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Abstract—In recent years, there have been many studies 

with different order reduction algorithms to solve model 

order reduction problems. However, most of the proposed 

algorithms are mainly applicable to stable linear systems. In 

practical applications, many problems require order 

reduction of an unstable continuous system. Therefore, 

order reduction algorithms need to be able to reduce the 

order of an unstable continuous system. This paper 

introduces two balanced truncation algorithms based on 

mapping applied to unstable continuous systems. By flexibly 

using the continuous-continuous mapping to transform an 

unstable continuous system to a stable continuous one and 

vice versa, the first balanced truncation algorithm can 

reduce the order of the unstable continuous system. The 

second balanced truncation algorithm flexibly applies 

continuous-discrete mapping to convert an unstable 

continuous system to a stable discrete system and vice versa 

to help the algorithm reduce the order of the unstable 

continuous system. Applying two algorithms to reduce the 

order of the 15th-order unstable system shows that the 5th 

and 4th-order reduced systems can replace the 15th-order 

unstable system. The results have demonstrated the 

correctness of the algorithms and opened the possibility of 

applying algorithms in practice.  

Keywords—model order reduction, balanced truncation 

algorithm, continuous-continuous mapping, continuous-

discontinuous mapping 

I. INTRODUCTION

Since the model reduction problem is proposed, 

various algorithms have been proposed to deal with the 

order reduction problem in different approaches. The 

most popular algorithm is the balanced truncation 

algorithm proposed by Moore [1]. The ability to preserve 

the stability of the system of the method in [1] was 

proven in [2]. The formula to calculate the error limit 

after the model reduction is performed was determined in 

[3, 4]. The balanced truncation algorithm is implemented 

by applying equivalent conditions to the simultaneous 

diagonalization of the Gramian controllable matrix and 

Gramian observable matrix. The system dynamic in the 

open-loop form is observed. By the equivalence of two 
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diagonal matrices, the original system described in the 

random base system can be converted to the equivalent 

system. The equivalent system is described in the 

coordinate system in the balanced internal space. From 

the balanced space, the low order model can be obtained 

by eliminating the eigenvalues that have little distribution 

of the system dynamic. The advantage of the algorithm 

proposed by Moore [1] is that the error of the model 

reduction is low. In contrast, this algorithm is only 

applied to the asymptotic stable linear system. The reason 

is that the original system needs to be asymptotic stable 

to determine the Granmian control matrix and Granmian 

observed matrix. In practice, however, there can be stable 

high order linear systems [5] and unstable high order 

linear systems [6−12]. Therefore, order reduction 

algorithms in general and balanced truncation algorithms, 

in particular, need to be able to reduce the order of both 

stable and unstable linear systems. 

To apply the balanced truncation algorithm proposed 

by Moore [1], different approaches have been proposed 

such as projection-free approximate [13−15], low-rank 

Gramian approximation [16], LQG balanced method [17], 

balanced truncation method proposed by Zhou [18, 19], 

balanced truncation method proposed by  

Zilochian [18, 20], balanced truncation method applying 

for the discrete system proposed by Boess [21, 22]. 

In particular, we are most interested in Zilochian’s 

balanced truncation method [17−20] applied to unstable 

continuous systems and Boess’s balanced truncation 

method [21, 22] applied to unstable discrete-time systems. 

As analyzed above, Moore’s balanced truncation 

algorithm [1] is built based on the controllability Gramian 

and the observability Gramian of the system. To 

determine these two Gramians, we need to solve the 

Lyapunov equations. The condition for the Lyapunov 

equations to have a solution is that the system is stable. 

Therefore, when a system is unstable, Lyapunov 

equations cannot be solved, which means that the 

balanced truncation algorithm [1] cannot be applied to the 

unstable system. To address this problem, Zilochian 

proposed the idea of using a continuous-continuous 

mapping (displacement of the origin) to convert an 

unstable continuous system to a stable continuous 

system [20] so that balanced truncation algorithms can be 

applied. Performing order reduction of a stable 
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continuous system according to the balanced truncation 

algorithm, we obtain a reduced-order stable continuous 

system. Finally, an inverse mapping (inverse origin 

displacement) is performed to transform the reduced-

order stable continuous system to the reduced-order 

unstable continuous system, the same as the original 

unstable continuous system. Thus, by flexibly using the 

continuous-continuous mapping to convert a stable 

continuous system into an unstable continuous system 

and vice versa, Zilochian’s algorithm [20] can reduce the 

order of unstable systems according to the balanced 

truncation algorithm. 

Applying the balanced truncation algorithm to an 

unstable discrete-time system has the same problem as an 

unstable continuous system, i.e., Lyapunov equations 

cannot be solved. Therefore, Boess [21, 22] proposed a 

discrete-discrete mapping (origin displacement) to 

convert an unstable discrete-time system to a stable 

discrete-time system to apply the balanced truncation 

algorithm. Then, by reducing the order of the stable 

discrete-time system according to the balanced truncation 

algorithm, we get the reduced-order stable discrete-time 

system. Finally, an inverse mapping (inverse origin 

displacement) is performed to transform the stable 

continuous reduced-order system to the unstable 

continuous reduced-order system, the same as the original 

unstable continuous system. Thus, similar to Zilochian’s 

algorithm [20], Boess’s algorithm [21, 22] also flexibly 

uses discrete-discrete mapping to help the balanced 

truncation algorithm reduce the order of the unstable 

discrete-time system. 

Meanwhile, in mathematics, there is a continuous-

discrete mapping, which is often applied to convert a 

continuous system to a discrete-time system and vice 

versa in some electrical problems. However, according to 

the original definition of this mapping, the properties of 

the system after performing the continuous-discrete 

mapping are still the same, i.e., if the continuous system 

is stable, the discrete-time system is also stable, and if the 

continuous system is unstable, the discrete-time system is 

also unstable. From the continuous-discrete mapping and 

the idea of two algorithms (Zilochian [20],  

Boess [21, 22]), Minh et al. developed a new continuous-

discrete mapping to perform two tasks simultaneously: 

converting an unstable continuous system into an 

unstable discrete system, and converting an unstable 

discrete system into a stable discrete system [23]. Thus, 

an unstable continuous system after performing the new 

continuous-discrete mapping will be eligible to apply the 

balanced truncation algorithm. By flexibly using 

continuous-discrete mapping, Minh et al. has made the 

balanced truncation algorithm applicable to unstable 

continuous systems [23]. From the ideas of two above 

algorithms and the continuous-discrete mapping, this 

paper introduces in detail Zilochian’s balanced truncation 

algorithm [20] and the balanced truncation algorithm 

based on continuous-discrete mapping [23]. Illustrative 

examples are given to verify the efficiency of the 

algorithms. 

The layout of the paper is presented as follows. Section 

II introduces new concepts of a stable continuous system 

and a stable discrete system. This section also introduces 

a balanced truncation algorithm based on continuous-

continuous mapping, error evaluation, and complete 

proof. Then, a balanced truncation algorithm based on the 

continuous-discrete mapping is presented in Section III. 

Illustrative examples are given in part IV. Finally, the 

conclusion is drawn in Section V. 

II. BALANCED TRUNCATION ALGORITHM BASED ON THE 

CONTINUOUS-DISCRETE MAPPING 

A. The Continuous -Stable System 

( ) ( ) ( )

( ) ( ) ( )

c c

c c

x t x t t

y t x t t

= +

= +

A B u

C D u
   (1) 

where:  

( ) x xm kx kxm, , , n n n n

c c c c    A B C D

( ) ,  ( ) ,  ( )n m kx t u t y t   . 

Take ( )
1

( ) : ,  sc c c c cs s
−

= − + G C I A B D , is the 

transfer function form of the system (1). 

Definition 1 [23]: The system (1) is called -stable 

continuous systems if real( ( )) ,  0c   A . The set of 

-stable continuous systems is denoted as C . The H, 

standard of ( )c s CG is defined as: 

( )( )

( )

( )

,
max

max

( ) : ( )

( )

 

 

c

c cH

real A

c

R

s s

j

sup

sup



 





  







=

= +

G G

G

 

where ( )max ( )c s G  is the largest singular value of 

( )c sG . 

In the case 0 = , the system (1) is the asymptotically 

stable arccording to the definition. Matrix A is the 

Huzwitz matrix i.e, real( ( )) 0 A . The H, standard of 

( )c sG is similar to the H standard of ( )c sG . 

( )
,0

max( ) ( ) : ( ) c c cH H

R

s s jsup


 
 



= =G G G  

Thus, with the definition of the -stable continuous 

system, every continuous system is a -stable continuous 

system. A stable continuous system, according to the 

original definition (asymptotically stable continuous 

system), is just a particular case of the -stable 

continuous system. 

We can transform a -stable continuous system ( )c sG  

into an asymptotically stable continuous system ( )sG  

by the following transformation: 

( ) ( ), , , , , ,c c c c    = −A B C D A I B C D , called as 

continuous-continuous transformation. 

The property of an asymptotically stable continuous 

system after the transformation is shown in the following 

theorem: 
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Theorem 1 [23]: The continuous system represented by 

(1), consider ( )sG  with the transformation 

( ) ( ), , , , , ,c c c c    = −A B C D A I B C D . The properties of 

( )sG  is: 

(i) ( )sG  is asymptotically stable 

(ii) The H standard of ( )sG  is similar to the H, 

standard of ( )c sG  

,

( ) ( ) .c HH
s s






=G G  

Proof [23]: 

(i) From ( )c s CG , we have real( ( ))c A  and 

real( ( )) 0c − A I  

(ii) We see: 

( )

( )

( )( )

( )

1

1

1

( )

,

c c c c

c c c c

c

j j

j

j j

j

     

 

  

 

−

−

−

= − +

= − + +

= + − +

= +

G C I A B D

C I A I B D

C I A B D

G

 

Therefore, 

( )

( )
,

max

max

( )

( ) .

 

 

H
R

c c H

R

j

j

sup

sup


 





 

  









=

= + =

G G

G G

 

Thus, from Theorem 1, we can evaluate the norm of -

stable continuous system through the norm of an 

asymptotically stable continuous system. 

B. Balanced Truncation Algorithm Based on the 

Continuous-Discrete Mapping 

Applying the results of Section II.-B. and study in [20], 

we introduce a balanced truncation algorithm based on 

the continuous-continuous mapping for a -stable 

continuous system as follows: 

 

Algorithm 1: Balanced truncation algorithm based on 

the continuous-continuous mapping for a b-stable 

continuous system [20] 

Input: The transfer function of the -stable continuous 

system as: 

( )
1

( ) : ,  sc c c c cs s 

−
= − + G C I A B D  

Step 1. Convert the -stable continuous system 

( ), , ,c c c cA B C D  into the asymptotically stable continuous 

system G by the 2 steps: 

Step 1.1: Determine the pole  (the most unstable pole of 

system). Take real( ) ,  = + where   is  

arbitrary small and 0   

Step 1.2: Convert the system ( ), , ,c c c cA B C D  into the 

asymptotically stable continuous system G arccording 

to: 

.

,

,

.

c

c

c

c









= −

=

=

=

A A I

B B

C C

D D

 

Step 2. Convert the asymptotically stable continuous 

system G  into the balanced equivalent system 

( )ˆ ˆˆ ˆ, , ,   A B C D  by the following steps: 

Step 2.1: Calculate Gramian observable matrix Q  and 

Gramian controllable matrix P  of the system 

( ), , ,   A B C D  by solving two Lyapunov equations: 

T T ,     + = −A P P A B B   

T T .     + = −A Q Q A C C  

Step 2.2: Calculate the Cholesky analysis of the matrix 
T

p p  =P R R , where 
pR  is the upper triangular matrix 

Step 2.3: Calculate the Cholesky analysis of the matrix 
T

o o  =Q R R , where 
oR is the upper triangular matrix 

Remark: It is possible to calculate the Cholesky 

decomposition of controllability Gramian and 

observability Gramian matrices from the system 

parameters ( ), , ,   A B C D  without going through the 

steps of calculating these two matrices (Step 2.1) [24–26]. 

Step 2.4: Calculate the SVD analysis of matrix 
T T

o p   =R R U ΛV  

Step 2.5: Calculate the non-singular matrix T  

1 1/2

p   

− −=T R V Λ . 

Step 2.6:  

Calculate ( ) ( )1 1ˆ ˆˆ,  ,  ,  ,           

− −=A B C T A T T B C T  

Remark: Step 2.1 to step 2.6, related to the algorithm for 

converting the system to the equilibrium form, are 

referred to [27]. 

Step 3: Reduce the balanced equivalent system 

( )ˆ ˆˆ ˆ, , ,   A B C D . We get the asymptotically stable 

continuous reduced system 1
ˆ

G  by the following steps:  

Step 3.1: Select the reduced-order r so that r < n. 

Step 3.2: Represent ( )ˆ ˆˆ ˆ, , ,   A B C D in the form: 

11 12 1

221 22

1 2

ˆ ˆ ˆ
ˆ ˆ, , 

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ, .

  

 

 

    

   
= =   

     

 = =
 

A A B
A B

BA A

C C C D D

 

where 
x x x

11 1 1
ˆ ˆˆ,  ,  r r r p q r

    A B C . 

We get the reduced-order asymptotically stable 

continuous system 1
ˆ

G . The system is represented in the 

form of ( )11 1 1
ˆ ˆˆ ˆ,  ,  ,   A B C D  
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Step 4. Convert the reduced-order asymptotically stable 

continuous system system 1
ˆ

G  into the reduced-order -

stable continuous system ( )1
ˆ sG  by following equations: 

1 11

1 1

1 1

1

ˆ ˆ ,

ˆ ˆ ,

ˆ ˆ .

ˆ ˆ









= +

=

=

=

A A I

B B

C C

D D

 

Output: The reduced-order unstable continuous system:  

( ) ( )
1

1 1 1 1 1
ˆ ˆ ˆ ˆ ˆs s

−

= − +G C I A B D  

To better understand steps of Algorithm 1, the 

algorithm is represented according to the following Fig. 1: 

 

 

Figure 1.  Structure diagram of algorithm 1. 

The evaluation of the reduced-order error of the 

asymptotically stable continuous system according to the 

balanced truncation algorithm is usually based on the 

difference between the norm of the original system and 

the norm of the reduced-order system [1–3]. Using the 

results of Theorem 1, we can also evaluate the reduced-

order error of a -stable continuous system based on the 

difference between the norm of the original system and 

the standard of the asymptotically stable reduced-order 

system. The evaluation of the reduced-order error of a -

stable continuous system according to Algorithm 1 is 

presented and proven in Theorem 2 as follows: 

Theorem 2 [23]: Let ( )c s G and ( )1
ˆ sG are the 

reduced-order system received from the Algorithm 1. We 

have the formula to calculate the upper bound of the 

reduced-order error: 

( )
,

1 1
ˆ 2 ... ,c r n

H 

 


+−  + +G G  

where 1 ...r n + + + are the Hankel singular values of 

( )sG  

Prove [23]:  

Take ( ) ( ) ( ) ( )
1

1
ˆ

c e e e es s s s
−

= − = − +E G G C I A B D .  

We get: 

1

11

0
ˆ,  ,  ,  0.

ˆ ˆ0

c c

e e e c e

   
 = = = =     

  

A B
A B C C C D

BA
 

From 1
ˆreal( ( )) ,  real( ( )) ,c    A A We have 

( )s E . Using Theorem 1, we get: 

,

ˆ ,
H H H

  
  

= = −E E G G  

where ( ) ( )( )
1

e e es s I 
−

= − −E C I A B ., the system 

G and G are asymptotically stable, the system ˆ G  is 

the reduced-order system of the system G  received by 

the balanced truncation algorithm. We get: 

( )
,

1
ˆ 2 ... ,r n

H 
   



+−  + +G G  

where 1 ...r n + + +  are the Hankel singular values of 

( )sG .  

III. BALANCED TRUNCATION ALGORITHM BASED ON THE 

CONTINUOUS-DISCRETE MAPPING 

A. The -Stable Discrete-Time System 

In order to use the continuous-discrete mapping, we 

introduce some concepts related to stable and unstable 

discrete-time systems as below: 

Consider a discrete linear system represented by: 

( 1) ( ) ( )

( ) ( )

d d

d k

k k k

k k

+ = +

= +

x A x B u

y C x D u
 (2) 

where:  

( ) x xm kx kxm, , , n n n n

d d d d    A B C D

( ) ,  ( ) ,  ( )n m kk k k  x u y . 

The transfer function has the form:  

( )
1

( ) : ,  d d d d dz z z
−

= − + G C I A B D  

Definition 2 [23]: The discrete system (2) is called - 

stable discrete-time system if the real part of the pole 

( ) ,  1d   A . The set of the - stable discrete-time 

system is denoted as D . The h, standard of 

( )d z DG  is defined: 

( )

( )

,
max

max

( ) : ( )

( ) ,

 

 

d dh

z

j

d

R

z z

e

sup

sup











 







=

=

G G

G

 

where ( )max ( )d z G  is the largest singular value of 

( )d zG . 

When 1 = , the system (2) is called asymptotically 

stable discrete-time system. In this case, matrix dA  is 

Schur matrix,..., ( ) 1d A . The h, standard of ( )d zG  

is similar to the h standard of ( )d zG  as: 

( )
,1

max( ) ( ) : ( ) . j

d d dh h

R

z z esup 




 



= =G G G  

Thus, with the definition of an - stable discrete-time 

system, every discrete-time system is an - stable 

discrete-time system, and an asymptotically stable 
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discrete-time system, according to the original definition, 

is just a particular case of - stable discrete-time systems. 

B. The Continuous-Discrete Mapping 

According to the results of Section II.A and Section 

III.A, the continuous-discrete mapping is defined by the 

following definition: 

Definition 3 [23]: The mapping 

( ) ( )

, :

, , , , , ,c c c c d d d d

C D    →

→A B C D A B C D
                  (3) 

where 

( ) ( )

( )

( )

( )

1

1

1

1

,

2 ,

2 ,

.

d c c

d c c

d c c

d c c c







−

−

−

−

= − +

= −

= −

= + −

A I A I A

B I A B

C C I A

D D C I A

 

c c = −A A I  is called the continuous-discrete 

mapping. This process converts the -stable continuous 

system into the -stable discrete-time system. 

Besides, there is an inverse mapping as: 

( ) ( )

,

1 :

, , , , , ,d d d d c c c c

D C
   

− →

→A B C D A B C D
             (4) 

where 

( ) ( )

( )

( )

( )

1

1

1

1

,

2
,

2
,

1
.

c d d

c d d

c d d

c d d d









−

−

−

−

= + − −

= +

= +

= − +

A I I A A I

B I A B

C C I A

D D C I A

 

d

d


=
A

A  is called the inverse continuous-discrete 

mapping. This process converts the discrete -stable 

system into the continuous -stable system 

In the case  = 0 and  = 1, the mapping is called 

bilinear mapping, i.e., converting an asymptotically stable 

continuous system to an asymptotically stable discrete-

time system and vice versa. Thus, through the 

continuous-discrete mapping, we can easily convert a -

stable continuous system into an -stable discrete-time 

system and vice versa. The property of the continuous-

discrete mapping is shown in the following theorem: 

Theorem 3 [23]: The arbitrary system ,c dC D  G G  

with the equivalent representation ( ), , ,c c c cA B C D  and 

( ), , ,d d d dA B C D = ( ), , , ,c c c c  A B C D . The 

continuous-discrete mapping remains the following 

properties: 

(i) The continuous-discrete mapping preserves the 

, ,/H h    standard, 

, ,

.c dH h  

=G G  

(ii) If ( ), , ,c c c cA B C D is equivalent to the continuous 

Lyapunov equation: 

( ) ( )

( ) ( )

0,

0.

T T

c c c c

T T

c c c c

 

 

− + − + =

− + − + =

A I Σ Σ A I B B

A I Σ Σ A I C C

 

So ( ), , ,d d d dA B C D is equivalent to the discontinuous 

Lyapunov equation 

0,

0.

T T

d d d d

T T

d d d d

   

   

− + =

− + =

A A B B
Σ Σ

A A C C
Σ Σ

 

(iii) If ( ) ( )1 2,c cs s CG G  and ( ) ( ) ( )1 2c c cs s s= +G G G , 

then 

( )( ) ( )( ) ( )( ), , 1 , 2c c cs s s      =  + G G G  

The inverse of the above assertion also holds. 

Proof [23]: 

(i) It holds that 

( ) ( )

( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

( ) ( )

1

1
1 1

1 1

1
1 1

1 1

1
1

1

1 1
1

2

2

2

2

2

d d d d d

c c c c

c c c c c c

c c c c

c c c c c c

c c c c c

c c c c

c c c c c c c

z z

z z

z

z

 







−

−
− −

− −

−
− −

− −

−
−

−

− −
−

= − +

= − − − −

− + + −

 
= − − − + 

 

− + + −

 
= − − − + 

 

+ − +

= − + − +

G C I A B D

C I A I I A I A

I A B D C I A B

C I A I I A I A

I A B D C I A B

C I A I A I A B

C I A B D

C I A K B C I A B D

 

where ( ) ( )c c

z


= − − +K I A I A .  

We have 1 1 c

z z

 

   
= − − +   

   
K I A  and 

( )2 1 c

z



 
+ = + − 

 
I K I A  

Then, we have: 

( ) ( ) ( )

( ) ( )

1
1

1
1

1

1

1

1

2

1

1 1 1

d c c c c

c c c

c c c c

c c c c

c c c c

c c c c

c

z

z

z z z

z

z

z

z

z

z

z

z



  




















−
−

−
−

−

−

−

−

= − + +

 
= − + − 

 

      
= + − − + +      

      

− 
= − + 

+ 

− 
= + − + 

+ 

 −  
= + − +  

+  

−
= +

+

G C I A I K K B D

C I A I A K

C I A B D

C I A B D

C I I A B D

C I A B D

G

( ) ,c s

 
 
 

= G
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where 
z

s
z






−
= +

+
 

As 
z

s
z






−
= +

+
 transforming a complex half plane 

real( )s   in a circle z   . We have: 

( )
( )( )

( )( )

,

,

max

max

sup

sup .

c cH
real s

d d h
z

s

z





















=

= =

G G

G G
 

(ii) By substituting  

( ) ( )

( )

1

1

,

2 ,

.

d c c

d c c

c c







−

−

= − +

= −

= −

A I A I A

B I A B

A A I

 

into the discrete Lyapunov. 

0
T T

d d d d

   
− + =

A A B B
Σ Σ  

We have: 

( ) ( ) ( ) ( )

( ) ( )

1

1

2 0

T T

c c c c

T
T

c c c c

− −

− −

− + + −

− + − − =

I A I A Σ I A I A

Σ I A B B I A

 

or  

( ) ( ) ( ) ( ) 0
T T

T

c c c c c c+ + − − − + =I A Σ I A I A Σ I A B B  

Similarity, ( ),c cA C  corresponds to the discrete-time 

Lyapunov equation 

0.
T T

d d d d

   
− + =

A A C C
Σ Σ  

(iii) Definition 

( ) ( )

( ) ( )
1 1 1 1 1

2 2 2 2 2

,c c c c c

c c c c c

s s

s s

= − +

= − +

G C I A B D

G C I A B D
 

and 1 2, ,d d dG G G  respectively received from 

1 2, ,c c cG G G  through mapping ,   . 1 2, ,d d dG G G  is 

performed by 

( ) ( ) ( )1 1 1 1 2 2 2 2, , , , , , , , , , ,d d d d d d d d d d d dA B C D A B C D A B C D . 

We have: 

 

1 1

2 2

1 2 1 2

0
,  ,

0

 ,  .

c c

c c

c c

c c c c c c

   
= =   

   

= = +

A B
A B

A B

C C C D D D

 

and 

1

2

1

2

0

0

0

0

c

c c

c

c

c






− 
= − =  

− 

 
=  

 

A I
A A I

A I

A

A

 

By substituting , , ,c c c cA B C D  into , , ,d d d dA B C D . 

We have: 

( ) ( )

( )

( )

( ) ( )

( ) ( )

1

1

1 1

2 2

1
1

1
1

1
2

2

1

1 1

1

2 2

1

2

0 0

0 0

0 0

00

0

0

0
,

0

d c c

c c

c c

c
c

c
c

c c

c c

d

d











−

−

−
−

−

−

−

= − +

   − +
=    

− +   

 −  − =    − −  

 − +
 =
 

− +  

 
=  

 

A I A I A

I A I A

I A I A

I A I A

I AI A

I A I A

I A I A

A

A

 

( )

( )

( )

( )

( )

1

1

1 1

1
2

2

1

1 1 1

1
2

2 2

2

0
2

0

2
,

2

d c c

c c

c
c

c c d

d
c c









−

−

−

−

−

= −

 −   =     −  

 −   = =     −  

B I A B

I A B

BI A

I A B B

BI A B

 

( )

 
( )

( )

( ) ( )

 

1

1

1

1 2 1

2

1 1

1 1 2 2

1 2

2

0
2

0

2 2

d c c

c

c c

c

c c c c

d d

I



 

−

−

−

− −

= −

 −
 =
 

−  

 = − −
  

=

C C A

I A
C C

I A

C I A C I A

C C

 

( )

 
( )

( )

( )

( )

1

1 2

1

1 1

1 2 1
2

2

1

1 1 1 1

1

2 2 2 2

1 2

0

0

d c c c c

c c

c c

c c

c
c

c c c c

c c c c

d d

−

−

−

−

−

= + −

= +

 −   +     −  

= + −

+ + −

= +

D D C I A B

D D

I A B
C C

BI A

D C I A B

D C I A B

D D

 

Therefore 

( ) ( )

 

( )

( )

( ) ( )

1

1

1 1

1 2

2 2

1 2

1

1 1 1 1

1

2 2 2 2

1 2

0

0

d d d d d

d d

d d

d d

d d

d d d d

d d d d

d d

z z

z

z

z

z

z z

−

−

−

−

= − +

−   
=    

−   

+ +

= − +

+ − +

= +

G C I A B D

I A B
C C

I A B

D D

C I A B D

C I A B D

G G
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Thus, if we want to convert a -stable continuous 

system into an asymptotically stable discrete system and 

vice versa, we perform mapping 
,1  and mapping 

,1

1



− , 

i.e., choose  > 0 and  = 1. 

C. Balanced Truncation Algorithm Based on the 

Continuous-Discrete Mapping 

The balanced truncation algorithm [1] can only be 

applied to stable and asymptotically stable discrete-time 

systems. Therefore, Boss [21] has built a balanced 

truncation algorithm that can reduce order for unstable 

discrete-time systems, called -stable discrete-time 

systems, by converting an -stable discrete-time system 

to an asymptotically stable discrete-time system ( = 1) 

to satisfy the condition of using the balanced truncation 

algorithm. However, this algorithm is only applicable to 

discrete-time systems. To apply the balanced truncation 

algorithm of Boss [21] to the unstable continuous system, 

called -stable continuous systems, we use the balanced 

truncation algorithm based on the continuous-discrete 

mapping. In more detail, the mapping 
,1  is applied to 

convert a -stable continuous system to an asymptotically 

stable discrete-time system and vice versa to satisfy the 

condition of applying the balanced truncation algorithm; 

then the mapping 
,1

1



−  is employed to convert an 

asymptotically stable discrete-time reduced-order system 

to a -stable continuous reduced-order system (unstable 

continuous reduced-order system). 

The details of the balanced truncation algorithm based 

on the continuous-discrete mapping for the -stable 

continuous system are as follows: 

 

Algorithm 2: Balanced Truncation Algorithm based 

on the continuous-discrete mapping [23] 

Input: The -stable continuous system 

( ) ( )
1

c c c c cs s C

−
= − + G C I A B D   

Step 1: Convert the -stable continuous system 

( ), , ,c c c cA B C D  into the asymptotically stable discrete 

system d CG  by the following steps: 

Step 1.1 Determine the pole   which is the most unstable 

pole of ( )c sG . Take real( ) ,  = +  where   is 

arbitrarily small and 0   

Step 1.2: Convert the system ( ), , ,c c c cA B C D  into the 

asymptotically stable discrete-time system d CG  

according to the system equation: 

( ) ( )

( )

( )

( )

1

1

1

1

,

,

2 ,

2 ,

.

c c

d c c

d c c

d c c

d c c c



−

−

−

−

= −

= − +

= −

= −

= + −

A A I

A I A I A

B I A B

C C I A

D D C I A

 

Step 2. Convert the asymptotically stable discrete-time 

system dG  into the equivalent system ( )ˆ ˆˆ ˆ, , ,d d d dA B C D  

which is also stable. 

Step 2.1: Calculate the Gramian observable matrix dQ  

and the Gramian controllable matrix of the system dP  by 

solving two Lyapunov. 
T T ,d d d d d d+ = −A P P A B B  

T T .d d d d d d+ = −A Q Q A C C  

Step 2.2: The Cholesky analysis of 
T

d dp dp=P R R , 

with
dpR is the upper triangular matrix 

Step 2.3: The Cholesky analysis of T

d do do=Q R R , with 

doR  is the upper triangular matrix 

Step 2.4: The SVD analysis of 
T T

do dp d d d=R R U Λ V  

Step 2.5: Calculate the non-singular matrix dT  

1 1/2

d dp d d

− −=T R V Λ . 

Step 2.6:  

Calculate 

( ) ( )1 1ˆ ˆˆ ˆ,  ,  , ,  ,  ,d d d d d d d d d d d d

− −=A B C D T A T T B C T D  

Step 3: Truncate the system ( )ˆ ˆˆ ˆ, , ,d d d dA B C D  to receive 

the asymptotically stable discrete-time reduced system 

( )ˆ
d zG  by the following steps: 

Step 3.1: Choose the order of reduced system r so that r < 

n . 

Step 3.2: ( )ˆ ˆˆ ˆ, , ,d d d dA B C D is represented in the form:  

11 12 1

1 2

221 22

ˆ ˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆ, , , ,

ˆ ˆ ˆ

d d d

d d d d d d d

dd d

   
 = = = =     

     

A A B
A B C C C D D

BA A

 

where 
x x x

11 1 1
ˆ ˆˆ,  ,  r r r p q r

d d d  A B C . 

We receive the asymptotically stable discrete-time 

reduced system ˆ dG . The reduced system which is stable 

is represented in the form ( )11 1 1
ˆ ˆˆ ˆ,  ,  ,d d d dA B C D  

Step 4: Convert the asymptotically stable discrete-time 

reduced system ( )ˆ
d zG into the -stable continuous 

reduced system ( )2
ˆ sG  by transforming 

( ) ( )1

2 2 2 2 ,1 11 1 1
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , ,d d d d

−= A B C D A B C D  as: 

( ) ( )

( )

( )

( )

1

2 11 11

1

2 11 1

1

2 1 11

1

2 1 11

ˆ ˆ ˆ ,

ˆˆ ˆ2 ,

ˆ ˆ ˆ2 ,

ˆ ˆˆ ˆ ,

d d

d d

d d

d d d


−

−

−

−

= + − −

= +

= +

= − +

A I I A A I

B I A B

C C I A

D D C I A

 

Output: The -stable continuous reduced system. 

( ) ( )
1

2 2 2 2 2
ˆ ˆ ˆ ˆ ˆs s

−

= − +G C I A B D  
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To better understand the steps of Algorithm 2, we 

represent Algorithm 2 according to the following figure: 

 

Figure 2.  Structure diagram of algorithm 2. 

Based on Theorem 1, we evaluate the reduced-order 

error of a -stable linear system according to Algorithm 2 

as follows: 

Theorem 4: [23] Take ( )c s CG and ( )2
ˆ sG are the 

reduced system receive from the algorithm 2. Then we 

obtain the formula for calculating the upper bound of the 

order reduction error as follows: 

( )
,

2 1
ˆ 2 ... ,c r n

H 

 


+−  + +G G  

where 1 ...r n + + +  are the Hankel singular values of 

( )d zG . 

Prove [23]: By theorem 1, we have: 

( )

( ) ( )
, ,1

,1

2 ,1 2

,1 ,1 2

ˆ ˆ

ˆ

ˆ

c c
H h

c
h

d d
h




 

 





− =  −

=  − 

= −

G G G G

G G

G G

 

Because dG  and ˆ dG  are asymptotically stable and is 

the reduced system received ˆ dG  by using the balanced 

truncation algorithm of dG . We have: 

 

( )1
ˆ 2 ... ,d d r n

h
 



+−  + +G G  

where 1 ...r n + + +  are the Hankel singular values of 

( )d zG . 

IV. CASE STUDY 

Consider the 15-order unstable system described by the 

transfer function as follows: 

( )
( )

( )
c

s
s

s
=

A
G

B
 

where 

 

( ) 15 14 13 4 12

5 11 6 10 6 9

7 8 8 7 8 6

8 5 8 4 8 3

8 2 8 7

s 51.76s 1239s 1.82 10 s

1.838 10 s 1.352 10 s 7.487 10 s

3.18 10 s 1.044 10 s 2.655 10 s

5.182 10 s 7.631 10 s 8.212 10 s

-6.102 10 s -2.802 10 s-6.004 10

s = − − − − 

−  −  − 

−  −  − 

−  −  − 

  

A

 

( ) 7 15 14 13

12 11 10 9 8

7 6 5 4

3 2 12

2.23 10 s +0.0004561s +0.02061s

+0.4153s +4.912s +37.92s +200.9s +746.8s  

+1948s +3488s +4064s +2715s

+693.2s 105.4s +7.276 10 s

s −

−

= 

− 

B

 

Performing unstable continuous order reduction 

according to algorithm 1 in part II, we have the following 

results: 

Performing order reduction for unstable continuous 

system ( )c sG  according to Algorithm 1, presented in 

Section II, we obtain the following results: 

TABLE I.  ORDER REDUCTION RESULTS FOR UNSTABLE CONTINUOUS SYSTEM ( )c sG  ACCORDING TO ALGORITHM 1 

Order -stable continuous reduced-order system, ( )cr sG  Error 

5 6 5 7 4 8 3 9 2 9 9

5 4 4 3 2 -9 -10

4.485 10 6.804 10 4.123 10 1.235 10 1.816 10 1.09 10

2009 1.833 10 1913 1.819 10 1.282 10

s s s s s

s s s s s

−  −  −  −  −  − 

+ +  − +  − 
 

5.9734×10−7 

4 6 4 7 3 8 2 8 8

4 3 2

4.485 10 2.658 10 1.245 10 1.754 10 1.23 10

2000 188.4 3.561 0.1971

s s s s

s s s s

−  −  −  −  − 

+ + − −
 

2.2199×103 

3 6 3 7 2 8 8

3 2

4.485 10 2.627 10 1.044 10 4.079 10

2000 462 31.68

s s s

s s s

−  −  +  − 

+ − +
 

3.3272×105 

 

For the sake of brevity and convenience, we make the 

following convention: a -stable continuous r-th reduced-

order system is called an r-th order system; an unstable 

continuous 15th-order system is called a 15th-order system. 

From Table I, it can be seen that the 5th-order reduced 

system has a much smaller reduced-order error than the 

4th-order reduced system (about 2.5910−10 times) and the 

3rd-order reduced system (1.79510−13 times). Here, the 

transfer function of the reduced-order error of the r-th 

order system is determined by the difference in the 

transfer function of the 15th-order and r-th order system. 

To compare and clarify the result of order reduction, we 

use the following graphs: 

Comments: 

From Fig. 3, we see that: 

For 0 < t < 50 s, the reduced-order error of the 5th, 4th, 

and 3rd-order reduced systems are all small, as shown in 

Fig. 1(a-d). 

For t > 50s, the reduced-order error of the reduced-

order systems starts to increase, in which the error rate of 

the 5th-order reduced system is the lowest, the error rate 

of the 3rd-order reduced system is the largest. 

Comparing the magnitude of the reduced-order error, it 

is seen that the reduced-order error of the 5th-order 

reduced system is the smallest, the reduced-order error of 

the 3rd-order reduced system is the largest, as shown in 
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Fig. 3(d). This result is consistent with the results of the 

reduced-order error in Table I. 

Fig. 3(d): From a time interval greater than 50s, 

compared to the 3rd-order reduced system, the 5th and  

4th-order reduced systems have much higher reduced-

order errors. Besides, the error characteristic of the 5th 

and 4th-reduced-order systems are almost identical. 

 

  
(a) (b) 

 
 

(c) (d) 

Figure 3.  Rreduced-order systems according to Algorithm 1. 

 

Figure 4.  Bode diagrams of 15th-order and reduced-order systems 
according to Algorithm 1. 

From Fig. 4, we see that: 

The 5th-order reduced system has frequency phase and 

amplitude responses that almost coincide with those of 

the 15th-order system. 

The 4th-order reduced system has a frequency phase 

response that almost coincides with the 15th-order system. 

The frequency phase response of the 4th-order reduced 

system only deviates from that of the original system for 

  0.05 rad/s. The smaller the frequency, the larger the 

deviation. For  > 0.05 rad/s, the frequency phase and 

amplitude responses of the 4th-order reduced system 

coincide with those of the 15th-order system. 

For   20 rad/s, The frequency phase and amplitude 

responses of the 3rd-order reduced system are different 

from the 15th-order system. The smaller the frequency, 

the more significant the difference. For   20 rad/s, the 

3rd-order reduced system has the frequency phase and 

amplitude responses matching the 5th-order reduction 

system. 

Overall we see that the lower the order of the reduced-

order system, the higher the reduced-order error and bode 

response error. From the above comments, we can 

evaluate the reduced-order systems according to 

Algorithm 1 as follows. To choose the best reduced-order 

system among three reduced-order systems according to 

Algorithm 1 to replace the 15th-order system, we can 

choose the 5th-order reduced system. The 4th-order 

reduced system can also be chosen to replace the  

15th-order system if we accept a larger reduced-order 

error, but the bode response coincides with the 15th-order 

system. The 3rd-order reduced system should not be 

chosen to replace the 15th-order system because the 

reduced-order error and the deviation of the bode plot of 
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the system compared with the 15th-order system are very 

large. 

Performing order reduction of unstable system 

according to Algorithm 2 in Section III, we obtain the 

following results: 

 
TABLE II.  ORDER REDUCTION RESULTS FOR UNSTABLE CONTINUOUS SYSTEM ( )c sG  ACCORDING TO ALGORITHM 2 

Order -stable continuous reduced-order system, ( )cr sG  Error 

5 6 5 7 4 8 3 9 2 9 9

5 4 4 3 2 -11 -12

4.485 10 6.804 10 4.123 10 1.235 10 1.816 10 1.09 10

2009 1.833 10 1913 4.063 10 4.696 10

s s s s s

s s s s s

−  −  −  −  −  − 

+ +  − +  − 
 

1.1707×10−6 

4 6 4 7 3 8 2 8 8

4 3 2

4.485 10 3.063 10 1.158 10 1.824 10 1.186 10

2004 204.6 0.4293 0.02271

s s s s

s s s s

−  −  −  −  − 

+ − − +
 

2.0075×103 

3 6 3 8 2 8 8

3 2

4.485 10 2.091 10 2.869 10 4.905 10

2140 472 30.59

s s s

s s s

−  −  +  − 

+ − +
 

2.3528×105 

 

From Table II, it can be seen that the 5th-order reduced 

system has a much smaller reduced-order error than the 

4th-order reduced system (about 0.583×10−9 times) and 

the 3rd-order reduced system (0.853×10−11 times). Here, 

the transfer function of the reduced-order error of an r-th 

order system is determined by the difference in the 

transfer function of the 15th-order and the r-th order 

system. 

To compare and clarify the result of order reduction, 

we use the following graphs: 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 5.  Reduced-order error of reduced-order systems according to Algorithm 2. 

Comments: 

From Fig. 5, we see that: 

For 0 < t < 50 s, the reduced-order error of the 5th, 4th, 

and 3rd-order reduced systems are all small, as shown in 

Fig. 5(a-d). 

For t > 50 s, the reduced-order error of the  

reduced-order systems starts to increase, in which the 

error rate of the 5th-order reduced system is the lowest, 

the error rate of the 3rd-order reduced system is the largest. 

Comparing the magnitude of the reduced-order error, it 

is seen that the reduced-order error of the 5th-order 

reduced system is the smallest, the reduced-order error of 

the 3rd-order reduced system is the largest, as shown in 

Fig. 5(d). This result is consistent with the results of the 

reduced-order error in Table II. 
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Fig. 5(d): From a time interval greater than 50 s, 

compared to the 3rd-order reduced system, the 5th and  

4th-order reduced systems have much higher reduced-

order errors. Besides, the error characteristic of the 5th 

and 4th-order reduced systems are almost identical. 
 

 

Figure 6.  Bode diagrams of 15th order and reduced-order systems 

according to Algorithm 2.  

From Fig. 6, we see that: 

The 5th-order reduced system has frequency phase and 

amplitude responses that almost coincide with those of 

the 15th-order system. 

The 4th-order reduced system has a frequency phase 

response that almost coincides with the 15th-order system. 

The frequency phase response of the 4th-order reduced 

system only deviates from that of the original system for 

  0.21 rad/s. The smaller the frequency, the larger the 

deviation. For  > 0.21 rad/s, the frequency phase and 

amplitude responses of the 4th-order reduced system 

coincide with those of the 15th-order system. 

For   0.491 rad/s, the frequency phase responses of 

the 3rd-order reduced system are different from the  

15th-order system. The smaller the frequency, the more 

significant the difference. For  > 0.491 rad/s, the  

3rd-order reduced system has the frequency phase 

responses matching the 5th-order reduced system. For   

88.6 rad/s, the frequency amplitude responses of the  

3rd-order reduced system are different from the 15th-order 

system. The smaller the frequency, the more significant 

the difference. For  > 88.6 rad/s, the 3rd-order reduced 

system has the frequency phase responses matching the 

5th-order reduced system. 

Overall we see that the lower the order of the reduced-

order system, the higher the reduced-order error and bode 

response error. From the above comments, we can 

evaluate the reduced-order systems according to 

Algorithm 2 as follows. To choose the best reduced-order 

system among three reduced-order systems according to 

Algorithm 2 to replace the 15th-order system, we can 

choose the 5th-order reduced system.  

The 4th-order reduced system can also be chosen to 

replace the 15th-order system if we accept a larger 

reduced-order error, but the bode response coincides with 

the 15th-order system. The 3rd-order reduced system 

should not be chosen to replace the 15th-order system 

because the reduced-order error and the deviation of the 

bode plot of the system compared with the 15th-order 

system are very large. 

Comparing the results of order reduction in Table I and 

Table II, we see that: 

The reduced-order error of the 5th-order reduced 

system according to Algorithm 1 is smaller than that of 

the 5th-order reduced system according to Algorithm 2  

(5.9734×10-7 < 1.1707×10-6). 

+ The reduced-order error of the 4th-order reduced 

system according to Algorithm 1 is larger than that of the 

4th-order reduced system according to Algorithm 2 

(2.2199×103 > 2.0075×103). 

+ The reduced-order error of the 3rd-order reduced 

system according to Algorithm 1 is larger than that of the 

4th-order reduced system according to Algorithm 2 

(3.3272×105 > 2.3528×105). 

To clarify the comparison results between the reduced-

order systems according to the two algorithms, we use 

error graph and bode graph as follows. 

 
 

  
(a) (b) 

Figure 7.  Reduced-order error and bode plot of 5th-order reduced system according to 2 algorithms. 
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(a) (b) 

Figure 8.  Reduced-order error and bode plot of 4th-order reduced system according to 2 algorithms. 

  
(c) (d) 

Figure 9.  Reduced-order error and bode plot of 3rd-order reduced system according to 2 algorithms. 

From Figs. 7–9 and error evaluation in Table I and II, 

we have the following assessment: 

Compare the 5th-order controller according to 2 

algorithms, we should choose the 5th-order controller 

according to Algorithm 1 to replace the 15th-order 

controller. 

Compare the 4th-order controller according to 2 

algorithms, we should choose the 4th order controller 

according to Algorithm 4 to replace the 15th-order 

controller. 

Compare the 3rd-order controller according to 2 

algorithms, if the priority is to reduce the reduced-order 

error, we should choose the 3rd-order controller according 

to Algorithm 2 to replace the 15th-order controller; if the 

bode plot is preferred, we should select the 3rd-order 

controller according to Algorithm 1 to replace the 15th-

order controller. 

Thus, considering the three reduced-order systems, 

Algorithm 1 and Algorithm 2 have similar reduced-order 

efficiency. 

V. CONCLUSION 

The paper presents two unstable linear order reduction 

algorithms based on the mapping. Algorithm 1 is built on 

the basis of continuous-continuous mapping, and 

Algorithm 2 is built on the basis of continuous-discrete 

mapping. The common basis of the two algorithms seeks 

to exploit the mapping to convert from an unstable 

system to a stable system so that a balanced truncation 

algorithm can be applied. Applying two algorithms to 

reduce the order of an unstable 15th-order system shows 

that: the 5th-order reduced system has a smaller reduced-

order error and a smaller bode plot deviation than those 

of the 4th-order reduced and the 3rd-order reduced system. 

Considering the three reduced-order systems, the order 

reduction efficiency of the two algorithms is almost 

equivalent. The results in the illustrative example have 

shown the correctness of algorithms and opened usability 

in practice. 
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