
Parallel Software Encryption of AES Algorithm

by Using CAM-Based Massive-Parallel SIMD

Matrix Core for Mobile Accelerator

Kyosuke Kageyama 1,*, Sota Arai 2, Hajime Hamano 2, Xiangbo Kong 2, Takeshi Kumaki 2,

and Tetsushi Koide 3

1 Department of Electrical, Electronic and Communication Engineering, Kindai University, Osaka, Japan
2 Department of Electronic and Computer Engineering, Ritsumeikan University, Shiga, Japan;

Email: {ri0077er @ed, ri0093fr@ed, kong@fc, kumaki@fc}.ritsumei.ac.jp (S.A., H.H., X.K., T.K.)
3 Research Institute for Nanodevices (RIND), Hiroshima University, Hiroshima, Japan;

Email: koide@hiroshima-u.ac.jp (T.K.)

*Correspondence: kageyama@ele.kindai.ac.jp (K.K.)

Abstract—Recently, it has become possible to execute

various digital multimedia applications, such as image

compression, video compression, and audio processing, on

mobile devices — as long as the processing core in the

mobile device has the required high levels of performance,

versatility, and programmability. Generally speaking,

multimedia applications operate by performing repeated

arithmetic and table-lookup coding operations. Therefore,

to make it easier to achieve those required high levels of

performance, versatility, and programmability, we propose

an accelerator for mobile Central Processing Units (CPUs)

known as a Content Addressable Memory-based massive-

parallel Single Instruction Multiple Data (SIMD) Matrix

Core (CAMX) that improves the processing speeds of both

arithmetic and table-lookup coding operations. Our

proposed CAMX, which is equipped with two CAM

modules, has highly parallel processing capabilities that

facilitate fast table-lookup coding operations. In fact, the

results of Advanced Encryption Standard (AES) encryption

simulations conducted in this study show that its AES

encryption total clock cycles are 1,362,699. Additionally, a

detailed breakdown of the number of clock cycles shows

1,312,160 for SubBytes, a combined total of 17,161 for

ShiftRows and MixColumns, and 2519 for AddRoundKey.

This paper also confirmed that CAMX could process AES

encryptions at a rate of 83.17 clock cycles/byte. Also, the

performance of CAMX, related works, and existing mobile

processors are compared. The related works do not have a

dedicated circuit for AES processing. From the comparison

results, CAMX provides a performance improvement of

approximately 4.4- and 3569.1-times over the related works.

The existing mobile processors are Texas Instruments (TI)

DM3730 and a TI OMAP3530. From the comparison

results, CAMX provides a performance improvement of

approximately 2.1 times over TI DM3730 and TI

OMAP3530.

Keywords—CAMX, CAM, parallel processing, Single

Instruction Multiple Data (SIMD), Advanced Encryption

Standard (AES)

Manuscript received July 4, 2022; revised September 7, 2022; accepted

October 13, 2022; published April 17, 2023.

I. INTRODUCTION

Recently, spread by rapid advancements in

semiconductor technology performance, smartphones that

can quickly process sounds and images have entered

widespread use in our daily lives. In addition,

applications hosted on Internet websites are often

downloaded onto such smartphones where they are

expected to perform functions that include executing

secure encrypted communications [1, 2]. This means

current smartphones must provide increasingly high

levels of performance, versatility, and programmability

within the constraints of small size and low power

consumption [3, 4]. Therefore, it is becoming

increasingly important for smartphones, as well as other

mobile devices, to be capable of processing multimedia

applications on a single core. This concept is called

“digital convergence” [5]. Such multimedia applications

need the ability to process both repeated arithmetic

operations and table-lookup coding operations at high

speed. Note that in this study, repeated arithmetic

operations are defined as AND, OR, XOR, addition, and

multiplication operations, while table-lookup coding

operations are used for input data to output data

conversions via search operation. Furthermore, while

parallel processing capabilities of both repeated

arithmetic operations and table-lookup coding are needed

for high-performance mobile devices, table-lookup

coding operations are particularly difficult to process in

parallel [6–8].

Accordingly, to make it easier to achieve those

required performance levels, we propose an accelerator

for mobile CPUs known as a Content Addressable

Memory-based massive-parallel Single Instruction

Multiple Data (SIMD) matrix core (hereafter, CAMX).

Our proposed CAMX core readily handles basic

instructions, which include AND, OR, XOR, addition,

search, etc., and can process repeated arithmetic and

table-lookup coding operations in parallel because it

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

355doi: 10.12720/jait.14.2.355-362

features two CAM modules specialized for use in search

operations. CAMX can use simple instructions to execute

various processing at high levels of performance via a

concept referred to as “cellular automaton on content

addressable memory” (CAM2) and MX-1 [9–12]. Our

previous researches confirmed the repeated arithmetic

operation mainly, on the other hand, this paper confirms

the table-lookup coding operation. Therefore, this paper

focuses on simulations involving the Advanced

Encryption Standard (AES), which is a well-known

process for performing basic table-lookup coding

operations. This paper also explains the CAMX

architecture and compares CAMX with existing

technologies.

The rest of this paper is organized as follows: Section

II surveys two related works that do not have dedicated

circuits of AES processing, like CAMX. Section III

explains the CAMX architecture. Section IV shows AES

encryption processing. Section V explains the processing

flows of AES encryption using CAMX. Section VI shows

AES encryption results using CAMX. Section VII

compares the results of Section VI and other techniques,

and Section VIII shows our conclusions.

II. RELATED WORKS

In this section, the related works are introduced. The

CAMX architecture can execute various processing to

provide versatility as an accelerator for mobile CPUs.

Therefore, it does not have a dedicated circuit for AES

processing. For this reason, the related works without

dedicated circuits for AES processing are surveyed.

Muri and Fortier explain a Processor-in-Memory (PIM)

computer architecture, and PIM is implemented in AES

processing [13]. PIM can execute various processing

types in memory. Therefore, PIM can execute processing

between memory performance and processor

performance without delays. In the results of [13], PIM

execute AES encryption at 5797 clock cycles.

Sideris and Sanida et al. explain the AES processing

implementation using a NIOS-II processor [14]. This

implementation is compared using two techniques,

without custom instruction and with floating point 2.

NIOS-II processors are used in embedded devices, and

floating point 2, which executes basic arithmetic

operations at a low clock cycle, has custom instruction

implementations for additional floating point operations.

In the results of [14], the clock cycle of the technique

without custom instruction is 6,120,265, and the clock

cycle of the technique with floating point 2 is 4,749,510.

III. CONTENT ADDRESSABLE MEMORY-BASED MASSIVE-

PARALLEL SIMD MATRIX CORE ARCHITECTURE

In this section, the architecture and operational

concepts for our proposed CAMX are shown. Fig. 1

shows CAMX architecture, which consists of two content

addressable memories (left and right CAM modules), n

Processing Elements (PEs), an interface module, and a

controller. A large number of small 1-bit PEs are located

between the left and right CAM modules. CAMX adopts

bit-serial and word-parallel processing concepts to

achieve highly parallel processing and uses PE processes

for x-bit stored data, which means pipeline processing can

be executed because the two CAM modules are

controlled alternately. In addition, the CAM module size

(x-bit) and the number of PEs (n entries) can be changed

adaptably.

SIMD processing module

-bit

DMA

Controller Instruction memory

P
o
in

te
r

In
s
tr

u
c
ti
o
n

Memory (SDRAM)
System bus

P
o
in

te
r

e
n

tr
ie

s

V
e

rt
ic

a
l
c
h

a
n

n
e

l

CPU core

Right CAM

module

V
V

V

V
V

V
V
V

Valid flagprocessing element

Horizontal

channel

PE
PE
PE
PE
PE
PE
PE
PE

PE
PE
PE
PE
PE
PE
PE
PE

V
V
V
V
V
V
V
V

Horizontal

channel

Left CAM

module

CAMX

e
n

tr
ie

s

-bit

Lmem0
Lmem1

Lmemn

Rmem0
Rmem1

Rmemn

Figure 1. CAMX architecture.

A. Bit-Serial and Word-Parallel Processing

CAMX can process a large volume of stored data in

parallel as bit-serial and word-parallel. Generally

speaking, most conventional architectures operate with

bit-parallel and word-serial operations. Therefore,

multimedia data are processed sequentially in pipeline

processing. On the other hand, our proposed CAMX

supports n-way bit-serial and word-parallel operations.

Thus, all PEs can be synchronized with a single

command, and all stored data can be processed

simultaneously. The internal processing of PE also

executes pipeline processing. For example, when the left

CAM module sends 1-bit data to PEs at some clock cycle,

the right CAM module sends 1-bit data to the PEs at next

clock cycle. These processing can be executed repeatedly

to calculate the required bit width.

B. SIMD Processing Operation

The CAMX core can execute multiple processing with

one instruction command. Hence, when the controller

outputs an instruction to all PEs, it is executed by all PEs

in parallel. Furthermore, because CAMX is equipped

with two CAM modules, it can select whether to use a

search operation to execute PEs for each entry. CAM

module search operations are explained in Fig. 2. Note

that both CAM modules can search the matched data

from a contents table by comparing data [15].

When stored data in either the left or right CAM

modules are matched with comparison data, the CAM

module outputs the match signal results. In addition,

since each CAM module can use mask data to determine

which search-bit position to use when either the left or

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

356

right CAM module uses match data to output match

signals in the valid flag (V in Fig. 2), only the matched

entries become active and can be used when performing

calculations in the processing element (PE in Fig. 2). This

makes it possible for CAMX to simultaneously execute

any entries data in parallel.

0 0 1 0 1

0 0 1 1 1

Mask data

Comparison data

0 0 0 1 1

0 0 1 1 1

0 0 1 1 1

0 0 0 0 0

0

1

1

0

0 0 0 1 1

0 1 0 1 0

0 0 0 0 0

0 0 0 0 0

Left CAM module PE V Right CAM module

Not match

Match

Match

Not match

Search

Active entry

Active entry

Figure 2. Block diagram and function of CAM module.

C. Basic Processing Flow

The PEs can calculate all stored data in either the left

and right CAM modules, and, as shown in Fig. 1, each

CAM module has n entries x-bit data. Since CPU core

and CAMX are connected on the system bus, CAMX

works as an accelerator for the embedded processor. The

CPU core processes sequential operations and CAMX

executes parallel operations in all programming codes.

The basic processing procedure is shown in the items

below and Fig. 1.

Figure 3. Detailed block diagram of PE and CAMX cell.

(1) The CPU reads target data from a synchronous

dynamic random-access memory (SDRAM) and

sends the data to CAMX for processing via the

interface module. The CPU can also access stored

data with read and write addresses in CAMX.

Note that all read-out data are stored vertically in

both the left and right CAM modules.

(2) These data are sent to PEs, where they are

calculated simultaneously in arithmetic logic

units (ALUs). These operations continue

sequentially until the least significant bit (LSB) of

the x-bit stored data is obtained. To facilitate

understanding of the operation flow, Fig. 3 shows

the structure of the PE and CAMX cells. When 1-

bit data in a CAM cell are sent to PEs, the 1-bit

data are deposited in the store registers. In the

next clock cycle, stored 1-bit data from the other

CAM module are sent to the PEs and calculated

in ALUs. The calculated data are then stored in

the operation register. Since these operations are

handled as pipeline processing, CAMX calculates

n entries simultaneously and can execute them as

bit-serial word-parallel processing.

(3) After processing the 1-bit operation, the

calculated data are stored in the left and right

CAM modules in parallel.

D. CAMX Instruction Command Specifications

Here, CAMX instruction command specifications are

explained. CAMX has basic and search instructions

because it requires versatility and programmability as the

mobile device accelerator. These instructions are sent to

CAMX from the CPU, and the controller of CAMX

executes processing at all left and right CAM modules

entries and PEs. Fig. 4 shows the CAMX instruction

command specifications. CAMXLIB means the CAMX

instruction command, and the instruction details are

specified by A, B, C, D, and E. A specifies the left or

right CAM module for storing the processing result data

by LEFT_WING or RIGHT_WING. B specifies the

instructions. For example, the XOR instruction is

CAMX_DATA_XOR, the AND instruction is

CAMX_DATA_AND, etc. C specifies the processing

data bit width. In this paper, because the CAM modules

have 1,024 entries and 256 bits, C uses 8 bits with binary

(8'bxxxx_xxxx). D and E specify the processing data bit

positions of the left and right CAM modules. CAMX

processes the bit width of C from the positions of D and

E. D and E use 8'bxxxx_xxxx like C.

The basic instructions of Fig. 4(a) are logical and

arithmetic operations (XOR, AND, OR, addition, etc.).

As an example, the XOR instruction is explained. In this

example XOR instruction, because D and E is

8'b0000_0000, this instruction processes the stored data

from the least significant bit positions of the left and right

CAM modules. In addition, because C is 8'b0000_0011,

the stored data are executed using the XOR instruction

for the 4-bit width. The XOR instruction result data are

stored in the left CAM module because A is

LEFT_WING. In Fig. 5, this processing image is

explained. CAMX reads 4-bit data from the least

significant bit position of the left and right CAM modules,

and the data are sent to the PEs. The calculated data are

stored in the left CAM module. CAMX executes all

entries in parallel.

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

357

<CAMX instruction command specifications>

CAMXLIB = {A, B, C, D, E};

A : Specify left or right CAM module for the stored data

(LEFT_WING stores the data in left CAM module. RIGHT_WING stores the data in right CAM module)

B : Specify instruction (CAMX_DATA_XOR is XOR instruction, CAMX_DATA_AND is AND instruction, etc.)

C : Specify the processing data of CAM module entry width with 8'bxxx_xxxx

D, E : Specify the processing data bit position of CAM module entry with 8'bxxx_xxxx

(a) Basic instruction (XOR instruction example)

CAMXLIB = {LEFT_WING, CAMX_DATA_XOR, 8’b0000_0011, 8'b0000_0000, 8'b0000_0000};

(b) Search instruction

SEARCH_DIN = 256'h0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0007;

MASK_DIN = 256'h0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0005;

CAMXLIB = {LEFT_WING, CAMX_MASK_SEARCH, 8'b0000_0000, 8'b0000_0000, 8'b0000_0000};

(c) Rewrite instruction

CAMXLIB = {LEFT_WING, CAMX_ALL_WRITE, 8'b0000_0011, 8'b0000_0010, 8'b0000_0000};

Figure 4. CAMX instruction command specifications.

The search instruction is executed as shown in Fig.

4(b). CAMXLIB means the CAMX instruction. B

specifies the CAMX_MASK_SEARCH used to process

the search instructions. In addition, the search instruction

needs additional instruction commands, which are

SEARCH_DIN and MASK_DIN. SEARCH_DIN is the

comparison data in Fig. 2, and MASK_DIN is the mask

data. These data are sent to CAMX from the CPU. In this

paper, CAMX has 1,024-entry 256-bit CAM modules.

Thus, SEARCH_DIN and MASK_DIN specify search bit

positions in 256 bits. Here, Fig. 4(b) shows the search

instructions used for Fig. 2. In Fig. 2, the comparison data

and the mask data are “111” and “101” at the lower 3-bit

position. Therefore, the SEARCH_DIN and MASK_DIN

of the instruction command are specified with 256 bits, as

shown in Fig. 4(b). In addition, because the left CAM

module is searched, A and B are specified as

LEFT_WING and CAMX_MASK_SEARCH in

CAMXLIB. Also, because the search instruction does not

need the bit width and position, C, D, and E are specified

as 8'b0000_0000. The search instruction results are stored

in the valid flag. When the valid flag is 1, the entry is

active and can execute the next instruction (Fig. 2).

Fig. 4(c) shows the rewrite instruction for the CAM

module data. B specifies CAMX_ALL_WRITE in

CAMXLIB. In this example, A is specified as

LEFT_WING. Also, C is 8'b0000_0011, D is

8'b0000_0010, and E is 8'b0000_0000. C specifies the

rewritten bit width. D specifies the rewritten data. E

specifies the bit position. Therefore, the left CAM

module is rewritten as 4-bit data to 0010 from the least

significant bit. This instruction image is shown in Fig. 6.

From the above, we see that CAMX can execute

processing by combining these instruction commands.

When CAMX converts the data, it executes the search

instruction. Thus, CAMX searches the match data in the

CAM module, and the entries with the match data are

stored as 1 in the valid flag. The matched entries activate,

and CAMX executes the rewrite instruction in the next

clock cycles. Thus, just the matched data are converted in

parallel.

0 0 0 0 0 1 1

1 0 1 0 0 0 0

1

1

0 0 0 0 1 1 0

0 0 1 0 1 1 0

Left CAM module PE V Right CAM module

XOR

XOR

Read Read

Read Read

Write

Write

Figure 5. Basic instruction flow.

0 0 0 0 0 1 1

1 0 1 0 0 0 0

1

1

0 0 0 0 1 1 0

0 0 1 0 1 1 0

Left CAM module PE V Right CAM module

Rewrite

0 0 0 0 0 1 0

1 0 1 0 0 1 0

1

1

0 0 0 0 1 1 0

0 0 1 0 1 1 0

Left CAM module PE V Right CAM module

Figure 6. Rewrite instruction flow.

IV. AES ENCRYPTION

AES is a common key cryptosystem system that uses

block cipher [16]. In this study, the AES uses a 128-bit

cipher key and performs processing in four steps

(SubBytes, ShiftRows, MixColumns, and

AddRoundKey), which are repeated every 10 rounds.

1. SubBytes

Data are converted in 8-bit increments via S-box,

which is a non-linear table. Since SubBytes is a

table-lookup coding operation, it is generally

difficult to process it in parallel.

2. ShiftRows

Since data are processed via cyclic shifts to the left,

ShiftRows is generally easy to process in parallel.

3. MixColumns

In this process, Galois theory is used to calculate

data via matrix operations. Parallel processing for

MixColumns is generally easy because it employs

repeated arithmetic operations.

4. AddRoundKey

XOR operations data for AddRoundKey are

processed by cipher key. Additionally, since

AddRoundKey also consists of repeated arithmetic

operations, it is generally easy to process in parallel.

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

358

V. AES ENCRYPTION OF CAMX

This section explains the AES encryption flow of

CAMX. Since CAMX PEs comprise simple logical and

adder circuits, the CAMX processes AES encryption via

basic, OR, XOR, addition, and search instructions. Fig. 7

shows the 1-round AES encryption flow. Incidentally, the

CAMX processes AES encryption against the data of all

n entries in parallel. Fig. 7 shows one entry out of n

entries.

1b Text

1b Text

Left CAM module PE V

Input data

(STEP 1) Input data
START

Key

Input data

Right CAM module

XOR Key

Key

(STEP 2) AddRoundKey

(STEP 3) SubBytes

Search and Convert

XOR Key

(STEP 4) ShiftRows and MixColumns

1b Text

1b Text

Shift store

XOR Key1b Text

Shift store

Repeat

Overflow data calculation

Figure 7. AES encryption flow of CAMX.

Step 1: The CAMX data are stored in plain text and

Key. The Plain text data are stored in the left

CAM module, and the Key data are stored in

the right CAM module. In addition, the left

CAM module is stored “1b” in hexadecimal to

calculate overflow data.

Step 2: The Plain text and Key data stored in the left

and right CAM modules are processed via

XOR operations as AddRoundKey. The left

and right CAM modules data are read to PE,

and PE calculates XOR operations. The

calculated data is stored in left CAM module.

Step 3: The AddRoundKey results are converted to

SubBytes. The upper and lower data of the left

CAM module are searched in four-bit

increments, and the match data are converted

to an S-box table. The CAMX can search the

CAM modules data by comparison and mask

data. Here, the comparison and mask data are

sent for search operation from the CPU each

clock cycles, and these data are the same as

S-box table data. The only match entries of

the left CAM module are rewritten to the S-

box table data.

Step 4: The SubBytes result is processed as ShiftRows

and MixColumns, which the CAMX can

execute simultaneously. The left CAM

module data are doubled and tripled, then

calculated via XOR and stored in the right

CAM module. At next cycle, overflow data

are calculated XOR operation via “1b” in

hexadecimal of left CAM module. When the

data are stored in the right CAM module, they

are shifted.

Step 5: These processing steps (Steps 1–4) are repeated

10 times.

VI. EXPERIMENTAL RESULTS

A. Simulation Waveform Result

To verify the effectiveness of our proposed CAMX

architecture, this paper performed AES encryption

simulation experiments using the Xilinx Vivado

v2019.2.1 development tool. In these experiments, the

two CAM modules installed in the CAMX provided 1024

(= n) entries vertically and 256 bits (= x) horizontally.

Experimental instructions were executed simultaneously

for 1024 entries, and the results were output as a

waveform. Fig. 8 waveform shows one of 1024 entries as

an example.

SETUP

FINISH
BUSY

Lmem0

CLK

START

Rmem0

328831e0435a3137f6309807a88da234

2b28ab097eaef7cf15d2154f16a6883c

5716aafa2cc68b9b8b9be50d30e3f20610 rounds processing

Magnification of

1 rounds processing

Figure 8. Simulation waveform result.

Here, CLK is the system clock, and SETUP is the

preparation process. START is the start of the operation,

and FINISH is the end of the operation. BUSY is the

instruction time signal, while Lmem and Rmem are the

stored data in the left and right CAM modules,

respectively. This waveform is processed 10 times

because AES requires 10 rounds of processing. Also, a

magnification of 1 round processing is shown in Fig. 8. In

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

359

the obtained results, the left CAM module stores

“328831e0435a3137f6309807a88da234” in hexadecimal

as plain text, while right CAM module stores

“2b28ab097eaef7cf15d2154f16a6883c” in hexadecimal

as the Key. After these data are processed in the CAMX

PEs, “5716aafa2cc68b9b8b9be50d30e3f206” is stored in

left CAM module as the encrypted text, thus confirming

the ability of CAMX to accurately process AES with

1,024 entries in parallel.

B. AES Encryption Clock Cycles of the CAMX

Next, AES encryption clock cycles were obtained and

shown in Table I, where it can be seen that, during the

operation time, the total number of clock cycles was

1,362,699. Additionally, a detailed breakdown of the

number of clock cycles shows 1,312,160 for SubBytes, a

total of 17,161 for ShiftRows and MixColumns, and 2519

for AddRoundKey. Note that since CAMX can execute

left and right CAM module entries in parallel, operations

can proceed at a constant clock cycle rate regardless of

the number of entries.

Table I also shows cycle/byte of AES encryption. In

this study, CAMX executes AES encryption against data

for all 1024 entries in 1,362,699 clock cycles, and the

processed data are output as 16-byte encrypted text.

Therefore, CAMX could process AES encryption at

83.17 clock cycles/byte.

TABLE I. THE NUMBER OF CLOCK CYCLES

Clock cycles The number of
AES

encryption
clock

cycles/byte

SubBytes
ShiftRows

MixColumns
AddRoundKey

Other
(Input,
Output)

Total

1,312,160 17,161 2,519 30,859 1,362,699 83.17

VII. COMPARISON WITH OTHER TECHNIQUES

A. The CAMX and the Related Works

Here, The CAMX and the related works are compared

in terms of clock cycles/byte of AES encryption. From

Sec. II, the AES encryption clock cycles of [13] and [14]

are 5797 and 4,749,510. The processed data of the two

techniques are output as 16-byte encrypted text.

Therefore, the clock cycles/byte become 362.31 and

296,844.38. On the other hand, the clock cycles/byte of

the CAMX are 83.17.

This indicates that CAMX provides a performance

improvement of approximately 4.4- and 3569.1-times

over [13] and [14], respectively. Fig. 9 shows each

performance. These results indicate that CAMX can

execute AES encryption with high throughput using high-

parallel processing. The reason is that CAMX can

achieve 1024 parallel processing.

B. The CAMX and the Existing Mobile Processors

Here, the throughput of CAMX and existing mobile

processors are compared. The existing mobile processors

used in our study are a Texas Instruments (TI) DM3730

(1.00 GHz) embedded in a BeagleBoard-xM [17], which

exploits the Advanced RISC Machines (ARM) Cortex A8

core 32K/32K [18]; and a TI OMAP3530 (720 MHz)

embedded in a BeagleBoard [19], which exploits the

ARM Cortex A8 core 16K/16K [20]. To begin the

comparison, this paper first executed AES encryptions

using the three processors and acquired the average

number of clock cycles.

Fig. 10 shows the obtained throughputs of these

processors. Here, the clock cycles/byte for TI DM3730

and TI OMAP3530 are 171.27 and 175.85, respectively.

In contrast, clock cycles/byte for CAMX is 83.17, thus

indicating CAMX provides a performance improvement

of approximately 2.1 times over TI DM3730 and TI

OMAP3530, respectively. These results also indicate that

CAMX can execute AES encryption with high

throughput using high-parallel processing. The reason is

that CAMX can achieve 1,024 parallel processing. From

these comparisons, CAMX provides high levels of

performance, versatility, and programmability as a

mobile device accelerator.

Figure 9. Comparison with the related works.

VIII. CONCLUSION

In this paper, a content addressable memory-based

massive-parallel SIMD matrix core (CAMX) processor is

proposed as a method for improving the processing of

both repeated arithmetic operations and table-lookup

coding operations. As explained above, CAMX is

designed to serve as an accelerator for mobile CPU cores,

is configured with two CAM modules and PEs, and can

execute n entries in parallel. Additionally, the two CAM

modules support 1,024 entries vertically and 256 bits

horizontally.

Figure 10. Comparison with the existing mobile processors.

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

360

From the results of experiments conducted during this

study, the number of AES encryption total clock cycles

was 1,362,699. Furthermore, a breakdown of the number

of clock cycles shows 1,312,160 for SubBytes, a total of

17,161 for ShiftRows and MixColumns, and 2519 for

AddRoundKey. This paper was also shown that CAMX

could process AES encryption in 83.17 clock cycles/byte,

and it provides an approximately 2.1-times performance

improvement over the TI DM3730 and TI OMAP3530

processors. Also, CAMX provides an approximately 4.4-

and 3569.1-times performance improvement over the

related works.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Kyosuke Kageyama conducted the research and wrote

the paper; Sota Arai, Hajime Hamano, Xiangbo Kong,

Tetsushi Koide, and Takeshi Kumaki verified CAMX

architecture; all authors had approved the final version.

FUNDING

This work has been supported by a Grant-in-Aid for

Scientific research (C) (No. 19K04461), Ministry of

Education, Culture, Sports, Science and Technology,

Japanese government and a Grantin-Aid for JSPS Fellows,

2019. The research has been partly executed in response

to support of the Murata Science Foundation. Part of this

work was supported by collaborative research of the

Research Center for Biomedical Engineering.

REFERENCES

[1] B. Daddala, H. Wang, and A. Y. Javaid, “Design and

implementation of a customized encryption algorithm for
authentication and secure communication between devices,” in

Proc. 2017 IEEE National Aerospace and Electronics Conference

(NAECON), pp. 258–262, 2017.
[2] A. Dey, S. Nandi, and M. Sarkar, “Security measures in IOT based

5G networks,” in Proc. 2018 3rd International Conference on
Inventive Computation Technologies (ICICT), pp. 561–566, 2018.

[3] M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile CPU’s rise to

power: Quantifying the impact of generational mobile CPU design
trends on performance, energy, and user satisfaction,” in Proc.

2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 64–76, 2016.

[4] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila,

“A survey on mobile augmented reality with 5G mobile edge
computing: Architectures, applications, and technical aspects,”

IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp.
1160–1192, 2021.

[5] K. Uchiyama, “Processor technology in system LSI,” Journal of

the Institute of Electronics, Information and Communication
Engineers, vol. 95, no. 7, pp. 582–588, 2012.

[6] D. Knox and S. Panchanathan, “Parallel searching techniques for
routing table lookup,” in Proc. IEEE INFOCOM’93 the

Conference on Computer Communications, pp. 1400–1405, 1993.

[7] L. Hung and Y. Chen, “Parallel table lookup for next generation
internet,” in Proc. 2008 32nd Annual IEEE International

Computer Software and Applications Conference, pp. 52–59, 2008.

[8] A. M. Fiskiran and R. B. Lee, “Fast parallel table lookups to

accelerate symmetric-key cryptography,” in Proc. International
Conference on Information Technology: Coding and Computing,

2005.

[9] M. Nakajima, H. Noda, K. Dosaka, K. Nakata, M. Higashida, O.

Yamamoto, K. Mizumoto, H. Kondo, Y. Shimazu, K. Arimoto, K.

Saitoh, and T. Shimizu, “A 40GOPS 250mW massively parallel
processor based on matrix architecture,” in Proc. 2006 IEEE

International Solid State Circuits Conference, 2006.
[10] K. Kageyama, T. Koide, and T. Kumaki, “Parallel processing of

morphological pattern spectrum for a massive-parallel memory-

embedded SIMD matrix processor MX-1,” IEEJ Transactions on
Electronics, Information and Systems, vol. 139, no. 3, pp. 237–246,

2019.
[11] K. Kageyama, A. Sekino, K. Watanabe, A. Hamai, T. Koide, and

T. Kumaki, “Proposal of content addressable memory-based

massive-parallel SIMD matrix core,” in Proc. RISP International
workshop on Nonlinear Circuit, computer and Signal Processing

(NCSP), 2020.
[12] K. Kageyama, K. Watanabe, A. Hamai, T. Koide, and T. Kumaki,

“Acceleration of arithmetic processing with CAM-based massive-

parallel SIMD matrix core,” in Proc. IEEE International MidWest
Symposium on Circuits and Systems (MWSCAS), 2020.

[13] R. Muri and P. Fortier, “Embedded processor-in-memory
architecture for accelerating arithmetic operations,” in Proc. 2019

IEEE High Performance Extreme Computing Conference (HPEC),

2019.
[14] A. Sideris, T. Sanida, and M. Dasygenis, “Hardware acceleration

of the AES algorithm using Nios-II processor,” in Proc. 2019
Panhellenic Conference on Electronics & Telecommunications

(PACET), 2020.

[15] K. E. Grosspietsch, “Associative processors and memories: A
survey,” IEEE Micro, vol. 12, no. 3, pp. 12–19, 1992.

[16] X. Zhang and K. K. Parhi, “Implementation approaches for the
advanced encryption standard algorithm,” IEEE Circuits and

Systems Magazine, vol. 2, pp. 24–46, 2002.

[17] BeagleBoard-xM. [Online]. Available:
https://beagleboard.org/beagleboard-xm

[18] DM3730. Digital Media Processor. [Online]. Available:

https://www.ti.com/product/DM3730

[19] BeagleBoard. [Online]. Available:

https://beagleboard.org/beagleboard
[20] OMAP3530. Applications Processor. [Online]. Available:

https://www.ti.com/product/OMAP3530

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

Kyosuke Kageyama received his B.S. degree
from Department of VLSI System Design, and

completed the first half of the M.E. program in
Department of Electrical and Electronic

Engineering from Ritsumeikan University, Shiga,

Japan, in 2014 and 2016, respectively. From 2016

to 2017, he was with Scientific Research Institute

of Mie Prefectural Police Headquarters. From
2017 to 2019, he was a visiting scholar of

Ritsumeikan University, Shiga, Japan. From 2019 to 2021, he was with

Kyoto City Fire Department. From 2017 to 2022, he was with Japan
Fire and Disaster Management Agency. Since 2022, he has been an

assistant professor in the Department of Electrical, Electronic and
Communication Engineering, Kindai University, Osaka, Japan, and he

has been a visiting scholar of Ritsumeikan University, Shiga, Japan. His

research interests include content addressable memory, SIMD
processing architecture, visible light communication, image processing,

and these applications. He is a member of the Institute of Electrical and
Electronics Engineers (IEEE).

Sota Arai received his B.S. degree from
Department of Electronic and Computer

Engineering from Ritsumeikan University, Shiga,

Japan, in 2020. His research interests include

content addressable memory, SIMD processing

architecture, image processing, and these
applications.

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

361

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Hajime Hamano was born in Osaka, Japan. He

received the bachelor degree in electronics and

computer engineering from Ritsumeikan
University in Shiga, Japan, 2022. Currently he is

major in advanced electrical, electronic and
computer systems in Graduate School,

Ritsumeikan University. He is treasure of IEEE

Student Branch at Ritsumeikan University. His
research related to apply that parallel processing

architecture for embedded devices to accelerate machine learning and
multimedia applications.

Xiangbo Kong received B.E. degree from
Nankai University in 2012 and he received M.E.

and Ph.D degrees from Ritsumeikan University in
2018 and 2020, respectively. In 2020, he joined

the College of Science and Engineering,

Ritsumeikan University as an assistant professor.
His research interests include artificial

intelligence, image processing, embedded system,
etc. He is a member of the Institute of Electrical

and Electronics Engineers (IEEE) and the Information Processing

Society of Japan (IPSJ).

Tetsushi Koide received the B.E. degree in
physical electronics, the M.E. and the Ph.D.

degrees in systems engineering from Hiroshima

Univ. in 1990, 1992, and 1998, respectively. He
was a research associate and an associate

professor in the Faculty of Engineering at
Hiroshima Univ. in 1992–1999 and 1999,

respectively. From 1999, he was with the VLSI

Design and Education Center, The Univ. of Tokyo
as an associate professor. Since 2001 and 2004, he

has been an associate professor in the Research Center for Nanodevices

and Systems and Graduate School of Advanced Sciences of Matter,

Hiroshima Univ. Since 2008, he has been an associate professor in

Research Institute for Nanodevice and Bio Systems. Since 2020, he has
also been an associate professor in Graduate School of Advanced

Science and Engineering: Division of Advanced Science and

Engineering: Quantum Matter Program. Since 2022, he has been an

associate professor in the Research Center for Nanodevices (RIND),
Hiroshima University, Japan. His research interests include system

design and architecture issues for deeplearning application for medical
engineering, real-time image processing, memory-based systems, VLSI

CAD/DA, genetic algorithms, and combinatorial optimization. Dr.

Koide is a member of the Institute of Electrical and Electronics
Engineers, the Association for Computing Machinery, the Institute of

Electronics, Information and Communication Engineers of Japan, and
the Information Processing Society of Japan.

Takeshi Kumaki received his B.S. degree from
the Department of Mathematics, Faculty of

Science, and completed the first half of the M.E.
program in Information Mathematics from the

National Defense Academy, Kanagawa, Japan,

in 1998 and 2003, respectively. He received the
Ph.D. degree in electric engineering from

Hiroshima University, Hiroshima, Japan, in
2006. From 2003 to 2004, he was with the Japan

Air Self-Defense Force Electric Experimentation

Group. From 2005 to 2009, he was with the Research Center for
Nanodevices and Systems (RCNS) and the Research Institute for

Nanodevice and Bio Systems (RNBS), Hiroshima University, Japan,
where he has engaged in system design and architecture research. From

2010 to 2012, he was an assistant professor in the Department of VLSI

System Design, Ritsumeikan University (RU), Shiga Japan. From 2013
to 2015, he was a lecturer in the Department of Electronic and

Computer Engineering, RU. From 2016 to 2020, he was an associate
professor in the Department of Electronic and Computer Engineering,

RU. Since 2021, he has been a professor in the Department of

Electronic and Computer Engineering, RU. His research interests
include content addressable memory, SIMD processing architecture,

and these applications. Dr. Kumaki is a member of the Institute of

Electrical and Electronics Engineers (IEEE), the Institute of Electronics,

Information and Communication Engineers of Japan (IEICE), the

Research Institute of Signal Processing (RISP), and the Institute of
Electrical Engineers of Japan (IEEJ).

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

362

