
Large-Scale Insect Pest Image Classification

Thanh-Nghi Doan 1,2
1 Faculty of Information Technology, An Giang University, An Giang, Vietnam

2 Vietnam National University Ho Chi Minh City, Vietnam

Email: dtnghi@agu.edu.vn

Abstract—One of the main issues with agricultural

production is insect attack, which leads to poor crop quality.

Farmers, however, have a complicated and time-consuming

task in detecting and categorizing insects. Therefore,

research on an effective system for image-based automated

insect classification is crucial. The conventional “softmax”

function is utilized to determine the category for new image

occurrences and minimize “cross-entropy” loss in the bulk of

current research, which focuses on employing deep

convolutional neural networks to categorize insect images.

This paper presents a novel method for large-scale insect pest

image classification by combining fine-tuning EfficientNets

and Power Mean Support Vector Machine (SVM). First,

EfficientNet models are fine-tuned and re-trained on new

insect pest image datasets. The retrieved features from

EfficientNet models are then utilized to create a machine

learning classifier. In the network’s classification stage, the

traditional “softmax” function is substituted with a non-

linear classifier, Power Mean SVM. As a result, rather than

“cross-entropy loss,” the training process focuses on reducing

“margin-based loss.” Several benchmark insect image

datasets were used to evaluate our proposed method.

According to the numerical results, our method outperforms

other cutting-edge methods for large-scale insect pest image

categorization. With fine-tuning EfficientNets and Power

Mean SVM, the classification accuracy of the proposed

method for the Xie24, D0, and IP102 large insect pest datasets

is 99%, 99%, and 72.31%, respectively. To our knowledge,

these are the best performing image classification results for

these datasets.

Keywords—EfficientNets, power mean Support Vector

Machine (SVM), large-scale insect image categorization

I. INTRODUCTION

Insects are crucial to long-term agricultural growth and

ecosystem. There are currently slightly over 5.5 million

species of insects recognized and described out of a total

of more than 30 million species [1]. However, only

approximately 500 living insect species ruin crops; the

remainder are helpful insects that eliminate harmful insects

and preserve crops. Due to a lack of expert understanding,

farmers are unable to effectively detect pests and diseases,

therefore they employ ineffective pesticides. This results

in the extinction of many insects and other useful creatures,

as well as a significant negative impact on the human

environment. As a consequence, it’s vital to study a system

that can automatically categorize enormous amounts of

Manuscript received October 13, 2022; revised October 30, 2022;

accepted December 19, 2022; published April 17, 2023.

insect images. In recent years, several computer-based

insect detection approaches have been investigated [2−9].

In these studies, image feature extraction methods are key

factors in the effectiveness of a pest and disease image

classification system. They can be divided into two groups:

1) Handcrafted features - image feature extraction methods

that are manually designed, they are commonly used with

conventional machine learning methods for object

recognition and 2) Non-handcrafted features-image

feature extraction methods that use Convolutional Neural

Networks (CNNs). Handcrafted image feature generation

approaches are useful for conveying low-level picture

features including color, edge, and texture. In the study of

Rani and Amsini [10], the Support Vector Machine (SVM)

classifier was used to detect five different types of insects.

These algorithms extract the primary visual features to

build vector representations of insect images, which are

subsequently tested on tiny insect datasets. However, the

amount of living insect species on the planet has been

approximated to be much larger, thus the design of

handcrafted image feature extractors is inefficient.

The shortcomings of the above techniques have been

solved by deep transfer learning features based on CNNs,

a sort of non-handcrafted feature. In agriculture,

CNN-based approaches have recently been used for weed

identification, plant identification, insect and disease

classification [11−19]. These CNNs have also

outperformed other traditional approaches when it comes

to insect pest image classification. Xia et al. [20] have

developed a method for classifying insect pest and disease

images based on VGG19 and the Region Proposal

Network (RPN). RPN detects insect pest locations in

images, whereas VGG19 extracts visual features from

insect pest images. Thenmozhi and Reddy have proposed

CNN models trained from scratch [21], and their method

has been evaluated on three insect datasets: the National

Bureau of Agricultural Insect Resources (NBAIR),

Xie24 [22], and D0 [23]. Their method has been compared

to various CNN models trained on ImageNet [24].
Furthermore, they investigated variables including batch

size, iteration count, and learning rate. Recently, Wu et al.

have created a sizable dataset of insects, IP102, by

collecting insect images from numerous sources [25].

Then they have implemented a series of experiments to

evaluate this dataset with both conventional machine

learning methods and recent CNN approaches. Their

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

328doi: 10.12720/jait.14.2.328-341

experimental results have shown that ResNet-50 achieved

the highest classification accuracy of 49.5%. Ren et al.

have proposed an image feature synthesis method based on

reusing the residual block structure to enhance image

feature representation [26]. On the IP102 dataset, their

approach was tested and found to have a classification

performance of 55.24%. Nanni et al. have proposed an

insect pest classification method that combined a variety

of CNNs (AlexNet, GoogleNet, DenseNet, ShuffleNet,

and MobileNetv2) that were trained on images

preprocessed utilizing three saliency image methods,

yielding nine new images for each original image in the

datasets [27]. They claimed that their method achieved an

accuracy of 92.43% and 61.93% on the Deng and IP102

datasets, respectively. Ayan et al. [28] have evaluated

seven CNN models for refining and transfer learning on

the D0 dataset [23]. The three models with the best

classification accuracy were ensembled to increase overall

classification performance using a sum of maximum

probability technique. Weighted voting was used to

combine these three models. The weights were calculated

using a genetic algorithm that took into account the

likelihood of success and predicted reliability of these

models. The resulting ensemble model was called

GAEnsemble. Their method has been compared to other

methods and evaluated on the IP102 dataset, and it has

achieved a classification accuracy of up to 67.13%.

According to Setiawan et al.’s work [18], an effective

training framework for small-sized model optimization on

MobileNetV2 employing dynamic learning rate, utilizing

CutMix augmentation, freezing layers, and sparse

regularization, has been developed. The best accuracy of

71.32% was attained during training by combining those

strategies.

As evidenced by the preceding research, there has been

a surge in the usage of CNN approaches in the

classification of insect images in the literature. However,

there are still certain holes to fill in terms of developing

more accurate CNN models for insect pest classification

tasks. This research describes an innovative and effective

method for enhancing the accuracy of insect pest image

classification, especially for large-scale insect pest image

datasets. Our approach employs fine-tuning

EffcientNet [29] and transfer learning methods on new

datasets. The image features are extracted from the

datasets using the trained network model. In which batch

data processing is utilized to avoid loading all data into the

computer’s main memory. Finally, in the insect image

classification step, the Power Mean SVM classifier

(PmSVM) [30] is utilized to replace the conventional

softmax classifier in the output layer of CNN models. As

a result, rather than focusing on “cross-entropy loss,” our

method focuses on minimizing “margin-based loss.”

Furthermore, we employ an SVM classifier with a

non-linear kernel rather than a linear kernel as in Tang’s

wrok [31]. The following are the primary contributions to

this reseach:

• An efficient approach is proposed for combining

fine-tuning EfficientNet with PmSVM [30], in

which a non-linear SVM classifier with the Power

Mean Kernel replaces the conventional CNN

classifier with the softmax function. This allows the

training process to concentrate on decreasing

margin-based loss rather than cross-entropy loss,

which enhances CNN model classification

performance.

• Several different CNN models have been evaluated

on numerous large-scale insect pest datasets to find

the best model for categorizing insect pest images.

Specifically, EfficientNet models were chosen and

fine-tuned with a new efficient transfer learning

method for training these models. This training

procedure is separated into two stages: (i) The first

step involves training the full connected (FC) layer

heads of the networks, and (ii) the second step

involves unfreezing and re-training certain

previous convolutional layers in the network at a

lower learning rate. Therefore, the networks

converge faster, resulting in improved

classification performance.

• A technique for extracting image features from

large-scale datasets that divides the datasets into

several small batches for online and parallel

processing. As a consequence, this method may be

applied to a variety of large-scale datasets

containing several classes.

Figure 1. Overview of our insect image classification workflow.

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

329

Our approach has been tested on numerous benchmark

insect image datasets, including Xie24 [22], D0 [23], and

IP102 [25]. Experiments show that our approach beats

several previous methods on these datasets. For instance,

on Xie24, D0, and IP102, the approach achieved

classification accuracy of 99%, 99%, and 72.31%,

respectively. Furthermore, our method is easily applicable

to enormous datasets that are larger than the computer’s

main memory capacity. The overall process of our

proposed insect image classification approach is shown in

Fig. 1. In terms of merits and limitations, Table I compares

our approach to recent literature.

TABLE I. THE MERITS AND LIMITATIONS OF OUR METHOD IN

COMPARISON TO RECENT LITERATURE

Methods Merits Limitations

FR-
ResNets

[26]

Feature reuse residual block
which combines feature from

the input signal of a residual

block with the residual signal

- Require an effective
feature reuse network

structure

- Non-incremental
learning

- Utilize the softmax

classifier

Ayan et al.

[28]

Combines different

generalization capabilities of

CNN models to detect insect
species

- Non-incremental

learning

- Utilize the softmax
classifier

- High cost of training

models
- Complicated CNN

models

Setiawan et

al. [18]

Use small-sized models

MobileNetV2 with dynamic
learning rate, exploite

CutMix augmentation,

freezing layers, sparse
regularization.

- Non-incremental

learning
- Utilize the softmax

classifier

Our

approach

Use state-of-the-art CNN

EfficientNet, a fast and
scalable framework, PmSVM

classifiers instead of the

Softmax classifier, and two
rounds training

- Non-incremental

learning
- Not make use of

feature confusion

The rest of the article is arranged as follows. The

materials and methods related to insect pest image datasets,

deep convolutional neural networks, visual explanations

from deep networks, transfer learning methods, and the

softmax classifier versus the Power Mean SVM are

presented in Section II. Section III reports the results and

discussion. Section IV contains the conclusions and

recommendations for future research.

II. MATERIAL AND METHOD

This study presents a three-stage classification strategy

for a large-scale insect pest image classification system. As

illustrated in Fig. 1, the pre-trained CNN models from the

ImageNet dataset [32] were fine-tuned and re-trained using

a transfer learning method on the Xie24, D0, and IP102

insect datasets. Then, the CNN model with the greatest

classification accuracy is chosen to retrieve image features

from the insect image datasets. Finally, the PmSVM [30]

is employed to train a classifier based on the extracted

image feature datasets.

A. Insect Pest Image Datasets

As in recent studies, the three following common

benchmark insect pest image datasets were utilized to

evaluate our proposed approach.

Xie24: This dataset was suggested by Xie et al. [22]. It

has 1600 RGB images of 24 different insect species. All

images are preprocessed and then have a resolution of

227×227 pixels. To compare our method to that of

Thenmozhi and Reddy’s work [21], data augmentation

techniques were utilized to improve the volume and

variety of these image datasets before training the CNN

models. The Xie24 dataset, after applying several image

transformations, has a total of 6892 images. This dataset is

then split into three subsets, with 70% samples of each

class for training, 10% samples for validation, and 20%

samples for testing. Therefore, there are 4653 training

images, 516 validation images, and 1723 testing images as

a consequence.

D0: This dataset was created by Xie et al. [23] and made

public at the website

https://www.dlearningapp.com/web/DLFautoinsects.htm.

It includes 4508 RGB images with a resolution of 200×200

pixels from 40 different insect classes. We also split this

dataset into three subsets with the same ratio as the Xie24

dataset. As a result, we have 2682 training images, 473

validation images, and 1353 testing images.

IP102: This large-scale insect pest collection

recommended by Wu et al. [25] has 75,222 photos

arranged in a hierarchical taxonomy. It contains 45,095

training photos, 7508 validation images, and the remaining

22,619 images for model evaluation. Fig. 2 presents some

insect image samples from the IP102 dataset. This dataset

comprises a number of characteristics that impact the

success of image classification methods. First, due to their

color and the similarity of the backdrop images, the insect

in the photograph is challenging to identify. Second,

because the morphology of an insect problem, such as a

rice leaf roller, can vary significantly as it matures, the

classes include photos depicting many stages of the

insect’s life cycle; this makes identifying each insect

problem extremely difficult. Third, many insects and

diseases are classified as different but have very similar

appearances. Fourth, this dataset is highly imbalanced; the

least represented class (Erythroneura apicalis) has only 71

images, while the most common class (Cicadellidae) has

nearly 5740 images. Therefore, these are factors that

generate numerous difficulties and obstacles for designing

an efficient insect pest image classification algorithm on

the IP102 dataset.

Data augmentation: By changing inputs while

preserving output labels, “data augmentation” is a typical

strategy for boosting the amount and variety of labeled

training sets. In the field of computer vision, image

augmentation techniques have become a prominent

implicit regularization tool for reducing overfitting in deep

convolutional neural networks, and they are commonly

employed to improve performance [33, 34]. In this work,

several image data augmentation techniques including

rotation, zoom, shifting, shearing, flipping, and cropping

operators are applied to three insect pest datasets. Fig. 3

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

330

shows how the Xie24, D0, and IP102 datasets’ insect pest

images of Cifuna locuples, Aulacophora indica, Red

Spider, and Rice Leaf Roller are transformed into

numerous images in the enhanced dataset using nine

different operators.

Figure 2. Image samples from a large-scale dataset for insect recognition, IP102.

Figure 3. Data augmentation techniques with nine different operators are applied to some sample insect pest images of Cifuna Locuples from Xie24,
Aulacophora Indica from D0; Red Spider, Rice Leaf Roller from IP102.

B. Deep Convolutional Neural Network

LeCun et al. [35] used a backpropagation approach to

develop deep convolutional neural networks that can learn

hierarchical features from data. The convolution layer, the

pooling layer, and the fully connected layer are the three

main components. To extract features from the image, the

convolutional layer creates a set of filters of a predefined

size (e.g., 3×3, 5×5, 7×7). An activation map is produced

by applying each convolution operation to an image with

each filter. Then this activation map is sent into the next

layer. The pooling layer shrinks inputs to maintain

distinguishing features while reducing model parameters.

The output of CNNs is the FC layers, which use the

extracted features from the convolutional layers to perform

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

331

classification tasks. In this work, many different CNN

models were re-trained and evaluated on several

benchmark insect pest datasets, consisting of Xie24, D0,

and IP102.

1) VGG

VGG is a standard CNN architecture proposed by

Simonyan and Zisserman [36]. The “deep” refers to the

number of layers, with VGG-16 or VGG-19 having 16 or

19 convolutional layers, respectively. Cutting-edge object

recognition models are built on top of the VGG

architecture. On a range of tasks and datasets, the VGGNet,

which was constructed as a deep neural network, beats

baselines. It’s also become one of the most widely used

image recognition architectures. It has been shown that

representation depth improves classification accuracy and

that state-of-the-art results on the ImageNet challenge

dataset may be reached using a traditional CNN

architecture with much greater depth [32, 35]. This CNN

architecture is frequently used in the identification of

insects and pests in several research articles,

such as [20, 23, 37].

2) ResNet

ResNet [38] is a proposed network architecture for

addressing the issue that some non-linear layers do not

learn the activation maps of the image. ResNet is designed

with a network model based on many stacked residual

units. ResNet uses a network model that consists of several

stacked residual units. These leftover units are employed

as network building components. Convolution and pooling

layers are examples of these units. This architecture

employs a 3×3 filter with a 224×224 pixel input image.

The special architecture of ResNet helps the

backpropagation process avoid gradient degradation.

ResNet has parallel shortcuts to regular convolution layers

that will aid the network in understanding global image

features. After numerous weight levels, a shortcut is

utilized to add the previous layer’s input vector to the

output of the following layer. These shortcuts allow the

network to skip layers that are not useful, resulting in a

more optimally tuned number of layers and making the

training process faster. ResNet has been evaluated for

insect pest classification in many studies [28, 39].

3) InceptionV3

InceptionV3 [40] is a GoogleNet variation based on

factoring 7×7 convolutions into two or three sequential

layers of 3×3 convolutions. InceptionV3 is a deep neural

network design from the Inception series that contains

Label Smoothing, 7×7 convolutions, and an extra classifier

to transfer labeled data closer to the bottom of the network,

an improvement over previous versions. InceptionV3 is

primarily concerned with using fewer computing resources

by altering prior Inception designs. This network has been

demonstrated to be more computationally efficient than

VGG networks, both in terms of the amount of parameters

it creates and the cost it incurs (memory and other

resources). If the Inception network is altered, special care

must be taken to avoid losing the computational

improvements. Because of the uncertainty surrounding the

new network’s efficiency, customizing an Inception

network for a variety of use cases becomes a challenge.

Several ways for enhancing the network in an InceptionV3

model have been developed in order to release the

constraints and make the model more adaptable. Among

the techniques employed are factorized convolutions,

regularization, dimension reduction, and parallelized

computations.

4) Xception

The convolutional neural network architecture Xception

[41] only utilizes depth-wise separable convolution layers.

An inception network is a deep convolution network with

71 layers and recurrent module designs called inception

modules. It’s possible that the network comes pre-loaded

with a version that has been trained on over a million

photographs from the ImageNet dataset [32]. Over a

thousand different item categories, such as keyboards,

mice, pens, and other animals, may be classified using the

trained network. As a consequence, the network has

learned to detect a variety of rich visual features in images.

Images having a resolution of 299×299 pixels are accepted

by the network. In general, each CNN layer is thought to

extract some feature; hence, stacking these layers one on

top of the other is not a good idea. Deep networks are prone

to overfitting, and chaining many convolutional

procedures together raises the training cost. Another

problem is that each layer type draws a different type of

information, making it difficult to determine which

transformation (kernels) provides the most important

information to the CNN.

5) DenseNet

DenseNet [42] is a high-performance, huge

convolutional network with each layer connected to the

ones before it. It recommends connecting any two layers

with the same feature map dimension directly. DenseNet

may expand to hundreds of layers without causing any

problems during the optimization phase. In experiments,

DenseNet usually has stable accuracy when the number of

parameters is increasing and there is no sign of

performance degradation or overfitting during training.

Even though it has fewer parameters and a lower

computational overhead than other CNN models,

DenseNet consistently outperforms them on several

benchmark datasets. This architecture allows gradients to

be varied and features to be reused effectively. In several

research studies, DenseNet has demonstrated high

performance in insect pest and disease image

classification [12, 39].

6) MobileNetV2

MobileNetV2 [43] is a mobile-friendly convolutional

neural network architecture. It’s based on an upturned

residual architecture with residual bottleneck levels

included. The middle expanding layer employs basic

depth-wise convolutions to select features as a source of

nonlinearity. MobileNetV2’s architecture includes a fully

convolutional layer with 32 filters, which is followed by

19 bottleneck layers. MobileNetV2 beats several cutting-

edge real-time detectors on the COCO dataset in terms of

reliability and computational cost. In comparison to

YOLOv2 [44], the MobileNetV2 architecture requires 20

fewer calculations and 10 fewer parameters when used

with the SSDLite detection module. This CNN has been

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

332

used in several studies of insect pest image

classification [45, 46].

7) EfficientNet

EfficientNet [29] is a CNN design and scaling strategy

that uniformly scales all depth, breadth, and resolution

parameters using a compound coefficient. The researchers

of EfficientNet argue that to achieve better accuracy, the

network can be enlarged by making each layer wider, by

ensuring that the input image has a higher resolution, or by

a combination of all these factors. Unlike normal practice,

which modifies these elements at random, the EfficientNet

scaling technique uses a set of preset scaling coefficients

to reliably enhance network width, depth, and resolution.

Inspired by Tan et al. [47], they have developed the

baseline EfficientNet-B0 network using a multi-objective

neural architecture search that maximizes both precision

and FLOPS, and then expanded it to create the

EfficientNets family of models (from EfficientNet-B0 to

EfficientNet-B7). The results of many experiments have

shown that EfficientNets achieve higher efficiency and

accuracy than other CNNs. Furthermore, EfficientNet has

decreased the number of network training parameters

dramatically. The experiments in [29] have also

demonstrated the effectiveness of this method when

extended to MobileNet and ResNet. On ImageNet,

EfficientNet-B7 achieved the highest top-1 accuracy of

84.3%, but the network size is 8.4 times smaller and 6.1

times quicker than the other CNNs. EfficientNets also

obtained 91.7% accuracy on the CIFAR-100 dataset and

98.8% accuracy on the Flowers dataset. In this research,

we study an effective fine-tuning method to enhance the

classification performance of EfficientNets on the three

insect pest image datasets as presented in Section A,

especially on the large-scale dataset IP102.

Figure 4. Class Activation Map of CNN models with different methods — The fine-tuning method allows the models (last rows) to focus on
interesting areas of insect pest objects.

Figure 5. Fine-tunning EfficientNet-B5 model for extracting deep image features. Removing the FC layers from the network model and instead

returning the final POOL layer (in the red dashed box). This output contains the extracted features.

C. Visual Explanations from Deep Networks via Class

Activation Map

While deep learning has enabled outstanding accuracy

in image classification, object recognition, and image

segmentation, one of its most major issues is model

interpretability, which is a critical component in model

understanding and debugging. Deep learning approaches

are treated as “black boxes”, with no meaningful

understanding of 1) where the network is “looking” in the

input picture, 2) which series of neurons were engaged in

the forward-pass during inference or prediction, and 3)

how the network reached its final result. Therefore, we

need a method to debug network models and visually

confirm that they are “looking” and “activating” at the

relevant spots in an image to guarantee that the model is

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

333

operating appropriately. Zhou et al. [48] have introduced a

universal approach for CNNs with global average pooling,

termed Class Activation Mapping (CAM), to assist deep

learning researchers in debugging their network models.

This method allows trained CNNs to locate objects without

the use of bounding box annotations. In order to emphasize

the distinguishable object portions that the CNNs were

able to identify, CAM projects class scores onto each

image. We can visually confirm where our network is

looking by using CAM, ensuring that it is looking for and

activating around the appropriate patterns in the image.

The CNN models used to extract image characteristics

must be carefully chosen since they have a considerable

influence on the success of insect image categorization.

Therefore, in this study, CAM visualizations of several

CNNs and their fine-tuning models are evaluated for insect

classification tasks. After that, the most effective CNN

models are chosen for the insect image classification tasks.

As illustrated in Fig. 4, the EfficientNet-B5 model

provides the best-looking insect pest objects from the

image of the IP102 validation dataset at random. In

addition, versions of EfficientNet-B0 to EfficientNet-B5

with our fine-tuning strategy (last rows in Fig. 4) have

concentrated on more interesting areas with more object

information, whereas other CNN models either “look” at a

lack of object information or are unable to “look” at

relevant parts of objects in the image.

D. Transfer Learning

Transfer learning [49] is a strategy that leverages

previously learned information as a springboard for

completing a separate but similar task. The fundamental

goal is to create a learning curve that has a greater starting

point, slope, and asymptote. Conventional machine

learning methods that have been around for a long time

were created to solve specific challenges. Transfer

learning, however, is a deep learning technique that

requires first training a model on a single dataset. The

layers of the learned model are then reused in a new model

that is trained on another dataset. As a result, this strategy

can reduce the training time for a CNN. In this study, we

apply robust, discriminative filters developed by cutting-

edge ImageNet CNN models to detect insect images on

which the models have never been trained. Data similarity

and data volume are important elements to consider while

setting the fine-tuning parameters for this approach. The

transfer learning approach was employed through the fine-

tuning of EfficientNet models in earlier CNN layers, and

then these fine-tuned models were used to extract image

features. Following the guidelines in Yosinski et al.’s

work [49], and since the three insect image datasets

described in Section A are tiny and distinct from the

original ImageNet dataset. As a result, we keep some of

the earlier layers fixed in the first step of training and fine-

tune a few of the network’s higher-level components.

However, in the second pass of training, certain previous

layers are unfrozen, and then backpropagation is utilized

to fine-tune the weights of the pretrained network. This is

based on the belief that the early layers of a CNN reflect

more low-level characteristics that should be useful for a

variety of tasks, however the successive levels of the CNN

become more relevant to the specific information of the

classes available in the original dataset. Therefore, the

strong discriminative features learned by the pre-trained

CNN models may still be used in this manner. Fig. 5

presents the architecture of the fine-tuned EfficientNet-B5

model for extracting deep image features from the datasets,

which treats pre-trained networks as feature extractors.

There are many layers in EfficientNet-B5 that are

connected to each other. EfficientNet-B5 architecture has

seven blocks, from block 1 to block 7, and each block has

three modules. These modules are actually connected and

repeated. Conv2D, Depthwise Conv2D, batch

normalization, activation, global average pooling,

rescaling, and zero padding are among the layers included.

The top activation function in the EfficientNet architecture

defines how the weighted sum of the input is transformed

into an output from a node or nodes in the top layer of the

network. When performing deep learning feature

extraction, the pre-trained network is treated as an arbitrary

feature extractor, allowing the input image to propagate

forward, stopping at a pre-specified layer (the final POOL

layer in the red dashed box), and taking the outputs of that

layer as our features, with 2048 dimensions for every

single feature.

E. Softmax Classifier Versus Power Mean SVM

1) Softmax classifier

Cross-entropy loss is used by the softmax classifier.

Before applying the cross-entropy loss, the softmax

classifier uses the softmax function to transform raw class

scores into normalized positive values that add to one.

When using deep learning algorithms, the softmax or 1-of-

𝐾 encoding is used at the top of classification tasks. For

example, if there are 10 classes, the softmax layer

comprises ten nodes labeled by 𝑝𝑖 , where 𝑖 = 1, ⋯ ,10 .

The notation 𝑝𝑖 defines a gaussian distribution, therefore

∑ 𝑝𝑖 = 110
𝑖 . Assuming that 𝑊 is the weight linking the last

layer to the softmax layer and that ℎ denotes the activation

of the nodes in the last layer, the total input into the

softmax layer is given by 𝑎 (Eq. (1)).

𝑎𝑖 = ∑ ℎ𝑘𝑊𝑘𝑖

𝑘

 (1)

Then we have:

𝑝𝑖 =
𝑒𝑥𝑝(𝑎𝑖)

∑ 𝑒𝑥𝑝(𝑎𝑗)10
𝑗

 (2)

The predicted class 𝑖 is given by the formula:

𝑖̂ = arg max
𝑖

𝑝𝑖 = arg max
𝑖

𝑎𝑖 (3)

2) Power mean support vector machine

Consider a linear binary classification on 𝕋 =
{(𝑥𝑖 , 𝑦𝑖)}𝑖=1

𝑛 , 𝑥𝑖 ∈ ℝ𝑑 , 𝑦𝑖 ∈ {+1, −1} where 𝑛 is the

quantity of training samples. The goal of SVM is to

determine the optimal separating surface that is the farthest

away from class 𝑦 = +1 and class y = −1. It minimizes

error while optimizing the distance between each class’s

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

334

supporting planes. This is accomplished by the solution of

the dual optimization problem (Eq. (4)).

min
𝛼∈ℝn

ƒ(𝛼) =
1
2

𝛼T𝚀𝛼 − eT𝛼

s. t. {
𝑦𝑇𝛼 = 0

0 ≤ 𝛼i ≤ C, ∀i = 1, 2, ⋯ , 𝑛

 (4)

where 𝑒 = [1, ⋯ ,1]𝑛
𝑇 , 𝐶 is a positive constant used to tune

the margin and the error, 𝛼 = (𝛼1, ⋯ , 𝛼𝑛) are the

Lagrange multipliers, 𝚀 is an 𝑛 × 𝑛 symmetric matrix,

where 𝚀𝑖𝑗 = 𝑦𝑖𝑦𝑗𝐾⟨𝑥𝑖 , 𝑥𝑗⟩ , and 𝐾⟨𝑥𝑖 , 𝑥𝑗⟩ is the kernel

function.

The ideal solution of Eq. (4) determines the Support

Vectors (SV) (for which 𝛼𝑖 > 0), and the separation

surface and scalar 𝑏 are subsequently defined by the

support vectors. The following Eq. (5) is used to classify a

new data point 𝑥.

𝑠𝑖𝑔𝑛 (∑ 𝑦𝑖𝛼𝑖𝐾〈𝑥𝑖 , 𝑥𝑗〉

⋕𝑆𝑉

𝑖=1

− 𝑏) (5)

PmSVM [30] proposed that the Power Mean Kernel

𝑀𝑝⟨𝑥𝑖 , 𝑥𝑗⟩ (𝑥𝑖 and 𝑥𝑗 ∈ ℝ+
𝑑), as described in Eq. (6),

substitutes the kernel function 𝐾⟨𝑥𝑖 , 𝑥𝑗⟩ in Eqs. (4) and (5),

which is well recognized as a generic form of various

additive kernels.

𝑀𝑝⟨𝑥𝑖 , 𝑥𝑗⟩ = ∑(𝑥𝑖,𝑧
𝑝

+ 𝑥𝑗,𝑧
𝑝

)
1
𝑝

𝑑

𝑧=1

 (6)

where 𝑝 ∈ ℝ is a constant. 𝜒2 kernel (𝑝 = −1) :

𝑀−1(𝑥, 𝑦) = 𝐾𝜒2(𝑥, 𝑦) =
2𝑥𝑦

𝑥+𝑦
, Histogram intersection

kernel (𝑝 = −∞) : 𝑀−∞ = 𝐾𝐻𝐼(𝑥, 𝑦) =

𝑚𝑖𝑛(𝑥, 𝑦), Hellinger kernel (𝑝 = 0): 𝑀0(𝑥, 𝑦) = √𝑥𝑦.

The research in [50] has examined the support vector

machine as a classification alternative to the softmax

function. According to the conducted research, using SVM

in an artificial neural network design delivers better results

than using the traditional softmax function. While the

softmax function reduces cross-entropy or maximizes log-

likelihood, SVM only finds the greatest hyperplane

between data points of different classes. In this research, a

hybrid model that incorporates CNNs and SVM is

proposed to classify insect images. In which EfficientNet’s

softmax classifier has been replaced by the PmSVM

classifier. We specifically assess the non-linear classifier

PmSVM while classifying image features extracted from

EfficientNet models.

III. RESULTS AND DISCUSSION

A. Experimental Setup and Training

All numerical evaluation was carried out on an Ubuntu-

based workstation with an Intel Core (TM) i7-8565U CPU

running at 1.80 GHz and 1.99 GHz and 8 GB of RAM. The

Keras deep learning framework and Python programming

were used for all of the implementations. All images are

converted from RGB (Red Green Blue) to BGR (Blue

Green Red), then each color channel is normalized to zero-

centered form with batch or layer normalization algorithms.

After that, all of the input images were scaled to the

standard size that each network model accepts.

Accordingly, images were set to 224×224 pixels for

MobileNetV2, VGG16, ResNet-50, DenseNet-121,

EfficientNet-B0; 229×229 pixels for InceptionV3,

Xception; 240×240 pixels for EfficientNet-B1, 260×260

pixels for EfficientNet-B2, 300×300 pixels for

EfficientNet-B3, 380×380 pixels for EfficientNet-B4,

456×456 pixels for EfficientNet-B5, 528×528 pixels for

EfficientNet-B6, and 600×600 pixels for EfficientNet-B7.

To build a reliable CNN capable of accurately

categorizing images, several parameters must be adjusted.

The most essential parameter is batch size, which relates

to the number of samples utilized to learn a CNN model.

The batch size is the quantity of data necessary for

backpropagation’s weight and bias updates. This value

aids learning by optimizing network convergence speeds

and allowing for precise prediction. The effect of batch

size on CNN training is examined in further depth in

Kandel and Castelli’s work [51]. Their research found that

a larger batch size does not always imply higher

classification performance. In this investigation, the batch

size was set to 32, which is the maximum amount allowed

by computer resources across all models. The other

parameters of the networks are set as follows: the gradient

degradation factor is 0.9, the squared gradient degradation

factor is 0.999, and the loss function is categorical cross-

entropy. The optimizer is the Adam optimization

algorithm for EfficientNets.

In the training step, transfer learning methods were used

to retrain all CNN models. To speed up learning, pre-

trained network models on the ImageNet dataset were used

to fine-tune CNN models to detect and categorize all

categories in the datasets. There are over 1.2 million

images and 1000 distinct classifications in the ImageNet.

Therefore, the final FC layers of all models with 1000

outputs were altered to 24, 40, and 102 outputs in

accordance with Xie24 (24 classes), D0 (40 classes), and

IP102 (102 classes). The early-stop technique is used

during the training phase if the validation accuracy does

not increase after three epochs. The successful models’

parameters were preserved for testing at the end of the

training process. The number of FC layers in all models

was maintained as uniformly as possible in order to better

understand and compare their feature extraction

performance. The total number of validation photos

divided by the batch size was used to validate all models,

and each model was trained in two rounds: 1) The first

round is called the “warm-up” process; this starts training

the networks but only trains the FC layer heads; As shown

in the left of Fig. 6, all earlier layers in the network (blue

color) are set as untrainable; the learning rate is set at 0.01,

and the number of epochs is set at 10 for all network

models; 2) In the second round, according to the network

architecture, some of the earlier convolutional layers

(green color) are unfrozen to perform the second training

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

335

phase (as shown in the right of Fig. 6) with a smaller

learning rate of 0.0001 and the number of epochs set at 15

for D0, Xie24, and 30 for IP102. Online data augmentation

methods are utilized to improve classification performance

and minimize overfitting during training.

Figure 6. The process of training the CNN models in two rounds.

In the classification step, SVM models are trained with

linear and non-linear kernels on the extracted image

features datasets. All multi-class classification models

were implemented by using a one-versus-all approach.

Then the performance of the PmSVM classifier on the

insect datasets is compared with that of LIBLINEAR [52]

and LIBSVM [53] in terms of classification accuracy.

LIBLINEAR is configured with default parameters and

𝐶 = 1. LIBSVM is trained with an RBF Kernel. A grid

parameter search method is applied to optimize the

LIBSVM parameters (C, gamma, and degree) using cross

validation. PmSVM is trained with the parameters as

shown in [30], that is 𝑝 = −1 (equivalent to 𝜒2 kernel)

and 𝐶 = 0.01.

B. Evaluation Metrics

The most common method to evaluate the performance

of multi-class object classification is to calculate Average

Precision (AP) at Eq. (7), Average Recall (AR) at Eq. (8),

Average F1-score (AF1) at Eq. (9), and Accuracy (A) at

Eq. (10). Precision measures how accurate our model is by

calculating the fraction of correctly classified instances or

samples among the ones classified as positives. Recall

indicates how well the model recalls classes from images;

it is a metric that quantifies the number of correct positive

predictions made out of all possible positive predictions.

The F1-score combines the precision and recall of a

classifier into a single metric by taking their harmonic

mean. It is primarily used to compare the performance of

two classifiers. Classification accuracy is a metric that

summarizes the performance of a classification model as

the number of correct predictions divided by the total

number of predictions. The metrics given between Eqs. (7)

and (10) are generated utilizing indices such as True

Positive (TP), True Negative (TN), False Positive (FP),

and False Negative (FN) based on the values in the

confusion matrix produced by such classifications. The

number of properly categorized images in each class is

represented by TP, whereas the total number of properly

identified images in all other classes save the relevant class

is represented by TN. FN stands for the number of photos

in the relevant class that were incorrectly classified. The

number of incorrectly classified images in all other classes

save the relevant one is given by FP.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7a)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐴𝑃) =
1

#𝑐𝑙𝑎𝑠𝑠𝑒𝑠
∑ 𝑃

#𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑘=1

 (7b)

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8a)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙(𝐴𝑅) =
1

#𝑐𝑙𝑎𝑠𝑠𝑒𝑠
∑ 𝑅

#𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑘=1

 (8b)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒(𝐹1) = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
 (9a)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹1 − 𝑠𝑐𝑜𝑟𝑒(𝐴𝐹1) =
1

#𝑐𝑙𝑎𝑠𝑠𝑒𝑠
∑ 𝐹1

#𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑘=1

 (9b)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (10)

C. Insect Classification Results

MobileNetV2, VGG16, ResNet-50, DenseNet-121,

InceptionV3, Xception, and eight different models of

EfficientNets from B0 to B7 have been implemented to

evaluate their classification performance on the three

datasets as described in Section A. Figs. 7 and 8 present

the accuracy and loss curves of the warm-up and unfrozen

processes of the EfficientNet-B0 model for training and

validation datasets of Xie24. Figs. 9 and 10 demonstrate

the accuracy and loss curves of the warm-up and unfrozen

processes of the EfficientNet-B0 model for training and

validation datasets of D0. Figs. 11 and 12 show the

accuracy and loss curves of the warm-up and unfrozen

processes of the EfficientNet-B5 model for training and

validation datasets of IP102. Tables II and III summarize

the performance of network models on the Xie24 and D0

datasets. Table IV summarizes the performance for each

network model on the IP102 dataset. The notation “-”

means the authors did not report the results. Tables II–IV’s

bolded values show instances where the best value for the

applicable performance criterion is achieved.

D. Discussion

As described in Section A, the insect pest image datasets

are small and highly different from the ImageNet dataset,

and the training process of network models may suffer

from “early overfitting”. Therefore, the warm-up

processes are employed to reduce the primacy effects of

the early training examples. This allows the networks to

gradually adapt to the training data, allowing adaptive

optimizers to calculate the correct statistics of the gradients.

Figs. 7–12 presents the training loss and accuracy of

EfficientNet for B0 and B5 on three insect datasets. As

shown in Figs. 7, 9, and 11, the accuracy of EfficientNet

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

336

models training and validation gradually increases over the

warm-up phase at a learning rate of 0.01. However, after

10 epochs, the classification accuracy of CNN models is

not improving. Thus, the unfrozen process of training the

networks has started with a much smaller learning rate of

0.0001. As could be seen from Figs. 8, 10, and 12, the

curve of training and validation accuracy of the

EfficientNet models became more stable and achieved

high classification performance after a few epochs on

several insect datasets. For instance, on the IP102 dataset,

it took 30 epochs to obtain the best classification accuracy.

Figure 7. EfficientNet-B0 accuracy/loss curves for the train and test
datasets of Xie24 during the warm-up phase.

Figure 8. EfficientNet-B0 accuracy/loss curves for the train and test

datasets of Xie24 during the unfrozen process.

Figure 9. EfficientNet-B0 accuracy/loss curves for the train and test
datasets of D0 during the warm-up phase.

Figure 10. EfficientNet-B0 accuracy/loss curves for the train and test
datasets of D0 during the unfrozen process.

Figure 11. EfficientNet-B5 accuracy/loss curves for the train and test
datasets of IP102 during the warm-up phase.

Figure 12. EfficientNet-B5 accuracy/loss curves for the train and test
datasets of IP102 during the unfrozen process.

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

337

TABLE II. THE CLASSIFICATION PERFORMANCE (%) OF METHODS ON THE XIE24 DATASET

Methods Image size Accuracy Avg. Precision Avg. Recall Avg. F1-score

K. Thenmozhi et al. [21] 227×227 97.47 - - -

DenseNet-121 224×224 90.00 90.00 90.00 90.00

ResNet-50 224×224 98.00 98.00 98.00 98.00

EfficientNet-B0 224×224 99.00 99.00 99.00 99.00

TABLE III. THE CLASSIFICATION PERFORMANCE (%) OF METHODS ON THE D0 DATASET

Methods Image size Accuracy Avg. Precision Avg. Recall Avg. F1-score

E. Ayan et al. [28] - 98.81 98.88 98.81 98.81

DenseNet-121 224×224 85.00 86.00 85.00 85.00

ResNet-50 224×224 93.00 94.00 93.00 93.00

EfficientNet-B0 224×224 99.00 99.00 99.00 99.00

TABLE IV. THE CLASSIFICATION PERFORMANCE (%) OF METHODS ON THE IP102 DATASET. THE ASTERISK (*) DENOTES THE EFFICIENTNET-B0 IS

TRAINED FROM SCRATCH WITH 50 EPOCHS

Methods Params Image size Accuracy Avg.

Precision

Avg.

Recall

Avg.

F1-score

Setiawan et al [18] 3.5M 224×224 71.32 - - -

Ayan et al. [28] - - 67.13 67.17 67.13 65.76

FR-ResNets [26] 31M 224×224 55.24 - - 54.18

AlexNet 57M 256×256 49.41 - - 48.22

DenseNet-121 8M 224×224 54.59 - - 52.97

ResNet-50 26M 224×224 54.19 54.19 54.19 48.22

ResNet-101 45M 224×224 53.07 - - 52.00

GoogleNet 10M 224×224 52.17 - - 51.24

VGG16 138M 224×224 51.84 - - 51.20

MobileNetV2 3.5M 224×224 51.00

EfficientNet-B0 (*) 5M 224×224 51.00 54.00 51.00 49.00

EfficientNet-B0 5M 224×224 67.00 67.00 67.00 67.00

EfficientNet-B1 8M 240×240 69.00 69.00 69.00 69.00

EfficientNet-B2 9M 260×260 69.00 69.00 69.00 69.00

EfficientNet-B3 12M 300×300 70.00 70.00 70.00 70.00

EfficientNet-B4 (Softmax) 19M 380×380 71.00 71.00 71.00 70.00

EfficientNet-B4+LIBSVM 19M 380×380 49.85 - - -

EfficientNet-B4+LIBLINEAR 19M 380×380 69.31 - - -

EfficientNet-B4+PmSVM 19M 380×380 71.84 - - -

EfficientNet-B5 (Softmax) 31M 456×456 72.00 71.00 72.00 71.00

EfficientNet-B5+LIBSVM 31M 456×456 46.35 - - -

EfficientNet-B5+LIBLINEAR 31M 456×456 70.28 - - -

EfficientNet-B5+PmSVM 31M 456×456 72.31 - - -

EfficientNet-B6 43M 528×528 67.00 68.00 67.00 67.00

EfficientNet-B7 66M 600×600 68.00 69.00 68.00 68.00

Our experimental results have shown that the

combination of fine-tuning EfficientNet and PmSVM has

provided superior classification accuracy compared to

previous methods for all three insect image datasets. On

the Xie24 dataset, all models produced average accuracy

values that were quite similar to one another, as shown in

Table II. The EfficientNet-B0 showed an improved

accuracy of 99% compared to the method by Thenmozhi

et al. [21] with 97.47% and other CNN models (DenseNet-

121 with 90% and ResNet-50 with 98%). On the D0

dataset, EfficientNet-B0 also obtains the highest accuracy

of 99% compared to the methods of Ayan et al. [28] with

98.81%, DenseNet-121 with 85%, and ResNet-50 with

93% (Table III).

On the IP102 dataset, Table IV shows that EfficientNet-

B5 with our fine-tuning methods provided superior

performance than other methods, with a classification

accuracy of up to 72% with the softmax classifier. We also

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

338

trained the EfficientNet-B0 (*) from scratch; however, the

performance is no better than transfer learning methods,

despite having up to 50 epoch iterations. As demonstrated

in Table IV, EfficientNet-B0 (*) achieved a classification

accuracy of 51%, which is not higher than EfficientNet-

B0’s 67%. This result shows that training the network from

the ground up is inefficient in terms of training time and

classification performance. We have also evaluated

EfficientNet-B6 and EfficientNet-B7, but the accuracy did

not increase despite the fact that the network training

parameters were quite large (43M and 66M parameters, as

shown in Table IV). This phenomenon shows that larger

EfficientNet variants may not always imply better

performance, especially for applications with less data or

classes. The bigger the EfficientNet variation employed in

this scenario, the more difficult it is to change the netwoks’

hyperparameters. On the other hand, the combination of

fine-tuning EfficientNet-B5 with PmSVM (EfficientNet-

B5+PmSVM) has outperformed other methods in terms of

classification accuracy. As shown in Table IV, our

proposed method achieved the highest accuracy with

72.31% for IP102, an improvement of more than 0.84% in

the case of EfficientNet-B4 and more than 0.31% in the

case of EfficientNet-B5 with the softmax classifier. And

then EfficientNet-B5+PmSVM outperformed 0.99% over

the method of Setiawan et al. [18] with 71.32%, 5.18%

over the method of Ayan et al. [28] with 67.13%, FR-

ResNets [26] with 55.24%, and other CNN models

(DenseNet-121 with 54.59%, ResNet-101 with 53.07%).

We have evaluated the combination of fine-tuning

EfficientNet-B5 with LIBSVM and LIBLINEAR, but the

accuracy was 46.35% and 70.28%, respectively (Table IV),

not higher than fine-tuning EfficientNet-B5 with the

softmax classifier and its combination with PmSVM.

It is worth noting that EfficientNet-B5 has fewer

parameters (31M) than other CNN models, resulting in

lower processing costs during the training and testing

phases. This demonstrates that our proposed method,

which combines the fine-tuning of EfficientNet-B5 and

PmSVM, has a high capacity for scaling up to a variety of

large-scale insect datasets.

IV. CONCLUSION

An automatic insect classification system plays a vital

role in developing smart agriculture. This research has

proposed an efficient method based on fine-tuning

EfficientNets models and their combination with PmSVM

to classify insect images with complex backgrounds and at

different stages of their life cycle. Specifically, eight

EfficientNets models have been evaluated on several

different benchmark insect image datasets, and the best

model was picked for extracting the image features. All

models were trained over a small number of epochs, but

they achieved significantly high accuracy on several

datasets for all four criteria: precision, recall, accuracy, and

F1-score. Experiments have shown that the combination of

fine-tuning EfficientNet-B5 and PmSVM delivers the best

performance at the lowest cost during the training and

testing phases. It has established a new state-of-the-art

classification performance of 72.31% on a large-scale

insect dataset, IP102. Moreover, the small size of the

EfficientNet-B5 model makes our proposed method easy

to apply to several embedded control systems for

autonomous machines, such as drones and robots utilized

in smart agriculture. However, when the extracted feature

dataset of network models is even larger and cannot be

kept in the main memory of a computer, PmSVM

encounters a problem during the classification stage.

Therefore, in the near future, we may explore the method

as proposed by Doan et al. [54]. They avoid loading the

entire dataset into main memory by dividing it into

manageable chunks of rows saved in separate files, instead

loading one chunk of rows into main memory at a time for

learning tasks. In addition, the current largest insect dataset,

IP102, is still very small when compared to the number of

millions of living insect species as described in [1].

Therefore, creating an insect image dataset with a larger

number of classes and images for an automatic insect

image classification system remains a major challenge that

requires more contributions from computer vision

researchers.

CONFLICT OF INTEREST

The author declares that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict of interest.

REFERENCES

[1] N. E. Stork, “How many species of insects and other terrestrial

arthropods are there on earth?” Annu. Rev. Entomol., vol. 63, pp.
31–45, 2018.

[2] T. Kasinathan, D. Singaraju, and S. R. Uyyala, “Insect classification

and detection in field crops using modern machine learning
techniques,” Inf. Process. Agric., 2020. doi:

10.1016/j.inpa.2020.09.006
[3] C. Muppala and V. Guruviah, “Detection of leaf folder and yellow

stemborer moths in the paddy field using deep neural network with

search and rescue optimization,” Inf. Process. Agric., vol. 8, no. 2,
pp. 350–358, 2021. doi: 10.1016/j.inpa.2020.09.002

[4] L. C. Ngugi, M. Abelwahab, and M. Abo-Zahhad, “Recent

advances in image processing techniques for automated leaf pest
and disease recognition — A review,” Inf. Process. Agric., vol. 8,

no. 1, pp. 27–51, 2021. doi: 10.1016/j.inpa.2020.04.004

[5] J. Liu and X. Wang, “Plant diseases and pests detection based on

deep learning: a review,” Plant Methods, vol. 17, no. 1, pp. 1–18,

2021. doi: 10.1186/s13007-021-00722-9

[6] L. Li, S. Zhang, and B. Wang, “Plant disease detection and
classification by deep learning — A review,” IEEE Access, vol. 9,

pp. 56683–56698, 2021. doi: 10.1109/ACCESS.2021.3069646

[7] K. Zou, L. Ge, H. Zhou, C. Zhang, and W. Li, “Broccoli seedling
pest damage degree evaluation based on machine learning

combined with color and shape features,” Inf. Process. Agric., 2021.

doi: 10.1016/j.inpa.2020.12.003
[8] H. Tian, T. Wang, Y. Liu, X. Qiao, and Y. Li, “Computer vision

technology in agricultural automation — A review,” Inf. Process.

Agric., vol. 7, no. 1, pp. 1–19, 2020. doi:
10.1016/j.inpa.2019.09.006

[9] J. G. M. Esgario, P. B. C. de Castro, L. M. Tassis, and R. A.

Krohling, “An app to assist farmers in the identification of diseases
and pests of coffee leaves using deep learning,” Inf. Process. Agric.,

pp. 1–10, 2021. doi: 10.1016/j.inpa.2021.01.004

[10] R. U. Rani and P. Amsini, “Pest identification in leaf images using

SVM classifier,” Int. J. Comput. Intell. Informatics, vol. 6, no. 1,

2016. doi: 10.13140/RG.2.2.11632.30721

[11] S. Lim, S. Kim, S. Park, and D. Kim, “Development of application
for forest insect classification using CNN,” in Proc. 2018 15th Int.

Conf. Control. Autom. Robot. Vis., 2018, pp. 1128–1131.

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

339

[12] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in

agriculture: A survey,” Comput. Electron. Agric., vol. 147, no.

February, pp. 70–90, 2018. doi: 10.1016/j.compag.2018.02.016
[13] O. L. P. Hansen, et al., “Species‐level image classification with

convolutional neural network enables insect identification from

habitus images,” Ecol. Evol., vol. 10, pp. 737–747, 2020.
[14] B. Tugrul, E. Elfatimi, and R. Eryigit, “Convolutional neural

networks in detection of plant leaf diseases: A review,” Agriculture,

vol. 12, no. 8, p. 1192, 2022. doi: 10.3390/agriculture12081192
[15] D. J. A. Rustia, et al., “Automatic greenhouse insect pest detection

and recognition based on a cascaded deep learning classification

method,” J. Appl. Entomol., vol. 145, pp. 206–222, 2020.
[16] M. Rahat et al., Deep CNN-Based Mango Insect Classification,

2021.

[17] F. Rajeena, et al., “A novel method for the classification of butterfly
species using pre-trained CNN models,” Electronics, vol. 11, no. 13,

2022.

[18] A. Setiawan, N. Yudistira, and R. C. Wihandika, “Large scale pest
classification using efficient convolutional neural network with

augmentation and regularizers,” Comput. Electron. Agric., vol. 200,

107204, 2022. doi: https://doi.org/10.1016/j.compag.2022.107204
[19] J. Andrew, J. Eunice, D. E. Popescu, M. K. Chowdary, and J.

Hemanth, “Deep learning-based leaf disease detection in crops

using images for agricultural applications,” Agronomy, vol. 12, no.
10, pp. 1–19, 2022. doi: 10.3390/agronomy12102395

[20] D. Xia, P. Chen, B. Wang, J. Zhang, and C. Xie, “Insect detection

and classification based on an improved convolutional neural
network,” Sensors (Switzerland), vol. 18, no. 12, pp. 1–12, 2018.

doi: 10.3390/s18124169.

[21] K. Thenmozhi and U. S. Reddy, “Crop pest classification based on
deep convolutional neural network and transfer learning,” Comput.

Electron. Agric., vol. 164, 104906, 2019. doi:

10.1016/j.compag.2019.104906
[22] C. Xie, et al., “Automatic classification for field crop insects via

multiple-task sparse representation and multiple-kernel learning,”

Comput. Electron. Agric., vol. 119, pp. 123–132, 2015.
[23] C. Xie, et al., “Multi-level learning features for automatic

classification of field crop pests,” Comput. Electron. Agric., vol.
152, pp. 233–241, 2018. doi: 10.1016/j.compag.2018.07.014

[24] O. Russakovsky, et al., “ImageNet large scale visual recognition

challenge,” Int. J. Comput. Vis. Vol., Sep. 2014.
[25] X. Wu, C. Zhan, Y. K. Lai, M. M. Cheng, and J. Yang, “IP102: A

large-scale benchmark dataset for insect pest recognition,” in Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2019, pp.
8779–8788. doi: 10.1109/CVPR.2019.00899

[26] F. Ren, W. Liu, and G. Wu, “Feature reuse residual networks for

insect pest recognition,” IEEE Access, vol. 7, pp. 122758–122768,
2019. doi: 10.1109/ACCESS.2019.2938194

[27] L. Nanni, G. Maguolo, and F. Pancino, “Insect pest image detection

and recognition based on bio-inspired methods,” Ecol. Inform., vol.
57, 2020. doi: 10.1016/j.ecoinf.2020.101089

[28] E. Ayan, H. Erbay, and F. Varçın, “Crop pest classification with a

genetic algorithm-based weighted ensemble of deep convolutional
neural networks,” Comput. Electron. Agric., vol. 179, Dec. 2020.

doi: 10.1016/j.compag.2020.105809

[29] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for
convolutional neural networks,” in Proc. 36th Int. Conf. Mach.

Learn. ICML 2019, 2019, pp. 10691–10700.

[30] J. Wu, “Power mean SVM for large scale visual classification,” in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

2012, pp. 2344–2351. doi: 10.1109/CVPR.2012.6247946

[31] Y. Tang, “Deep learning using linear support vector machines,”
arXiv:1306.0239, 2013. doi: http://arxiv.org/abs/1306.0239

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

classification with deep convolutional neural networks,” Commun.
ACM, vol. 60, pp. 84–90, 2012.

[33] A. Mikołajczyk and M. Grochowski, “Data augmentation for

improving deep learning in image classification problem,” in Proc.
2018 International Interdisciplinary PhD Workshop, IIPhDW 2018,

2018, pp. 117–122. doi: 10.1109/IIPHDW.2018.8388338

[34] C. Shorten and T. M. Khoshgoftaar, “A survey on image data
augmentation for deep learning,” J. Big Data, vol. 6, no. 1, 2019.

doi: 10.1186/s40537-019-0197-0

[35] Y. LeCun, et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989. doi:

10.1162/neco.1989.1.4.541

[36] K. Simonyan and A. Zisserman, “Very deep convolutional

networks for large-scale image recognition,” in Proc. 3rd Int. Conf.

Learn. Represent., 2015, pp. 1–14.
[37] I. Ahmad, M. Hamid, S. Yousaf, S. T. Shah, and M. O. Ahmad,

“Optimizing pretrained convolutional neural networks for tomato

leaf disease detection,” Complexity, 2020. doi:
10.1155/2020/8812019

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in Proc. IEEE Conference on Computer Vision
and Pattern Recognition, Dec. 2016, pp. 770–778.

[39] Z. Shi, H. Dang, Z. Liu, and X. Zhou, “Detection and identification

of stored-grain insects using deep learning: A more effective neural
network,” IEEE Access, vol. 8, pp. 163703–163714, 2020. doi:

10.1109/ACCESS.2020.3021830

[40] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

2016, pp. 2818–2826. doi: 10.1109/CVPR.2016.308
[41] F. Chollet, “Xception: Deep learning with depthwise separable

convolutions,” in Proc. the 30th IEEE Conf. Comput. Vis. Pattern

Recognition, 2017, pp. 1800–1807. doi: 10.1109/CVPR.2017.195
[42] G. Huang, Z. Liu, L. Maaten, and K. Q. Weinberger, “Densely

connected convolutional networks,” in Proc. the 30th IEEE Conf.

Comput. Vis. Pattern Recognition, 2017, pp. 2261–2269. doi:
10.1109/CVPR.2017.243

[43] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen,

“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474

[44] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

2017, pp. 6517–6525. doi: 10.1109/CVPR.2017.690.

[45] B. Ramalingam, et al., “Remote insects trap monitoring system
using deep learning framework and iot,” Sensors (Switzerland), vol.

20, no. 18, pp. 1–17, 2020. doi: 10.3390/s20185280.

[46] L. Nanni, A. Manfè, G. Maguolo, A. Lumini, and S. Brahnam,
“High performing ensemble of convolutional neural networks for

insect pest image detection,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., 2021.

[47] M. Tan et al., “Mnasnet: Platform-aware neural architecture search

for mobile,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 2815–2823. doi:

10.1109/CVPR.2019.00293

[48] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Learning deep features for discriminative localization,” in Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2016, pp.

2921–2929. doi: 10.1109/CVPR.2016.319
[49] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable

are features in deep neural networks?” Adv. Neural Inf. Process.

Syst., vol. 4, pp. 3320–3328, 2014.
[50] A. A. A. Ali and S. Mallaiah, “Intelligent handwritten recognition

using hybrid CNN architectures based-SVM classifier with

dropout,” J. King Saud Univ. - Comput. Inf. Sci., pp. 1–7, 2021. doi:
10.1016/j.jksuci.2021.01.012

[51] I. Kandel and M. Castelli, “The effect of batch size on the

generalizability of the convolutional neural networks on a
histopathology dataset,” ICT Express, vol. 6, no. 4, pp. 312–315,

2020. doi: 10.1016/j.icte.2020.04.010

[52] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin,
“LIBLINEAR: A library for large linear classification,” J. Mach.

Learn. Res., vol. 9, no. 2008, pp. 1871–1874, 2008. doi:

10.1145/1390681.1442794
[53] C. C. Chang and C. J. Lin, “LIBSVM: A Library for support vector

machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–

39, 2011. doi: 10.1145/1961189.1961199
[54] T.-N. Doan, T.-N. Do, and F. Poulet, “Large scale classifiers for

visual classification tasks,” Multimed. Tools Appl., vol. 74, pp.

1199–1224, 2014.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

340

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Thanh-Nghi Doan received his doctorate degree

in computer science from University of Rennes 1,

France, in 2013. He has worked as a Ph.D.
candidate in TEXMEX Research Team, IRISA,

France. He is currently working at An Giang

University, Vietnam National University Ho Chi
Minh City, Vietnam. His research is mainly

focused on machine learning, data mining and

high-performance computing in computer vision, agricultural

applications including insect pest image classification systems, prediction

of the damage of rice diseases. Especially he made a major contribution
to 2D and 3D image understanding systems in agriculture in Mekong

Delta.

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

341

