clock cycle, stored 1-bit data from the other 

CAM module are sent to the PEs and calculated 

in ALUs. The calculated data are then stored in 

the operation register. Since these operations are 

handled as pipeline processing, CAMX calculates 

n entries simultaneously and can execute them as 

bit-serial word-parallel processing. 

(3) After processing the 1-bit operation, the 

calculated data are stored in the left and right 

CAM modules in parallel. 

D. CAMX Instruction Command Specifications 

Here, CAMX instruction command specifications are 

explained. CAMX has basic and search instructions 

because it requires versatility and programmability as the 

mobile device accelerator. These instructions are sent to 

CAMX from the CPU, and the controller of CAMX 

executes processing at all left and right CAM modules 

entries and PEs. Fig. 4 shows the CAMX instruction 

command specifications. CAMXLIB means the CAMX 

instruction command, and the instruction details are 

specified by A, B, C, D, and E. A specifies the left or 

right CAM module for storing the processing result data 

by LEFT_WING or RIGHT_WING. B specifies the 

instructions. For example, the XOR instruction is 

CAMX_DATA_XOR, the AND instruction is 

CAMX_DATA_AND, etc. C specifies the processing 

data bit width. In this paper, because the CAM modules 

have 1,024 entries and 256 bits, C uses 8 bits with binary 

(8'bxxxx_xxxx). D and E specify the processing data bit 

positions of the left and right CAM modules. CAMX 

processes the bit width of C from the positions of D and 

E. D and E use 8'bxxxx_xxxx like C. 

The basic instructions of Fig. 4(a) are logical and 

arithmetic operations (XOR, AND, OR, addition, etc.). 

As an example, the XOR instruction is explained. In this 

example XOR instruction, because D and E is 

8'b0000_0000, this instruction processes the stored data 

from the least significant bit positions of the left and right 

CAM modules. In addition, because C is 8'b0000_0011, 

the stored data are executed using the XOR instruction 

for the 4-bit width. The XOR instruction result data are 

stored in the left CAM module because A is 

LEFT_WING. In Fig. 5, this processing image is 

explained. CAMX reads 4-bit data from the least 

significant bit position of the left and right CAM modules, 

and the data are sent to the PEs. The calculated data are 

stored in the left CAM module. CAMX executes all 

entries in parallel. 
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<CAMX instruction command specifications>

CAMXLIB = {A, B, C, D, E};

A : Specify left or right CAM module for the stored data 

(LEFT_WING stores the data in left CAM module. RIGHT_WING stores the data in right CAM module) 

B : Specify instruction (CAMX_DATA_XOR is XOR instruction, CAMX_DATA_AND is AND instruction, etc.)

C : Specify the processing data of CAM module entry width with 8'bxxx_xxxx

D, E : Specify the processing data bit position of CAM module entry with 8'bxxx_xxxx

(a) Basic instruction (XOR instruction example)

CAMXLIB = {LEFT_WING, CAMX_DATA_XOR, 8’b0000_0011, 8'b0000_0000, 8'b0000_0000};

(b) Search instruction

SEARCH_DIN = 256'h0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0007;

MASK_DIN      = 256'h0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0005;

CAMXLIB = {LEFT_WING, CAMX_MASK_SEARCH, 8'b0000_0000, 8'b0000_0000, 8'b0000_0000};

(c) Rewrite instruction

CAMXLIB = {LEFT_WING, CAMX_ALL_WRITE, 8'b0000_0011, 8'b0000_0010, 8'b0000_0000};
 

Figure 4.  CAMX instruction command specifications. 

The search instruction is executed as shown in Fig. 

4(b). CAMXLIB means the CAMX instruction. B 

specifies the CAMX_MASK_SEARCH used to process 

the search instructions. In addition, the search instruction 

needs additional instruction commands, which are 

SEARCH_DIN and MASK_DIN. SEARCH_DIN is the 

comparison data in Fig. 2, and MASK_DIN is the mask 

data. These data are sent to CAMX from the CPU. In this 

paper, CAMX has 1,024-entry 256-bit CAM modules. 

Thus, SEARCH_DIN and MASK_DIN specify search bit 

positions in 256 bits. Here, Fig. 4(b) shows the search 

instructions used for Fig. 2. In Fig. 2, the comparison data 

and the mask data are “111” and “101” at the lower 3-bit 

position. Therefore, the SEARCH_DIN and MASK_DIN 

of the instruction command are specified with 256 bits, as 

shown in Fig. 4(b). In addition, because the left CAM 

module is searched, A and B are specified as 

LEFT_WING and CAMX_MASK_SEARCH in 

CAMXLIB. Also, because the search instruction does not 

need the bit width and position, C, D, and E are specified 

as 8'b0000_0000. The search instruction results are stored 

in the valid flag. When the valid flag is 1, the entry is 

active and can execute the next instruction (Fig. 2). 

Fig. 4(c) shows the rewrite instruction for the CAM 

module data. B specifies CAMX_ALL_WRITE in 

CAMXLIB. In this example, A is specified as 

LEFT_WING. Also, C is 8'b0000_0011, D is 

8'b0000_0010, and E is 8'b0000_0000. C specifies the 

rewritten bit width. D specifies the rewritten data. E 

specifies the bit position. Therefore, the left CAM 

module is rewritten as 4-bit data to 0010 from the least 

significant bit. This instruction image is shown in Fig. 6. 

From the above, we see that CAMX can execute 

processing by combining these instruction commands. 

When CAMX converts the data, it executes the search 

instruction. Thus, CAMX searches the match data in the 

CAM module, and the entries with the match data are 

stored as 1 in the valid flag. The matched entries activate, 

and CAMX executes the rewrite instruction in the next 

clock cycles. Thus, just the matched data are converted in 

parallel. 
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Figure 5.  Basic instruction flow. 
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Figure 6.  Rewrite instruction flow. 

IV. AES ENCRYPTION 

AES is a common key cryptosystem system that uses 

block cipher [16]. In this study, the AES uses a 128-bit 

cipher key and performs processing in four steps 

(SubBytes, ShiftRows, MixColumns, and 

AddRoundKey), which are repeated every 10 rounds. 

1. SubBytes 

Data are converted in 8-bit increments via S-box, 

which is a non-linear table.  Since SubBytes is a 

table-lookup coding operation, it is generally 

difficult to process it in parallel. 

2. ShiftRows 

Since data are processed via cyclic shifts to the left, 

ShiftRows is generally easy to process in parallel. 

3. MixColumns 

In this process, Galois theory is used to calculate 

data via matrix operations. Parallel processing for 

MixColumns is generally easy because it employs 

repeated arithmetic operations. 

4. AddRoundKey 

XOR operations data for AddRoundKey are 

processed by cipher key.  Additionally, since 

AddRoundKey also consists of repeated arithmetic 

operations, it is generally easy to process in parallel. 
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V. AES ENCRYPTION OF CAMX 

This section explains the AES encryption flow of 

CAMX. Since CAMX PEs comprise simple logical and 

adder circuits, the CAMX processes AES encryption via 

basic, OR, XOR, addition, and search instructions. Fig. 7 

shows the 1-round AES encryption flow. Incidentally, the 

CAMX processes AES encryption against the data of all 

n entries in parallel. Fig. 7 shows one entry out of n 

entries. 
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Figure 7.  AES encryption flow of CAMX. 

Step 1: The CAMX data are stored in plain text and 

Key. The Plain text data are stored in the left 

CAM module, and the Key data are stored in 

the right CAM module. In addition, the left 

CAM module is stored “1b” in hexadecimal to 

calculate overflow data. 

Step 2: The Plain text and Key data stored in the left 

and right CAM modules are processed via 

XOR operations as AddRoundKey. The left 

and right CAM modules data are read to PE, 

and PE calculates XOR operations. The 

calculated data is stored in left CAM module. 

Step 3: The AddRoundKey results are converted to 

SubBytes. The upper and lower data of the left 

CAM module are searched in four-bit 

increments, and the match data are converted 

to an S-box table. The CAMX can search the 

CAM modules data by comparison and mask 

data. Here, the comparison and mask data are 

sent for search operation from the CPU each 

clock cycles, and these data are the same as  

S-box table data. The only match entries of 

the left CAM module are rewritten to the S-

box table data. 

Step 4: The SubBytes result is processed as ShiftRows 

and MixColumns, which the CAMX can 

execute simultaneously. The left CAM 

module data are doubled and tripled, then 

calculated via XOR and stored in the right 

CAM module. At next cycle, overflow data 

are calculated XOR operation via “1b” in 

hexadecimal of left CAM module. When the 

data are stored in the right CAM module, they 

are shifted. 

Step 5: These processing steps (Steps 1–4) are repeated 

10 times. 

VI. EXPERIMENTAL RESULTS 

A. Simulation Waveform Result 

To verify the effectiveness of our proposed CAMX 

architecture, this paper performed AES encryption 

simulation experiments using the Xilinx Vivado 

v2019.2.1 development tool. In these experiments, the 

two CAM modules installed in the CAMX provided 1024 

(= n) entries vertically and 256 bits (= x) horizontally. 

Experimental instructions were executed simultaneously 

for 1024 entries, and the results were output as a 

waveform. Fig. 8 waveform shows one of 1024 entries as 

an example. 
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Figure 8.  Simulation waveform result. 

Here, CLK is the system clock, and SETUP is the 

preparation process. START is the start of the operation, 

and FINISH is the end of the operation. BUSY is the 

instruction time signal, while Lmem and Rmem are the 

stored data in the left and right CAM modules, 

respectively. This waveform is processed 10 times 

because AES requires 10 rounds of processing. Also, a 

magnification of 1 round processing is shown in Fig. 8. In 
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the obtained results, the left CAM module stores 

“328831e0435a3137f6309807a88da234” in hexadecimal 

as plain text, while right CAM module stores 

“2b28ab097eaef7cf15d2154f16a6883c” in hexadecimal 

as the Key. After these data are processed in the CAMX 

PEs, “5716aafa2cc68b9b8b9be50d30e3f206” is stored in 

left CAM module as the encrypted text, thus confirming 

the ability of CAMX to accurately process AES with 

1,024 entries in parallel. 

B. AES Encryption Clock Cycles of the CAMX 

Next, AES encryption clock cycles were obtained and 

shown in Table I, where it can be seen that, during the 

operation time, the total number of clock cycles was 

1,362,699. Additionally, a detailed breakdown of the 

number of clock cycles shows 1,312,160 for SubBytes, a 

total of 17,161 for ShiftRows and MixColumns, and 2519 

for AddRoundKey. Note that since CAMX can execute 

left and right CAM module entries in parallel, operations 

can proceed at a constant clock cycle rate regardless of 

the number of entries. 

Table I also shows cycle/byte of AES encryption. In 

this study, CAMX executes AES encryption against data 

for all 1024 entries in 1,362,699 clock cycles, and the 

processed data are output as 16-byte encrypted text. 

Therefore, CAMX could process AES encryption at 

83.17 clock cycles/byte. 

TABLE I.  THE NUMBER OF CLOCK CYCLES 

Clock cycles The number of 
AES  

encryption  
clock 

cycles/byte 

SubBytes 
ShiftRows 

MixColumns 
AddRoundKey 

Other 
(Input, 
Output) 

Total 

1,312,160 17,161 2,519 30,859 1,362,699 83.17 

 

VII. COMPARISON WITH OTHER TECHNIQUES 

A. The CAMX and the Related Works 

Here, The CAMX and the related works are compared 

in terms of clock cycles/byte of AES encryption. From 

Sec. II, the AES encryption clock cycles of [13] and [14] 

are 5797 and 4,749,510. The processed data of the two 

techniques are output as 16-byte encrypted text. 

Therefore, the clock cycles/byte become 362.31 and 

296,844.38. On the other hand, the clock cycles/byte of 

the CAMX are 83.17. 

This indicates that CAMX provides a performance 

improvement of approximately 4.4- and 3569.1-times 

over [13] and [14], respectively. Fig. 9 shows each 

performance. These results indicate that CAMX can 

execute AES encryption with high throughput using high-

parallel processing. The reason is that CAMX can 

achieve 1024 parallel processing. 

B. The CAMX and the Existing Mobile Processors 

Here, the throughput of CAMX and existing mobile 

processors are compared. The existing mobile processors 

used in our study are a Texas Instruments (TI) DM3730 

(1.00 GHz) embedded in a BeagleBoard-xM [17], which 

exploits the Advanced RISC Machines (ARM) Cortex A8 

core 32K/32K [18]; and a TI OMAP3530 (720 MHz) 

embedded in a BeagleBoard [19], which exploits the 

ARM Cortex A8 core 16K/16K [20]. To begin the 

comparison, this paper first executed AES encryptions 

using the three processors and acquired the average 

number of clock cycles. 

Fig. 10 shows the obtained throughputs of these 

processors. Here, the clock cycles/byte for TI DM3730 

and TI OMAP3530 are 171.27 and 175.85, respectively.  

In contrast, clock cycles/byte for CAMX is 83.17, thus 

indicating CAMX provides a performance improvement 

of approximately 2.1 times over TI DM3730 and TI 

OMAP3530, respectively. These results also indicate that 

CAMX can execute AES encryption with high 

throughput using high-parallel processing. The reason is 

that CAMX can achieve 1,024 parallel processing. From 

these comparisons, CAMX provides high levels of 

performance, versatility, and programmability as a 

mobile device accelerator. 

 

 

Figure 9.  Comparison with the related works. 

VIII. CONCLUSION 

In this paper, a content addressable memory-based 

massive-parallel SIMD matrix core (CAMX) processor is 

proposed as a method for improving the processing of 

both repeated arithmetic operations and table-lookup 

coding operations. As explained above, CAMX is 

designed to serve as an accelerator for mobile CPU cores, 

is configured with two CAM modules and PEs, and can 

execute n entries in parallel. Additionally, the two CAM 

modules support 1,024 entries vertically and 256 bits 

horizontally. 

 

 

Figure 10.  Comparison with the existing mobile processors. 
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From the results of experiments conducted during this 

study, the number of AES encryption total clock cycles 

was 1,362,699. Furthermore, a breakdown of the number 

of clock cycles shows 1,312,160 for SubBytes, a total of 

17,161 for ShiftRows and MixColumns, and 2519 for 

AddRoundKey. This paper was also shown that CAMX 

could process AES encryption in 83.17 clock cycles/byte, 

and it provides an approximately 2.1-times performance 

improvement over the TI DM3730 and TI OMAP3530 

processors. Also, CAMX provides an approximately 4.4- 

and 3569.1-times performance improvement over the 

related works.  
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