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Abstract—One of the main issues with agricultural 

production is insect attack, which leads to poor crop quality. 

Farmers, however, have a complicated and time-consuming 

task in detecting and categorizing insects. Therefore, 

research on an effective system for image-based automated 

insect classification is crucial. The conventional “softmax” 

function is utilized to determine the category for new image 

occurrences and minimize “cross-entropy” loss in the bulk of 

current research, which focuses on employing deep 

convolutional neural networks to categorize insect images. 

This paper presents a novel method for large-scale insect pest 

image classification by combining fine-tuning EfficientNets 

and Power Mean Support Vector Machine (SVM). First, 

EfficientNet models are fine-tuned and re-trained on new 

insect pest image datasets. The retrieved features from 

EfficientNet models are then utilized to create a machine 

learning classifier. In the network’s classification stage, the 

traditional “softmax” function is substituted with a non-

linear classifier, Power Mean SVM. As a result, rather than 

“cross-entropy loss,” the training process focuses on reducing 

“margin-based loss.” Several benchmark insect image 

datasets were used to evaluate our proposed method. 

According to the numerical results, our method outperforms 

other cutting-edge methods for large-scale insect pest image 

categorization. With fine-tuning EfficientNets and Power 

Mean SVM, the classification accuracy of the proposed 

method for the Xie24, D0, and IP102 large insect pest datasets 

is 99%, 99%, and 72.31%, respectively. To our knowledge, 

these are the best performing image classification results for 

these datasets.   

 

Keywords—EfficientNets, power mean Support Vector 

Machine (SVM), large-scale insect image categorization 

 

I. INTRODUCTION 

Insects are crucial to long-term agricultural growth and 

ecosystem. There are currently slightly over 5.5 million 

species of insects recognized and described out of a total 

of more than 30 million species [1]. However, only 

approximately 500 living insect species ruin crops; the 

remainder are helpful insects that eliminate harmful insects 

and preserve crops. Due to a lack of expert understanding, 

farmers are unable to effectively detect pests and diseases, 

therefore they employ ineffective pesticides. This results 

in the extinction of many insects and other useful creatures, 

as well as a significant negative impact on the human 

environment. As a consequence, it’s vital to study a system 

that can automatically categorize enormous amounts of 
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insect images. In recent years, several computer-based 

insect detection approaches have been investigated [2−9]. 

In these studies, image feature extraction methods are key 

factors in the effectiveness of a pest and disease image 

classification system. They can be divided into two groups: 

1) Handcrafted features - image feature extraction methods 

that are manually designed, they are commonly used with 

conventional machine learning methods for object 

recognition and 2) Non-handcrafted features-image 

feature extraction methods that use Convolutional Neural 

Networks (CNNs). Handcrafted image feature generation 

approaches are useful for conveying low-level picture 

features including color, edge, and texture. In the study of 

Rani and Amsini [10], the Support Vector Machine (SVM) 

classifier was used to detect five different types of insects. 

These algorithms extract the primary visual features to 

build vector representations of insect images, which are 

subsequently tested on tiny insect datasets. However, the 

amount of living insect species on the planet has been 

approximated to be much larger, thus the design of 

handcrafted image feature extractors is inefficient. 

The shortcomings of the above techniques have been 

solved by deep transfer learning features based on CNNs, 

a sort of non-handcrafted feature. In agriculture,  

CNN-based approaches have recently been used for weed 

identification, plant identification, insect and disease 

classification [11−19]. These CNNs have also 

outperformed other traditional approaches when it comes 

to insect pest image classification. Xia et al. [20] have 

developed a method for classifying insect pest and disease 

images based on VGG19 and the Region Proposal 

Network (RPN). RPN detects insect pest locations in 

images, whereas VGG19 extracts visual features from 

insect pest images. Thenmozhi and Reddy have proposed 

CNN models trained from scratch [21], and their method 

has been evaluated on three insect datasets: the National 

Bureau of Agricultural Insect Resources (NBAIR),  

Xie24 [22], and D0 [23]. Their method has been compared 

to various CNN models trained on ImageNet [24]. 
Furthermore, they investigated variables including batch 

size, iteration count, and learning rate. Recently, Wu et al. 

have created a sizable dataset of insects, IP102, by 

collecting insect images from numerous sources [25]. 

Then they have implemented a series of experiments to 

evaluate this dataset with both conventional machine 

learning methods and recent CNN approaches. Their 
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experimental results have shown that ResNet-50 achieved 

the highest classification accuracy of 49.5%. Ren et al. 

have proposed an image feature synthesis method based on 

reusing the residual block structure to enhance image 

feature representation [26]. On the IP102 dataset, their 

approach was tested and found to have a classification 

performance of 55.24%. Nanni et al. have proposed an 

insect pest classification method that combined a variety 

of CNNs (AlexNet, GoogleNet, DenseNet, ShuffleNet, 

and MobileNetv2) that were trained on images 

preprocessed utilizing three saliency image methods, 

yielding nine new images for each original image in the 

datasets [27]. They claimed that their method achieved an 

accuracy of 92.43% and 61.93% on the Deng and IP102 

datasets, respectively. Ayan et al. [28] have evaluated 

seven CNN models for refining and transfer learning on 

the D0 dataset [23]. The three models with the best 

classification accuracy were ensembled to increase overall 

classification performance using a sum of maximum 

probability technique. Weighted voting was used to 

combine these three models. The weights were calculated 

using a genetic algorithm that took into account the 

likelihood of success and predicted reliability of these 

models. The resulting ensemble model was called 

GAEnsemble. Their method has been compared to other 

methods and evaluated on the IP102 dataset, and it has 

achieved a classification accuracy of up to 67.13%. 

According to Setiawan et al.’s work [18], an effective 

training framework for small-sized model optimization on 

MobileNetV2 employing dynamic learning rate, utilizing 

CutMix augmentation, freezing layers, and sparse 

regularization, has been developed. The best accuracy of 

71.32% was attained during training by combining those 

strategies. 

As evidenced by the preceding research, there has been 

a surge in the usage of CNN approaches in the 

classification of insect images in the literature. However, 

there are still certain holes to fill in terms of developing 

more accurate CNN models for insect pest classification 

tasks. This research describes an innovative and effective 

method for enhancing the accuracy of insect pest image 

classification, especially for large-scale insect pest image 

datasets. Our approach employs fine-tuning  

EffcientNet [29] and transfer learning methods on new 

datasets. The image features are extracted from the 

datasets using the trained network model. In which batch 

data processing is utilized to avoid loading all data into the 

computer’s main memory. Finally, in the insect image 

classification step, the Power Mean SVM classifier 

(PmSVM) [30] is utilized to replace the conventional 

softmax classifier in the output layer of CNN models. As 

a result, rather than focusing on “cross-entropy loss,” our 

method focuses on minimizing “margin-based loss.” 

Furthermore, we employ an SVM classifier with a  

non-linear kernel rather than a linear kernel as in Tang’s 

wrok [31]. The following are the primary contributions to 

this reseach: 

• An efficient approach is proposed for combining 

fine-tuning EfficientNet with PmSVM [30], in 

which a non-linear SVM classifier with the Power 

Mean Kernel replaces the conventional CNN 

classifier with the softmax function. This allows the 

training process to concentrate on decreasing 

margin-based loss rather than cross-entropy loss, 

which enhances CNN model classification 

performance. 

• Several different CNN models have been evaluated 

on numerous large-scale insect pest datasets to find 

the best model for categorizing insect pest images. 

Specifically, EfficientNet models were chosen and 

fine-tuned with a new efficient transfer learning 

method for training these models. This training 

procedure is separated into two stages: (i) The first 

step involves training the full connected (FC) layer 

heads of the networks, and (ii) the second step 

involves unfreezing and re-training certain 

previous convolutional layers in the network at a 

lower learning rate. Therefore, the networks 

converge faster, resulting in improved 

classification performance.  

• A technique for extracting image features from 

large-scale datasets that divides the datasets into 

several small batches for online and parallel 

processing. As a consequence, this method may be 

applied to a variety of large-scale datasets 

containing several classes. 

 
Figure 1. Overview of our insect image classification workflow. 
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Our approach has been tested on numerous benchmark 

insect image datasets, including Xie24 [22], D0 [23], and 

IP102 [25]. Experiments show that our approach beats 

several previous methods on these datasets. For instance, 

on Xie24, D0, and IP102, the approach achieved 

classification accuracy of 99%, 99%, and 72.31%, 

respectively. Furthermore, our method is easily applicable 

to enormous datasets that are larger than the computer’s 

main memory capacity. The overall process of our 

proposed insect image classification approach is shown in 

Fig. 1. In terms of merits and limitations, Table I compares 

our approach to recent literature. 

TABLE I. THE MERITS AND LIMITATIONS OF OUR METHOD IN 

COMPARISON TO RECENT LITERATURE 

Methods Merits Limitations 

FR-
ResNets 

[26] 

Feature reuse residual block 
which combines feature from 

the input signal of a residual 

block with the residual signal 

- Require an effective 
feature reuse network 

structure 

- Non-incremental 
learning 

- Utilize the softmax 

classifier 

Ayan et al. 

[28] 

Combines different 

generalization capabilities of 

CNN models to detect insect 
species 

- Non-incremental 

learning 

- Utilize the softmax 
classifier 

- High cost of training 

models 
- Complicated CNN 

models 

Setiawan et 

al. [18] 

Use small-sized models 

MobileNetV2 with dynamic 
learning rate, exploite 

CutMix augmentation, 

freezing layers, sparse 
regularization. 

- Non-incremental 

learning 
- Utilize the softmax 

classifier 

Our 

approach 

Use state-of-the-art CNN 

EfficientNet, a fast and 
scalable framework, PmSVM 

classifiers instead of the 

Softmax classifier, and two 
rounds training 

- Non-incremental 

learning 
- Not make use of 

feature confusion  

 

The rest of the article is arranged as follows. The 

materials and methods related to insect pest image datasets, 

deep convolutional neural networks, visual explanations 

from deep networks, transfer learning methods, and the 

softmax classifier versus the Power Mean SVM are 

presented in Section II. Section III reports the results and 

discussion. Section IV contains the conclusions and 

recommendations for future research. 

II. MATERIAL AND METHOD 

This study presents a three-stage classification strategy 

for a large-scale insect pest image classification system. As 

illustrated in Fig. 1, the pre-trained CNN models from the 

ImageNet dataset [32] were fine-tuned and re-trained using 

a transfer learning method on the Xie24, D0, and IP102 

insect datasets. Then, the CNN model with the greatest 

classification accuracy is chosen to retrieve image features 

from the insect image datasets. Finally, the PmSVM [30] 

is employed to train a classifier based on the extracted 

image feature datasets. 

A. Insect Pest Image Datasets 

As in recent studies, the three following common 

benchmark insect pest image datasets were utilized to 

evaluate our proposed approach. 

Xie24: This dataset was suggested by Xie et al. [22]. It 

has 1600 RGB images of 24 different insect species. All 

images are preprocessed and then have a resolution of 

227×227 pixels. To compare our method to that of 

Thenmozhi and Reddy’s work [21], data augmentation 

techniques were utilized to improve the volume and 

variety of these image datasets before training the CNN 

models. The Xie24 dataset, after applying several image 

transformations, has a total of 6892 images. This dataset is 

then split into three subsets, with 70% samples of each 

class for training, 10% samples for validation, and 20% 

samples for testing. Therefore, there are 4653 training 

images, 516 validation images, and 1723 testing images as 

a consequence. 

D0: This dataset was created by Xie et al. [23] and made 

public at the website 

https://www.dlearningapp.com/web/DLFautoinsects.htm. 

It includes 4508 RGB images with a resolution of 200×200 

pixels from 40 different insect classes. We also split this 

dataset into three subsets with the same ratio as the Xie24 

dataset. As a result, we have 2682 training images, 473 

validation images, and 1353 testing images. 

IP102: This large-scale insect pest collection 

recommended by Wu et al. [25] has 75,222 photos 

arranged in a hierarchical taxonomy. It contains 45,095 

training photos, 7508 validation images, and the remaining 

22,619 images for model evaluation. Fig. 2 presents some 

insect image samples from the IP102 dataset. This dataset 

comprises a number of characteristics that impact the 

success of image classification methods. First, due to their 

color and the similarity of the backdrop images, the insect 

in the photograph is challenging to identify. Second, 

because the morphology of an insect problem, such as a 

rice leaf roller, can vary significantly as it matures, the 

classes include photos depicting many stages of the 

insect’s life cycle; this makes identifying each insect 

problem extremely difficult. Third, many insects and 

diseases are classified as different but have very similar 

appearances. Fourth, this dataset is highly imbalanced; the 

least represented class (Erythroneura apicalis) has only 71 

images, while the most common class (Cicadellidae) has 

nearly 5740 images. Therefore, these are factors that 

generate numerous difficulties and obstacles for designing 

an efficient insect pest image classification algorithm on 

the IP102 dataset. 

Data augmentation: By changing inputs while 

preserving output labels, “data augmentation” is a typical 

strategy for boosting the amount and variety of labeled 

training sets. In the field of computer vision, image 

augmentation techniques have become a prominent 

implicit regularization tool for reducing overfitting in deep 

convolutional neural networks, and they are commonly 

employed to improve performance [33, 34]. In this work, 

several image data augmentation techniques including 

rotation, zoom, shifting, shearing, flipping, and cropping 

operators are applied to three insect pest datasets. Fig. 3 
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shows how the Xie24, D0, and IP102 datasets’ insect pest 

images of Cifuna locuples, Aulacophora indica, Red 

Spider, and Rice Leaf Roller are transformed into 

numerous images in the enhanced dataset using nine 

different operators.  

 

 
Figure 2. Image samples from a large-scale dataset for insect recognition, IP102. 

 

Figure 3. Data augmentation techniques with nine different operators are applied to some sample insect pest images of Cifuna Locuples from Xie24, 
Aulacophora Indica from D0; Red Spider, Rice Leaf Roller from IP102. 

B. Deep Convolutional Neural Network 

LeCun et al. [35] used a backpropagation approach to 

develop deep convolutional neural networks that can learn 

hierarchical features from data. The convolution layer, the 

pooling layer, and the fully connected layer are the three 

main components. To extract features from the image, the 

convolutional layer creates a set of filters of a predefined 

size (e.g., 3×3, 5×5, 7×7). An activation map is produced 

by applying each convolution operation to an image with 

each filter. Then this activation map is sent into the next 

layer. The pooling layer shrinks inputs to maintain 

distinguishing features while reducing model parameters. 

The output of CNNs is the FC layers, which use the 

extracted features from the convolutional layers to perform 
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classification tasks. In this work, many different CNN 

models were re-trained and evaluated on several 

benchmark insect pest datasets, consisting of Xie24, D0, 

and IP102. 

1) VGG 

VGG is a standard CNN architecture proposed by 

Simonyan and Zisserman [36]. The “deep” refers to the 

number of layers, with VGG-16 or VGG-19 having 16 or 

19 convolutional layers, respectively. Cutting-edge object 

recognition models are built on top of the VGG 

architecture. On a range of tasks and datasets, the VGGNet, 

which was constructed as a deep neural network, beats 

baselines. It’s also become one of the most widely used 

image recognition architectures. It has been shown that 

representation depth improves classification accuracy and 

that state-of-the-art results on the ImageNet challenge 

dataset may be reached using a traditional CNN 

architecture with much greater depth [32, 35]. This CNN 

architecture is frequently used in the identification of 

insects and pests in several research articles,  

such as [20, 23, 37]. 

2) ResNet 

ResNet [38] is a proposed network architecture for 

addressing the issue that some non-linear layers do not 

learn the activation maps of the image. ResNet is designed 

with a network model based on many stacked residual 

units. ResNet uses a network model that consists of several 

stacked residual units. These leftover units are employed 

as network building components. Convolution and pooling 

layers are examples of these units. This architecture 

employs a 3×3 filter with a 224×224 pixel input image. 

The special architecture of ResNet helps the 

backpropagation process avoid gradient degradation. 

ResNet has parallel shortcuts to regular convolution layers 

that will aid the network in understanding global image 

features. After numerous weight levels, a shortcut is 

utilized to add the previous layer’s input vector to the 

output of the following layer. These shortcuts allow the 

network to skip layers that are not useful, resulting in a 

more optimally tuned number of layers and making the 

training process faster. ResNet has been evaluated for 

insect pest classification in many studies [28, 39]. 

3) InceptionV3 

InceptionV3 [40] is a GoogleNet variation based on 

factoring 7×7 convolutions into two or three sequential 

layers of 3×3 convolutions. InceptionV3 is a deep neural 

network design from the Inception series that contains 

Label Smoothing, 7×7 convolutions, and an extra classifier 

to transfer labeled data closer to the bottom of the network, 

an improvement over previous versions. InceptionV3 is 

primarily concerned with using fewer computing resources 

by altering prior Inception designs. This network has been 

demonstrated to be more computationally efficient than 

VGG networks, both in terms of the amount of parameters 

it creates and the cost it incurs (memory and other 

resources). If the Inception network is altered, special care 

must be taken to avoid losing the computational 

improvements. Because of the uncertainty surrounding the 

new network’s efficiency, customizing an Inception 

network for a variety of use cases becomes a challenge. 

Several ways for enhancing the network in an InceptionV3 

model have been developed in order to release the 

constraints and make the model more adaptable. Among 

the techniques employed are factorized convolutions, 

regularization, dimension reduction, and parallelized 

computations. 

4) Xception 

The convolutional neural network architecture Xception 

[41] only utilizes depth-wise separable convolution layers. 

An inception network is a deep convolution network with 

71 layers and recurrent module designs called inception 

modules. It’s possible that the network comes pre-loaded 

with a version that has been trained on over a million 

photographs from the ImageNet dataset [32]. Over a 

thousand different item categories, such as keyboards, 

mice, pens, and other animals, may be classified using the 

trained network. As a consequence, the network has 

learned to detect a variety of rich visual features in images. 

Images having a resolution of 299×299 pixels are accepted 

by the network. In general, each CNN layer is thought to 

extract some feature; hence, stacking these layers one on 

top of the other is not a good idea. Deep networks are prone 

to overfitting, and chaining many convolutional 

procedures together raises the training cost. Another 

problem is that each layer type draws a different type of 

information, making it difficult to determine which 

transformation (kernels) provides the most important 

information to the CNN. 

5) DenseNet 

DenseNet [42] is a high-performance, huge 

convolutional network with each layer connected to the 

ones before it. It recommends connecting any two layers 

with the same feature map dimension directly. DenseNet 

may expand to hundreds of layers without causing any 

problems during the optimization phase. In experiments, 

DenseNet usually has stable accuracy when the number of 

parameters is increasing and there is no sign of 

performance degradation or overfitting during training. 

Even though it has fewer parameters and a lower 

computational overhead than other CNN models, 

DenseNet consistently outperforms them on several 

benchmark datasets. This architecture allows gradients to 

be varied and features to be reused effectively. In several 

research studies, DenseNet has demonstrated high 

performance in insect pest and disease image  

classification [12, 39]. 

6) MobileNetV2 

MobileNetV2 [43] is a mobile-friendly convolutional 

neural network architecture. It’s based on an upturned 

residual architecture with residual bottleneck levels 

included. The middle expanding layer employs basic 

depth-wise convolutions to select features as a source of 

nonlinearity. MobileNetV2’s architecture includes a fully 

convolutional layer with 32 filters, which is followed by 

19 bottleneck layers. MobileNetV2 beats several cutting-

edge real-time detectors on the COCO dataset in terms of 

reliability and computational cost. In comparison to 

YOLOv2 [44], the MobileNetV2 architecture requires 20 

fewer calculations and 10 fewer parameters when used 

with the SSDLite detection module. This CNN has been 
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used in several studies of insect pest image  

classification [45, 46]. 

7) EfficientNet  

EfficientNet [29] is a CNN design and scaling strategy 

that uniformly scales all depth, breadth, and resolution 

parameters using a compound coefficient. The researchers 

of EfficientNet argue that to achieve better accuracy, the 

network can be enlarged by making each layer wider, by 

ensuring that the input image has a higher resolution, or by 

a combination of all these factors. Unlike normal practice, 

which modifies these elements at random, the EfficientNet 

scaling technique uses a set of preset scaling coefficients 

to reliably enhance network width, depth, and resolution. 

Inspired by Tan et al. [47], they have developed the 

baseline EfficientNet-B0 network using a multi-objective 

neural architecture search that maximizes both precision 

and FLOPS, and then expanded it to create the 

EfficientNets family of models (from EfficientNet-B0 to 

EfficientNet-B7). The results of many experiments have 

shown that EfficientNets achieve higher efficiency and 

accuracy than other CNNs. Furthermore, EfficientNet has 

decreased the number of network training parameters 

dramatically. The experiments in [29] have also 

demonstrated the effectiveness of this method when 

extended to MobileNet and ResNet. On ImageNet, 

EfficientNet-B7 achieved the highest top-1 accuracy of 

84.3%, but the network size is 8.4 times smaller and 6.1 

times quicker than the other CNNs. EfficientNets also 

obtained 91.7% accuracy on the CIFAR-100 dataset and 

98.8% accuracy on the Flowers dataset. In this research, 

we study an effective fine-tuning method to enhance the 

classification performance of EfficientNets on the three 

insect pest image datasets as presented in Section A, 

especially on the large-scale dataset IP102. 

 

 

Figure 4. Class Activation Map of CNN models with different methods — The fine-tuning method allows the models (last rows) to focus on 
interesting areas of insect pest objects. 

 
Figure 5. Fine-tunning EfficientNet-B5 model for extracting deep image features. Removing the FC layers from the network model and instead 

returning the final POOL layer (in the red dashed box). This output contains the extracted features. 

C. Visual Explanations from Deep Networks via Class 

Activation Map 

While deep learning has enabled outstanding accuracy 

in image classification, object recognition, and image 

segmentation, one of its most major issues is model 

interpretability, which is a critical component in model 

understanding and debugging. Deep learning approaches 

are treated as “black boxes”, with no meaningful 

understanding of 1) where the network is “looking” in the 

input picture, 2) which series of neurons were engaged in 

the forward-pass during inference or prediction, and 3) 

how the network reached its final result. Therefore, we 

need a method to debug network models and visually 

confirm that they are “looking” and “activating” at the 

relevant spots in an image to guarantee that the model is 
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operating appropriately. Zhou et al. [48] have introduced a 

universal approach for CNNs with global average pooling, 

termed Class Activation Mapping (CAM), to assist deep 

learning researchers in debugging their network models. 

This method allows trained CNNs to locate objects without 

the use of bounding box annotations. In order to emphasize 

the distinguishable object portions that the CNNs were 

able to identify, CAM projects class scores onto each 

image. We can visually confirm where our network is 

looking by using CAM, ensuring that it is looking for and 

activating around the appropriate patterns in the image. 

The CNN models used to extract image characteristics 

must be carefully chosen since they have a considerable 

influence on the success of insect image categorization. 

Therefore, in this study, CAM visualizations of several 

CNNs and their fine-tuning models are evaluated for insect 

classification tasks. After that, the most effective CNN 

models are chosen for the insect image classification tasks. 

As illustrated in Fig. 4, the EfficientNet-B5 model 

provides the best-looking insect pest objects from the 

image of the IP102 validation dataset at random. In 

addition, versions of EfficientNet-B0 to EfficientNet-B5 

with our fine-tuning strategy (last rows in Fig. 4) have 

concentrated on more interesting areas with more object 

information, whereas other CNN models either “look” at a 

lack of object information or are unable to “look” at 

relevant parts of objects in the image. 

D. Transfer Learning 

Transfer learning [49] is a strategy that leverages 

previously learned information as a springboard for 

completing a separate but similar task. The fundamental 

goal is to create a learning curve that has a greater starting 

point, slope, and asymptote. Conventional machine 

learning methods that have been around for a long time 

were created to solve specific challenges. Transfer 

learning, however, is a deep learning technique that 

requires first training a model on a single dataset. The 

layers of the learned model are then reused in a new model 

that is trained on another dataset. As a result, this strategy 

can reduce the training time for a CNN. In this study, we 

apply robust, discriminative filters developed by cutting-

edge ImageNet CNN models to detect insect images on 

which the models have never been trained. Data similarity 

and data volume are important elements to consider while 

setting the fine-tuning parameters for this approach. The 

transfer learning approach was employed through the fine-

tuning of EfficientNet models in earlier CNN layers, and 

then these fine-tuned models were used to extract image 

features. Following the guidelines in Yosinski et al.’s  

work [49], and since the three insect image datasets 

described in Section A are tiny and distinct from the 

original ImageNet dataset. As a result, we keep some of 

the earlier layers fixed in the first step of training and fine-

tune a few of the network’s higher-level components. 

However, in the second pass of training, certain previous 

layers are unfrozen, and then backpropagation is utilized 

to fine-tune the weights of the pretrained network. This is 

based on the belief that the early layers of a CNN reflect 

more low-level characteristics that should be useful for a 

variety of tasks, however the successive levels of the CNN 

become more relevant to the specific information of the 

classes available in the original dataset. Therefore, the 

strong discriminative features learned by the pre-trained 

CNN models may still be used in this manner. Fig. 5 

presents the architecture of the fine-tuned EfficientNet-B5 

model for extracting deep image features from the datasets, 

which treats pre-trained networks as feature extractors. 

There are many layers in EfficientNet-B5 that are 

connected to each other. EfficientNet-B5 architecture has 

seven blocks, from block 1 to block 7, and each block has 

three modules. These modules are actually connected and 

repeated. Conv2D, Depthwise Conv2D, batch 

normalization, activation, global average pooling, 

rescaling, and zero padding are among the layers included. 

The top activation function in the EfficientNet architecture 

defines how the weighted sum of the input is transformed 

into an output from a node or nodes in the top layer of the 

network. When performing deep learning feature 

extraction, the pre-trained network is treated as an arbitrary 

feature extractor, allowing the input image to propagate 

forward, stopping at a pre-specified layer (the final POOL 

layer in the red dashed box), and taking the outputs of that 

layer as our features, with 2048 dimensions for every 

single feature. 

E. Softmax Classifier Versus Power Mean SVM 

1) Softmax classifier 

Cross-entropy loss is used by the softmax classifier. 

Before applying the cross-entropy loss, the softmax 

classifier uses the softmax function to transform raw class 

scores into normalized positive values that add to one. 

When using deep learning algorithms, the softmax or 1-of-

𝐾 encoding is used at the top of classification tasks. For 

example, if there are 10 classes, the softmax layer 

comprises ten nodes labeled by 𝑝𝑖 , where 𝑖 = 1, ⋯ ,10 . 

The notation 𝑝𝑖  defines a gaussian distribution, therefore 

∑ 𝑝𝑖 = 110
𝑖 . Assuming that 𝑊 is the weight linking the last 

layer to the softmax layer and that ℎ denotes the activation 

of the nodes in the last layer, the total input into the 

softmax layer is given by 𝑎 (Eq. (1)). 
 

𝑎𝑖 = ∑ ℎ𝑘𝑊𝑘𝑖

𝑘

 (1) 

 

Then we have: 
 

𝑝𝑖 =
𝑒𝑥𝑝(𝑎𝑖)

∑ 𝑒𝑥𝑝(𝑎𝑗)10
𝑗

 (2) 

 

The predicted class 𝑖 is given by the formula: 
 

𝑖̂ = arg max
𝑖

𝑝𝑖 = arg max
𝑖

𝑎𝑖 (3) 

 

2) Power mean support vector machine 

Consider a linear binary classification on 𝕋 =
{(𝑥𝑖 , 𝑦𝑖)}𝑖=1

𝑛 , 𝑥𝑖 ∈ ℝ𝑑 , 𝑦𝑖 ∈  {+1, −1}  where 𝑛  is the 

quantity of training samples. The goal of SVM is to 

determine the optimal separating surface that is the farthest 

away from class 𝑦 =  +1 and class y =  −1. It minimizes 

error while optimizing the distance between each class’s 
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supporting planes. This is accomplished by the solution of 

the dual optimization problem (Eq. (4)). 
 

min
𝛼∈ℝn

ƒ(𝛼) =
1
2

𝛼T𝚀𝛼 −  eT𝛼

s. t. {
𝑦𝑇𝛼 =  0

0 ≤ 𝛼i ≤ C, ∀i =  1, 2, ⋯ , 𝑛
  
 (4) 

 

where 𝑒 = [1, ⋯ ,1]𝑛
𝑇  , 𝐶 is a positive constant used to tune 

the margin and the error, 𝛼 = (𝛼1, ⋯ , 𝛼𝑛)  are the 

Lagrange multipliers, 𝚀  is an 𝑛 × 𝑛  symmetric matrix, 

where 𝚀𝑖𝑗 = 𝑦𝑖𝑦𝑗𝐾⟨𝑥𝑖 , 𝑥𝑗⟩ , and 𝐾⟨𝑥𝑖 , 𝑥𝑗⟩  is the kernel 

function. 

The ideal solution of Eq. (4) determines the Support 

Vectors (SV) (for which 𝛼𝑖 > 0 ), and the separation 

surface and scalar 𝑏  are subsequently defined by the 

support vectors. The following Eq. (5) is used to classify a 

new data point 𝑥. 

 

𝑠𝑖𝑔𝑛 (∑ 𝑦𝑖𝛼𝑖𝐾〈𝑥𝑖 , 𝑥𝑗〉

⋕𝑆𝑉

𝑖=1

− 𝑏) (5) 

 

PmSVM [30] proposed that the Power Mean Kernel 

𝑀𝑝⟨𝑥𝑖 , 𝑥𝑗⟩  ( 𝑥𝑖  and 𝑥𝑗 ∈ ℝ+
𝑑 ), as described in Eq. (6), 

substitutes the kernel function 𝐾⟨𝑥𝑖 , 𝑥𝑗⟩ in Eqs. (4) and (5), 

which is well recognized as a generic form of various 

additive kernels. 
 

𝑀𝑝⟨𝑥𝑖 , 𝑥𝑗⟩ = ∑(𝑥𝑖,𝑧
𝑝

+ 𝑥𝑗,𝑧
𝑝

)
1
𝑝

𝑑

𝑧=1

 (6) 

 

where 𝑝 ∈ ℝ  is a constant. 𝜒2  kernel (𝑝 = −1) : 

𝑀−1(𝑥, 𝑦) = 𝐾𝜒2(𝑥, 𝑦) =
2𝑥𝑦

𝑥+𝑦
, Histogram intersection 

kernel (𝑝 = −∞) : 𝑀−∞ = 𝐾𝐻𝐼(𝑥, 𝑦) =

𝑚𝑖𝑛(𝑥, 𝑦), Hellinger kernel (𝑝 = 0): 𝑀0(𝑥, 𝑦) = √𝑥𝑦. 

The research in [50] has examined the support vector 

machine as a classification alternative to the softmax 

function. According to the conducted research, using SVM 

in an artificial neural network design delivers better results 

than using the traditional softmax function. While the 

softmax function reduces cross-entropy or maximizes log-

likelihood, SVM only finds the greatest hyperplane 

between data points of different classes. In this research, a 

hybrid model that incorporates CNNs and SVM is 

proposed to classify insect images. In which EfficientNet’s 

softmax classifier has been replaced by the PmSVM 

classifier. We specifically assess the non-linear classifier 

PmSVM while classifying image features extracted from 

EfficientNet models. 

III. RESULTS AND DISCUSSION 

A. Experimental Setup and Training 

All numerical evaluation was carried out on an Ubuntu-

based workstation with an Intel Core (TM) i7-8565U CPU 

running at 1.80 GHz and 1.99 GHz and 8 GB of RAM. The 

Keras deep learning framework and Python programming 

were used for all of the implementations. All images are 

converted from RGB (Red Green Blue) to BGR (Blue 

Green Red), then each color channel is normalized to zero-

centered form with batch or layer normalization algorithms. 

After that, all of the input images were scaled to the 

standard size that each network model accepts. 

Accordingly, images were set to 224×224 pixels for 

MobileNetV2, VGG16, ResNet-50, DenseNet-121, 

EfficientNet-B0; 229×229 pixels for InceptionV3, 

Xception; 240×240 pixels for EfficientNet-B1, 260×260 

pixels for EfficientNet-B2, 300×300 pixels for 

EfficientNet-B3, 380×380 pixels for EfficientNet-B4, 

456×456 pixels for EfficientNet-B5, 528×528 pixels for 

EfficientNet-B6, and 600×600 pixels for EfficientNet-B7.  

To build a reliable CNN capable of accurately 

categorizing images, several parameters must be adjusted. 

The most essential parameter is batch size, which relates 

to the number of samples utilized to learn a CNN model. 

The batch size is the quantity of data necessary for 

backpropagation’s weight and bias updates. This value 

aids learning by optimizing network convergence speeds 

and allowing for precise prediction. The effect of batch 

size on CNN training is examined in further depth in 

Kandel and Castelli’s work [51]. Their research found that 

a larger batch size does not always imply higher 

classification performance. In this investigation, the batch 

size was set to 32, which is the maximum amount allowed 

by computer resources across all models. The other 

parameters of the networks are set as follows: the gradient 

degradation factor is 0.9, the squared gradient degradation 

factor is 0.999, and the loss function is categorical cross-

entropy. The optimizer is the Adam optimization 

algorithm for EfficientNets. 

In the training step, transfer learning methods were used 

to retrain all CNN models. To speed up learning, pre-

trained network models on the ImageNet dataset were used 

to fine-tune CNN models to detect and categorize all 

categories in the datasets. There are over 1.2 million 

images and 1000 distinct classifications in the ImageNet. 

Therefore, the final FC layers of all models with 1000 

outputs were altered to 24, 40, and 102 outputs in 

accordance with Xie24 (24 classes), D0 (40 classes), and 

IP102 (102 classes). The early-stop technique is used 

during the training phase if the validation accuracy does 

not increase after three epochs. The successful models’ 

parameters were preserved for testing at the end of the 

training process. The number of FC layers in all models 

was maintained as uniformly as possible in order to better 

understand and compare their feature extraction 

performance. The total number of validation photos 

divided by the batch size was used to validate all models, 

and each model was trained in two rounds: 1) The first 

round is called the “warm-up” process; this starts training 

the networks but only trains the FC layer heads; As shown 

in the left of Fig. 6, all earlier layers in the network (blue 

color) are set as untrainable; the learning rate is set at 0.01, 

and the number of epochs is set at 10 for all network 

models; 2) In the second round, according to the network 

architecture, some of the earlier convolutional layers 

(green color) are unfrozen to perform the second training 
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phase (as shown in the right of Fig. 6) with a smaller 

learning rate of 0.0001 and the number of epochs set at 15 

for D0, Xie24, and 30 for IP102. Online data augmentation 

methods are utilized to improve classification performance 

and minimize overfitting during training. 

 

 

Figure 6. The process of training the CNN models in two rounds. 

In the classification step, SVM models are trained with 

linear and non-linear kernels on the extracted image 

features datasets. All multi-class classification models 

were implemented by using a one-versus-all approach. 

Then the performance of the PmSVM classifier on the 

insect datasets is compared with that of LIBLINEAR [52] 

and LIBSVM [53] in terms of classification accuracy. 

LIBLINEAR is configured with default parameters and 

𝐶 = 1. LIBSVM is trained with an RBF Kernel. A grid 

parameter search method is applied to optimize the 

LIBSVM parameters (C, gamma, and degree) using cross 

validation. PmSVM is trained with the parameters as 

shown in [30], that is 𝑝 = −1 (equivalent to 𝜒2  kernel) 

and 𝐶 = 0.01. 

B. Evaluation Metrics  

The most common method to evaluate the performance 

of multi-class object classification is to calculate Average 

Precision (AP) at Eq. (7), Average Recall (AR) at Eq. (8), 

Average F1-score (AF1) at Eq. (9), and Accuracy (A) at 

Eq. (10). Precision measures how accurate our model is by 

calculating the fraction of correctly classified instances or 

samples among the ones classified as positives. Recall 

indicates how well the model recalls classes from images; 

it is a metric that quantifies the number of correct positive 

predictions made out of all possible positive predictions. 

The F1-score combines the precision and recall of a 

classifier into a single metric by taking their harmonic 

mean. It is primarily used to compare the performance of 

two classifiers. Classification accuracy is a metric that 

summarizes the performance of a classification model as 

the number of correct predictions divided by the total 

number of predictions. The metrics given between Eqs. (7) 

and (10) are generated utilizing indices such as True 

Positive (TP), True Negative (TN), False Positive (FP), 

and False Negative (FN) based on the values in the 

confusion matrix produced by such classifications. The 

number of properly categorized images in each class is 

represented by TP, whereas the total number of properly 

identified images in all other classes save the relevant class 

is represented by TN. FN stands for the number of photos 

in the relevant class that were incorrectly classified. The 

number of incorrectly classified images in all other classes 

save the relevant one is given by FP. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7a) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐴𝑃) =
1

#𝑐𝑙𝑎𝑠𝑠𝑒𝑠
∑ 𝑃

#𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑘=1

 (7b) 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8a) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙(𝐴𝑅) =
1

#𝑐𝑙𝑎𝑠𝑠𝑒𝑠
∑ 𝑅

#𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑘=1

 (8b) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒(𝐹1) = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
 (9a) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹1 − 𝑠𝑐𝑜𝑟𝑒(𝐴𝐹1) =
1

#𝑐𝑙𝑎𝑠𝑠𝑒𝑠
∑ 𝐹1

#𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑘=1

 (9b) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (10) 

 

C. Insect Classification Results 

MobileNetV2, VGG16, ResNet-50, DenseNet-121, 

InceptionV3, Xception, and eight different models of 

EfficientNets from B0 to B7 have been implemented to 

evaluate their classification performance on the three 

datasets as described in Section A. Figs. 7 and 8 present 

the accuracy and loss curves of the warm-up and unfrozen 

processes of the EfficientNet-B0 model for training and 

validation datasets of Xie24. Figs. 9 and 10 demonstrate 

the accuracy and loss curves of the warm-up and unfrozen 

processes of the EfficientNet-B0 model for training and 

validation datasets of D0. Figs. 11 and 12 show the 

accuracy and loss curves of the warm-up and unfrozen 

processes of the EfficientNet-B5 model for training and 

validation datasets of IP102. Tables II and III summarize 

the performance of network models on the Xie24 and D0 

datasets. Table IV summarizes the performance for each 

network model on the IP102 dataset. The notation “-” 

means the authors did not report the results. Tables II–IV’s 

bolded values show instances where the best value for the 

applicable performance criterion is achieved. 

D. Discussion 

As described in Section A, the insect pest image datasets 

are small and highly different from the ImageNet dataset, 

and the training process of network models may suffer 

from “early overfitting”. Therefore, the warm-up 

processes are employed to reduce the primacy effects of 

the early training examples. This allows the networks to 

gradually adapt to the training data, allowing adaptive 

optimizers to calculate the correct statistics of the gradients. 

Figs. 7–12 presents the training loss and accuracy of 

EfficientNet for B0 and B5 on three insect datasets. As 

shown in Figs. 7, 9, and 11, the accuracy of EfficientNet 
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models training and validation gradually increases over the 

warm-up phase at a learning rate of 0.01. However, after 

10 epochs, the classification accuracy of CNN models is 

not improving. Thus, the unfrozen process of training the 

networks has started with a much smaller learning rate of 

0.0001. As could be seen from Figs. 8, 10, and 12, the 

curve of training and validation accuracy of the 

EfficientNet models became more stable and achieved 

high classification performance after a few epochs on 

several insect datasets. For instance, on the IP102 dataset, 

it took 30 epochs to obtain the best classification accuracy. 

 

Figure 7. EfficientNet-B0 accuracy/loss curves for the train and test 
datasets of Xie24 during the warm-up phase. 

 
Figure 8. EfficientNet-B0 accuracy/loss curves for the train and test 

datasets of Xie24 during the unfrozen process. 

 

Figure 9. EfficientNet-B0 accuracy/loss curves for the train and test 
datasets of D0 during the warm-up phase. 

 

Figure 10. EfficientNet-B0 accuracy/loss curves for the train and test 
datasets of D0 during the unfrozen process. 

 

Figure 11. EfficientNet-B5 accuracy/loss curves for the train and test 
datasets of IP102 during the warm-up phase. 

 

Figure 12. EfficientNet-B5 accuracy/loss curves for the train and test 
datasets of IP102 during the unfrozen process. 
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TABLE II. THE CLASSIFICATION PERFORMANCE (%) OF METHODS ON THE XIE24 DATASET 

Methods Image size Accuracy Avg. Precision Avg. Recall Avg. F1-score 

K. Thenmozhi et al. [21]  227×227 97.47 - - - 

DenseNet-121 224×224 90.00 90.00 90.00 90.00 

ResNet-50  224×224 98.00 98.00 98.00 98.00 

EfficientNet-B0 224×224 99.00 99.00 99.00 99.00 

TABLE III. THE CLASSIFICATION PERFORMANCE (%) OF METHODS ON THE D0 DATASET 

Methods Image size Accuracy Avg. Precision Avg. Recall Avg. F1-score 

E. Ayan et al. [28] - 98.81 98.88 98.81 98.81 

DenseNet-121 224×224 85.00 86.00 85.00 85.00 

ResNet-50 224×224 93.00 94.00 93.00 93.00 

EfficientNet-B0 224×224 99.00 99.00 99.00 99.00 

TABLE IV. THE CLASSIFICATION PERFORMANCE (%) OF METHODS ON THE IP102 DATASET. THE ASTERISK (*) DENOTES THE EFFICIENTNET-B0 IS 

TRAINED FROM SCRATCH WITH 50 EPOCHS 

Methods Params Image size Accuracy Avg. 

Precision 

Avg. 

Recall 

Avg.  

F1-score 

Setiawan et al [18] 3.5M 224×224 71.32 - - - 

Ayan et al. [28] - - 67.13 67.17 67.13 65.76 

FR-ResNets [26] 31M 224×224 55.24 - - 54.18 

AlexNet 57M 256×256 49.41 - - 48.22 

DenseNet-121 8M 224×224 54.59 - - 52.97 

ResNet-50 26M 224×224 54.19 54.19 54.19 48.22 

ResNet-101 45M 224×224 53.07 - - 52.00 

GoogleNet 10M 224×224 52.17 - - 51.24 

VGG16 138M 224×224 51.84 - - 51.20 

MobileNetV2 3.5M 224×224 51.00    

EfficientNet-B0 (*) 5M 224×224 51.00 54.00 51.00 49.00 

EfficientNet-B0 5M 224×224 67.00 67.00 67.00 67.00 

EfficientNet-B1 8M 240×240 69.00 69.00 69.00 69.00 

EfficientNet-B2 9M 260×260 69.00 69.00 69.00 69.00 

EfficientNet-B3 12M 300×300 70.00 70.00 70.00 70.00 

EfficientNet-B4 (Softmax) 19M 380×380 71.00 71.00 71.00 70.00 

EfficientNet-B4+LIBSVM 19M 380×380 49.85 - - - 

EfficientNet-B4+LIBLINEAR 19M 380×380 69.31 - - - 

EfficientNet-B4+PmSVM 19M 380×380 71.84 - - - 

EfficientNet-B5 (Softmax) 31M 456×456 72.00 71.00 72.00 71.00 

EfficientNet-B5+LIBSVM 31M 456×456 46.35 - - - 

EfficientNet-B5+LIBLINEAR 31M 456×456 70.28 - - - 

EfficientNet-B5+PmSVM 31M 456×456 72.31 - - - 

EfficientNet-B6 43M 528×528 67.00 68.00 67.00 67.00 

EfficientNet-B7 66M 600×600 68.00 69.00 68.00 68.00 

 

Our experimental results have shown that the 

combination of fine-tuning EfficientNet and PmSVM has 

provided superior classification accuracy compared to 

previous methods for all three insect image datasets. On 

the Xie24 dataset, all models produced average accuracy 

values that were quite similar to one another, as shown in 

Table II. The EfficientNet-B0 showed an improved 

accuracy of 99% compared to the method by Thenmozhi 

et al. [21] with 97.47% and other CNN models (DenseNet-

121 with 90% and ResNet-50 with 98%). On the D0 

dataset, EfficientNet-B0 also obtains the highest accuracy 

of 99% compared to the methods of Ayan et al. [28] with 

98.81%, DenseNet-121 with 85%, and ResNet-50 with 

93% (Table III). 

On the IP102 dataset, Table IV shows that EfficientNet-

B5 with our fine-tuning methods provided superior 

performance than other methods, with a classification 

accuracy of up to 72% with the softmax classifier. We also 
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trained the EfficientNet-B0 (*) from scratch; however, the 

performance is no better than transfer learning methods, 

despite having up to 50 epoch iterations. As demonstrated 

in Table IV, EfficientNet-B0 (*) achieved a classification 

accuracy of 51%, which is not higher than EfficientNet-

B0’s 67%. This result shows that training the network from 

the ground up is inefficient in terms of training time and 

classification performance. We have also evaluated 

EfficientNet-B6 and EfficientNet-B7, but the accuracy did 

not increase despite the fact that the network training 

parameters were quite large (43M and 66M parameters, as 

shown in Table IV). This phenomenon shows that larger 

EfficientNet variants may not always imply better 

performance, especially for applications with less data or 

classes. The bigger the EfficientNet variation employed in 

this scenario, the more difficult it is to change the netwoks’ 

hyperparameters. On the other hand, the combination of 

fine-tuning EfficientNet-B5 with PmSVM (EfficientNet-

B5+PmSVM) has outperformed other methods in terms of 

classification accuracy. As shown in Table IV, our 

proposed method achieved the highest accuracy with  

72.31% for IP102, an improvement of more than 0.84% in 

the case of EfficientNet-B4 and more than 0.31% in the 

case of EfficientNet-B5 with the softmax classifier. And 

then EfficientNet-B5+PmSVM outperformed 0.99% over 

the method of Setiawan et al. [18] with 71.32%, 5.18% 

over the method of Ayan et al. [28] with 67.13%, FR-

ResNets [26] with 55.24%, and other CNN models 

(DenseNet-121 with 54.59%, ResNet-101 with 53.07%). 

We have evaluated the combination of fine-tuning 

EfficientNet-B5 with LIBSVM and LIBLINEAR, but the 

accuracy was 46.35% and 70.28%, respectively (Table IV), 

not higher than fine-tuning EfficientNet-B5 with the 

softmax classifier and its combination with PmSVM.  

It is worth noting that EfficientNet-B5 has fewer 

parameters (31M) than other CNN models, resulting in 

lower processing costs during the training and testing 

phases. This demonstrates that our proposed method, 

which combines the fine-tuning of EfficientNet-B5 and 

PmSVM, has a high capacity for scaling up to a variety of 

large-scale insect datasets. 

IV. CONCLUSION  

An automatic insect classification system plays a vital 

role in developing smart agriculture. This research has 

proposed an efficient method based on fine-tuning 

EfficientNets models and their combination with PmSVM 

to classify insect images with complex backgrounds and at 

different stages of their life cycle. Specifically, eight 

EfficientNets models have been evaluated on several 

different benchmark insect image datasets, and the best 

model was picked for extracting the image features. All 

models were trained over a small number of epochs, but 

they achieved significantly high accuracy on several 

datasets for all four criteria: precision, recall, accuracy, and 

F1-score. Experiments have shown that the combination of 

fine-tuning EfficientNet-B5 and PmSVM delivers the best 

performance at the lowest cost during the training and 

testing phases. It has established a new state-of-the-art 

classification performance of 72.31% on a large-scale 

insect dataset, IP102. Moreover, the small size of the 

EfficientNet-B5 model makes our proposed method easy 

to apply to several embedded control systems for 

autonomous machines, such as drones and robots utilized 

in smart agriculture. However, when the extracted feature 

dataset of network models is even larger and cannot be 

kept in the main memory of a computer, PmSVM 

encounters a problem during the classification stage. 

Therefore, in the near future, we may explore the method 

as proposed by Doan et al. [54]. They avoid loading the 

entire dataset into main memory by dividing it into 

manageable chunks of rows saved in separate files, instead 

loading one chunk of rows into main memory at a time for 

learning tasks. In addition, the current largest insect dataset, 

IP102, is still very small when compared to the number of 

millions of living insect species as described in [1]. 

Therefore, creating an insect image dataset with a larger 

number of classes and images for an automatic insect 

image classification system remains a major challenge that 

requires more contributions from computer vision 

researchers. 
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