
A Weighted Ensemble of VAR and LSTM for

Multivariate Forecasting of Cloud Resource

Usage

Jyoti Shetty*, Karthik Cottur, G. Shobha, and Y. R. Prajwal

Department of Computer Science, RV College of Engineering, Bangalore, India; Email: {karthikcottur.cs16, Shobhag,

prajwalyr.cs17}@rvce.edu.in (K.V., G.S., Y.R.P.)

*Correspondence: jyothis@rvce.edu.in (J.S.)

Abstract—Forecasting resource usage values of a cloud

service has ample applications such as service performance

management, auto-scaling, capacity planning, and so on.

While univariate forecasting techniques are the focus of

current research, multivariate forecasting is rarely explored.

This research work focuses on multivariate forecasting of

resource usage values believing that there exists

interdependency among the features of the underlying system

that must be considered while forecasting. At first, the

interdependency among the attributes is verified using

Granger causality tests. Then the research explores various

forecasting approaches — univariate Multi-Layer

Perceptron (MLP), univariate Long Short Term Memory

(LSTM), multivariate Vector Autoregression (VAR), and

multivariate stacked LSTM. Further based on the

observations of performances of these models the research

proposes an implementation of a weighted ensemble of VAR

and LSTM models to forecast key cloud resource usage

metrics. The models thus proposed are implemented and

validated using the publicly available GWA-T-12 Bitbrains

time series dataset. The results show that the multivariate

models outperform univariate models with lesser Normalised

Root Mean Square Error (NRMSE) values. Also, the

multivariate stacked LSTM outperforms VAR and the

proposed ensemble forecasting model with lesser NRMSE

values within a range of 1–5% for various resources across

different lag values.

Keywords—multivariate forecasting, cloud resource usage

forecasting, Long Short Term Memory (LSTM), stacked

LSTM, Vector Autoregression (VAR), ensemble forecasting

I. INTRODUCTION

 Cloud computing is the amalgamation of service-

oriented computing and utility computing paradigms

where both hardware and software are provided as-a-

service model [1]. The cloud computing environment is

distributed, dynamic, shared, and elastic. These

characteristics of the cloud makes cloud service

performance unpredictable and vary over time. Thus,

cloud service performance management is challenging and

requires to have intelligent and informed management.

Manuscript received September 1, 2022; revised November 12, 2022;
accepted December 22, 2022; published March 28, 2023.

Cloud service performance management involves

operations such as capacity planning, auto-scaling, fault

management, and so on. Currently, these performance

management operations use a threshold-based reactive

approach which is ineffective and time-consuming,

affecting the quality of cloud services. For example, in

Amazon Web Services (AWS) when a user sets the scale-

out threshold policy to 85% of CPU utilization then as the

CPU utilization of the service reaches 85% a new Virtual

Machine (VM) is spawned, however, the quality of service

may decrease by the time a new VM is spawned [2]. The

disruption or decrease in performance of service can be

avoided by forecasting resource usage of the service and

auto-scaling policy based on the forecasted values. Such a

proactive auto-scaling operation which can initiate the

scaling operation before the threshold is reached can be

called proactive [3], for instance, the current auto-scaling

operation is into action once it detects the performance

degradation, and the service performance gets affected

until the auto-scaling operation is completed. With

forecasting, the auto-scaling operation can be initiated well

before the service performance hits low and thus prevent

the performance degradation effect.

The performance of services running on the cloud is

defined by multiple variables like CPU usage, Memory

usage, Cache usage, Disk usage, etc. The values are

collected over time to form multivariate time series data.

Formally a multivariate time-series data T is a matrix on

𝑚 𝑥 𝑛 where 𝑚 is the number of variables and 𝑛 is the

number of observations.

𝑇 = (𝑡[𝑚]1, … . . , 𝑡[𝑚]𝑛),

𝑡[𝑚]𝑖 is a vector of m real-valued variables for n

observations.

Such time-series data can be used to train statistical

forecasting models to forecast future data. Univariate

forecasting takes a single attribute as input for forecasting

the corresponding future values of the attribute. A

univariate model does not capture the interactions among

various attributes that define the performance of service.

But a resource usage value may not only depend on its past

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

264doi: 10.12720/jait.14.2.264-270

values but also depend on other resources’ past values, i.e.,

there may exist a dependency relation between multiple

resource usage values, which is ignored in univariate

forecasting. Multivariate forecasting considers

dependency among the features for forecasting future

values. Hence it is proposed to use a multivariate model

where multiple relevant attributes are taken as input to

forecast multiple outputs simultaneously. Such a model is

believed to capture the correlation among the variables to

provide realistic forecasting.

In multivariate forecasting there can be multiple

independent variables and multiple dependent

variables [4]. The commonly used approaches for

multivariate time series forecasting algorithms are

multivariate Long Short Term Memory (LSTM),

multivariate Vector Autoregression (VAR), multi-layer

perceptrons, and so on [4, 5].

Recurrent networks (RNN) use feedback connections to

store activations, which are representations of recent

inputs. As a result, RNN is better suited for short-term

memory forecasting rather than long-term memory.

Traditional backpropagation-through time results in

exploding or vanishing gradients. The LSTM architecture

is a gradient-based learning algorithm that gets rid of this

problem by carrying over long-term dependencies [6]. The

LSTM cell used is shown in Fig. 1.

Figure 1. LSTM cell.

Three gates are used to decide whether a long-term

dependency is passed on or a new dependency is passed

on. The forget gate if activated increases the value of c(t-1)

and carries the dependency while forgetting the current

value which was calculated. The forget gate is as in Eq. (1).

 Γ𝑓
𝑡 = 𝜎(𝑤𝑓[𝑎(𝑡−1), 𝑥𝑡] + 𝑏𝑓) (1)

The update gate is as shown in Eq. (2)

 Γ𝑢
𝑡 = 𝜎(𝑤𝑢[𝑎(𝑡−1), 𝑥𝑡] + 𝑏𝑢) (2)

The update gate if high, updates c(t) with the current

calculated value of c(t) given by Eq. (3) and Eq. (4)

 𝑐̃(𝑡) = tanh(𝑤𝑐[𝑎(𝑡−1), 𝑥𝑡] + 𝑏𝑐) (3)

 𝑐(𝑡) = Γ𝑓
(𝑡)

𝜊 𝑐(𝑡−1) + Γ𝑢
(𝑡)

𝜊 𝑐̃(𝑡) (4)

The output gate is combined with the current c(t) as

shown in Eq. (5)

 Γ𝑜
𝑡 = 𝜎(𝑤𝑜[𝑎(𝑡−1), 𝑥𝑡] + 𝑏𝑜) (5)

The output gate is used for the calculation of a(t) shown

in Eq. (6)

 𝑎(𝑡) = Γ𝑜
𝑡 𝜊 tanh(𝑐(𝑡)) (6)

The value of c(t) carries the actual data required whereas

a(t) determines which gate is activated and what happens to

the value c(t).

VAR is an auto regressive model for multivariate

data [7]. Each forecast in VAR is a linear function of its

past lags as well as the past lags of all other variables. The

VAR model of lag 1 for three variables 𝑥𝑡,1, 𝑥𝑡,2, 𝑥𝑡,3 can

be represented as VAR (1), with the Eqs. (7)–(9):

𝑥𝑡,1 = 𝛼1 + ∅11 𝑥𝑡−1,1 + ∅12 𝑥𝑡−1,2 + ∅13 𝑥𝑡−1,3 + 𝑒𝑡,1 (7)

𝑥𝑡,2 = 𝛼2 + ∅21 𝑥𝑡−1,1 + ∅22 𝑥𝑡−1,2 + ∅23 𝑥𝑡−1,3 + 𝑒𝑡,2 (8)

𝑥𝑡,3 = 𝛼3 + ∅31 𝑥𝑡−1,1 + ∅32 𝑥𝑡−1,2 + ∅33 𝑥𝑡−1,3 + 𝑒𝑡,3 (9)

where 𝛼1, 𝛼2, 𝛼3 are constants, ∅𝑡𝑥 are coefficients, and

𝑒𝑡,𝑥 represent error terms.

Similarly for VAR (2), the lag 2 variables will be added

to the above equations. In general, the multiple variables

in the equation can be defined as Vectors, hence the name

VAR as in Eq. (10).

 [

 𝑥𝑡,1

 𝑥𝑡,2

 𝑥𝑡,3

] = [

𝛼1

𝛼2

𝛼3

] + [

∅11∅12 ∅13

∅21∅22 ∅23

∅31∅32 ∅33

] [

 𝑥𝑡−1

 𝑥𝑡−2

 𝑥𝑡−3

] + [

 𝑒𝑡,1

 𝑒𝑡,1

 𝑒𝑡,1

] (10)

The contributions of the proposed work are as follows
i. Statistical validation of the causal relationship between

different time-series values of resource usage using
Granger Causality tests.

ii. Implementation and evaluation of VAR, LSTM, and a
weighted ensemble of VAR+LSTM multivariate
forecasting models.

The further sections of the paper are organized as

follows: first, we will discuss the method, and

implementation, followed by the results, and finally the

conclusion.

II. LITERATURE SURVEY

Any forecasting approach aims to improve upon the

accuracy while not overfitting the model. Various

univariate and multivariate approaches have been used for

forecasting resource usage values; however, a limited

study is done on multivariate forecasting. The literature

study shows that the multivariate approach can outperform

the univariate approach sometimes [4]. This work is an

extension of work done in [8], where an ensemble of

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

265

univariate forecasting models is used for forecasting the

resource usage values in the cloud. This section reviews

the previous work related to multivariate forecasting and

forecasting using the LSTM model in the domain of virtual

machine resource usage values such as CPU, memory, disk,

network, and cache usage.

The very first work on multivariate resource usage

forecasting is proposed in [4] using Dynamic Linear

Model (DLM) and VAR model, the paper proposed to use

ensemble models for improved accuracy [4]. The VAR and

DLM require the time series to be stationary and

memoryless. They are suitable for short-term forecasting.

However, the cloud workload exhibits long-range

dependencies i.e. the next step value depends on past lags

in the series. The work in [9] compared Autoregressive

Integrated Moving Average (ARIMA) and LSTM for CPU

usage forecasting. The results show that LSTM accuracy

outweighs ARIMA model accuracy. But the approach

forecasts only CPU usage values instead of multiple other

resource usage values. An LSTM and RNN based

workload forecasting is proposed in [10] for CPU usage

forecasting. The LSTM RNN Model was tested using three

benchmark datasets and the empirical results obtained are

about the mean squared error of 3.17  10−3. Both the

works of Kumar et al. [9], Janardhanan and Barrett [10]

demonstrated that LSTM is better suited for long-term

resource usage forecasting. However, both approaches are

univariate but demonstrate the electiveness of LSTM for

forecasting.

An ensemble model by combines VAR and LSTM for

multivariate forecasting is designed in [11]. The VAR

model is used to filter linear interdependencies among the

multivariate time series and stacked LSTM is used to

capture non-linear trends in residuals obtained from VAR

model. This approach is short-term forecasting up to a lag

order of 3 only.

An LSTM and Bidirectional LSTM for long-term

resource usage forecasting is proposed in [12]. The paper

compared LSTM performance with various other state-of-

art approaches to find that LSTM yields better accuracy.

The approach does not exploit the multivariate feature of

the dataset. Tran and Nguyen et al. proposed a multivariate

fuzzy time series forecasting model using LSTM [13]. To

smooth the fluctuations the author proposes a fuzzification

technique followed by LSTM Neural network modelling.

However the stacked model increases the model

complexity and computation requirement. The technique

in [14] uses LSTM to identify dependencies among

performance metrics like identifying the strongest

performance predictors and identifying lagged/temporal

dependencies. The author compares LSTM dependency

results to Granger causality tests to verify the results. The

results indicate that LSTM and Granger test results match.

Further using the dependency information, the accuracy of

forecasting is improved. The approach proposed in [15]

used LSTM for mean host load prediction over

consecutive intervals and actual workload multi-step-

ahead prediction. The results were tested using two

datasets with good accuracy. The approach demonstrates

multi-step-ahead prediction using LSTM but not the

multivariate characteristic.

It is clear from the analysis of earlier work that

multivariate forecasting is a promising methodology for

forecasting, and LSTM is a useful tool in that regard. As a

result, the main focus of this study is LSTM-based

multivariate forecasting.

III. METHOD

The dataset contains the performance metrics of 1,750

VMs from Bitbrains distributed datacenter [16]. The traces

consist of VM performance metrics: CPU cores, CPU

capacity provisioned, CPU usage, memory provisioned,

memory usage, disk read throughput, disk write

throughput, the network received throughput, and network

transmitted throughput [16, 17]. The CPU usage, memory

usage, disk write throughput, network received and

network transmitted metrics are selected for the study. The

reason for dropping other metrics is that they did not

exhibit any variation in the values, i.e., they were constant

values, for example, the number of CPUs provisioned was

2 for all the instances, thus will not contribute significantly

to forecasting.

The proposed LSTM model is implemented using the

Python Keras framework. A series_to_supervised function

was used using the Pandas library to transform the dataset

such that the values from the future time steps would be

appended as outputs to each time step. Since prediction

was happening for 11 attributes, for predicting 5-time steps,

55 extra columns would be appended to the dataset and

likewise for 15-time steps and 25-time steps. Fig. 2 shows

the output of the series to the supervised function.

Figure 2. Output of series to supervised function.

The dataset was normalized to values [0, 1] and

redundant columns were dropped from the input. The total

8225 examples were split into 6000 training examples and

2225 test examples. A 2-layer stacked deep LSTM network

architecture was chosen with 275 layers each as shown in

Fig. 3.

Figure 3. LSTM architecture with 5 inputs and 275 outputs.

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

266

The 275 outputs represent 25 time-step outputs for each

of the 11 attributes. The model was chosen such that it was

symmetric with the same number of cells in each layer,

which provided good results.

The LSTM model was also compared with a standard

Multilayer Perceptron (MLP) and VAR. The MLP model

was chosen similarly to the LSTM architecture, i.e., the

number of nodes in the two hidden layers was equal to 275

for the 25-time lag model. VAR took into consideration all

5 attributes for predicting each of the attributes and was

implemented using the statsmodels library. It performs

regression on itself based on the number of lags and

variables taken into consideration.

The various forecasting models: multivariate symmetric

LSTM, multivariate VAR, Univariate MLP, and Univariate

LSTM are implemented and accuracy is measured for out-

of-sample forecasts using NRMSE metric given by Eq. (11)

and Eq. (12). NRMSE was used because it provides a

normalized value so that attributes across different ranges

of values can be compared via a common metric.

 𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑡−𝑦̂𝑡)2𝑁
𝑡=1

𝑁
 (11)

 𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

max(𝑥)−min (𝑥)
 (12)

where 𝑦𝑡 is the actual value and 𝑦𝑡̂ is the forecasted value,

min(x) and max(x) are the minimum and maximum values

in the dataset.

To further improve the model the research work

proposes to implement a weighted ensemble of VAR and

LSTM models. Where the weight determination method is:

the weight assigned is inversely proportional to the error,

i.e., NRMSE value, that is a model with a higher NRMSE

value will be assigned less weight and vice versa. Further

relative to other models error the weight is derived as

follows. Based on the NRMSE values weights are assigned

to forecasting models such that sum of all weights is equal

to 1.

 𝑤1 + 𝑤2 + ⋯ . +𝑤𝑘 = 1 (13)

 𝑤𝑖 α
1

∑ 𝑤𝑗
𝑘
𝑗=0

 (14)

The weight assigned 𝑤𝑖 is inversely proportional to the

error NRMSE𝑖

 𝑤𝑖 α
1

NRMSE𝑖
 (15)

From Eq. (14) and Eq. (15)

 𝑤𝑖 =
1

NRMSE𝑖 ∑ 𝑤𝑗
𝑘
𝑗=0

 (16)

From Eq. (15) substituting for 𝑤𝑗

 𝑤𝑖 =
1

NRMSE𝑖 ∑
1

NRMSE𝑗

𝑘
𝑗=0

 (17)

where

 ∑ 𝑤𝑖
𝑘
𝑖=1 = 1

After assigning the weights we combine the forecasts to

generate the actual forecast as follows:

 𝑦𝑓̂ = 𝑤1𝑦𝑓
1 + 𝑤2 𝑦𝑓

2 + ⋯ . +𝑤𝑘𝑦𝑓
𝑘 (18)

where 𝑓 = 1, 2, … , 𝑇 number of forecasts from different

models.

IV. RESULTS AND DISCUSSION

This section discusses the implementation results, first,

the Granger causality test results are discussed followed by

accuracy values obtained of univariate and multivariate

forecasting models are compared and inferred.

The Granger causality tests were performed using

python statsmodels library. The Granger causality test

between two-time series helps determine if one series can

be used to predict the other [18]. If a time series X-Granger-

Causes-Y then past values of X help predict the value of Y

above and beyond the information contained in past values

of Y. Table I shows the Granger causality test results.

TABLE I. GRANGER CAUSALITY TEST RESULTS

Granger causality 5 Lag 15 Lag 25 Lag

CPU usage →Disk write

p < 0.005 p < 0.005 p < 0.005

Disk write → CPU usage

CPU usage →Memory usage

Memory usage → CPU usage

Memory usage → Disk write

Disk write →Memory usage

As the P value for all series is p < 0.005, it is interpreted

that each time series contributes to the prediction of other

time series values. Thus, multivariate forecasting takes into

account the hidden interaction among the features, unlike

univariate forecasting.

The various forecasting models: MLP, Univariate LSTM,

multivariate symmetric stacked LSTM, multivariate VAR,

and the weighted ensemble of VAR and LSTM models are

implemented. The accuracy of these models is measured for

out-of-sample forecasts using the NRMSE metric given by

Eq. (11) and Eq. (12). NRMSE was used because it

provides a normalized value so that attributes across

different ranges of values can be compared via a common

metric. Table II shows the NMRSE values for CPU usage,

from Table II, it can be observed that the proposed

algorithm has an acceptable error and better accuracy for

different lag values of 5, 15, and 25.

Further observation of the results in Table II can be

inferred that multivariate stacked LSTM in comparison

with univariate LSTM has a lesser NRMSE value in a range

of 3–90% for various resources across different lag values,

and thus multivariate approach provides better accuracy

compared to univariate approach. Further, the multivariate

stacked LSTM in comparison with VAR and the proposed

ensemble forecasting has a lesser NRMSE value in a range

of 1–5% for various resources across different lag values,

and thus multivariate stacked LSTM approach provides

better accuracy compared to VAR the proposed ensemble

forecasting.

The MLP model does decently well in predicting values,

but for the most part, it is not as accurate as standard

approaches used for time series forecasting. The

Univariate LSTM approach takes only the variable, which

is being predicted, into consideration for training, not

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

267

accounting for other variables, and again falls short of

Multivariate parts. Multivariate LSTM can capture long-

term dependencies while predicting outputs and also

accounts for all the variables while doing so. VAR also

does reasonably well on the dataset due to the fact the

selected attributes are stationary and repeated every few

time steps. The weighted ensemble VAR+LSTM model

does not show much variation as only two models, VAR

and LSTM are used. The ensemble approaches perform

better when there are multiple heterogeneous base

predictors.

TABLE II. OUT-OF-SAMPLE FORECAST NRMSE VALUES

Model Type
Univariate

MLP

Univariate

LSTM

Multivariate

stacked-LSTM

Multivariate

VAR

Multivariate Weighted Ensemble

VAR + LSTM

5 lags

Network received 2.806 0.994 0.395 0.537 0.435

Network transmitted 6.693 6.494 6.382 6.422 6.365

CPU usage 1.543 1.499 0.851 0.916 0.871

Disk write throughput 2.293 0.774 0.566 0.537 0.545

15 lags

Network received 2.816 1.276 0.386 0.537 0.422

Network transmitted 5.674 6.226 6.396 6.422 6.361

CPU usage 2.423 0.853 0.822 0.915 0.846

Disk write throughput 2.852 1.077 0.539 0.537 0.536

25 lags

Network received 0.454 0.592 0.415 0.537 0.365

Network transmitted 6.579 6.423 6.309 6.422 6.352

CPU usage 1.045 1.688 0.846 0.916 0.869

Disk write throughput 1.256 1.314 0.556 0.537 0.539

Figs. 4–7 show the graph of the out-of-sample forecast

of the proposed symmetric LSTM model for various

resource types.

Figure 4. Network received throughput forecast.

Figure 5. Network transmitted throughput forecast.

Fig. 4 compares the actual and predicted network

received throughput values in bytes/second. It is evident

from the graph that the model not only predicts the trend

but is able to forecast with good accuracy. Fig. 5 compares

the actual and predicted network transmitted throughput

values in bytes/second, the model predicts the trend

accurately but there is a variation in the predicted values

resulting in NRMSE value of 6.309 (>1). Fig. 6 compares

the actual and predicted disk write throughput values in

MegaBytes/second, the model is able to predict the trend

and forecast the values accurately with NRMSE value

0.556. Fig. 7 compares the actual and predicted CPU usage

in percentage utilization, the graph shows that the model is

able to predict the trend and forecast values with NRMSE

value of 0.846. Thus, it is evident that multivariate stacked

LSTM model is able to predict the trend and forecast usage

values for multiple resources accurately.

Figure 6. Disk write throughput forecast.

Figure 7. CPU usage forecast.

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

268

V. CONCLUSION

This research proposed the application of a symmetric

LSTM model for forecasting resource usage values

focusing on multivariate monitoring data. The knowledge

of future resource usage information helps in cloud service

and performance management, which is important from a

cloud service provider perspective. The production dataset

from GWA-T-12 Bitbrains is used in this research. At first,

the causality relationships among various resource usage

metrics are demonstrated using Granger causality tests.

Then the LSTM model is then configured for long- and

short-term forecasting, the results show that accuracy is

better compared to other univariate and multivariate

approaches. Furthermore, multivariate forecasting using

LSTM, VAR, and weighted ensemble VAR+LSTM model

is designed and implemented, and the result shows that the

multivariate model using LSTM is able to forecast with

better accuracy compared to other multivariate and

univariate approaches. Although the proposed model is

forecasting the trend of data very well however the

variation in data is not captured well. The future work is to

improvise the model to capture the variations in the data by

tuning the model/parameters further.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Jyoti Shetty proposed the problem, carried out the study,

designed the methodology with guidance from Shobha G.

Karthik Cottur worked on implementing the stacked

LSTM, MLP and VAR models. Prajwal Y implemented

the weighted LSTM model. Jyoti Shetty further drafted the

paper and the results. All authors had approved the final

version of the paper.

ACKNOWLEDGMENT

The authors wish to thank RV College of Engineering

for its support and encouragement during the research.

REFERENCES

[1] G. Cicotti, L. Coppolino, S. D’Antonio, and L. Romano, “Big data

analytics for QoS prediction through probabilistic model checking,”
arXiv:1405.0327, 2014. http://arxiv.org/abs/1405.0327

[2] Amazon Elastic Container Service. Developer Guide. [Online].

Available:
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/s

ervice-configure-auto-scaling.html

[3] J. Shetty, B. S. Babu, and G. Shobha, “Proactive cloud service
assurance framework for fault remediation in cloud environment,”

International Journal of Electrical & Computer Engineering, vol.

10, no. 1, pp. 987–996, 2020.
[4] J. S. Hirwa and J. Cao, “An ensemble multivariate model for

resource performance prediction in the cloud,” in Proc. IFIP

International Conference on Network and Parallel Computing,
Lecture Notes in Computer Science, Springer, 2014

[5] A. K. Nayak, K. C. Sharma, R. Bhakar, and H. Tiwari, “Short-term

Wind Speed Forecasting Using Multi-Source Multivariate RNN-

LSTMs,” in Proc. 2021 9th IEEE International Conference on

Power Systems (ICPS), Kharagpur, India, 2021, pp. 1–6. Doi:

10.1109/ICPS52420.2021.9670251
[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”

Journal of Neural Computation, vol. 9, issue 8, pp. 1735–1780,

1997.
[7] J. H. Stock and M. W. Watson, “Vector autoregressions,” Journal

of Economic Perspectives, vol. 15, no. 4, pp. 101–115, 2001.

[8] J. Shetty and G. Shobha, “An ensemble of automatic algorithms for
forecasting resource utilization in cloud,” in Proc. 2016 Future

Technologies Conference (FTC), 2016, pp. 301–306.

[9] J. Kumar, R. Goomer, and A. K. Singh, “Long short term memory
recurrent neural network (LSTM-RNN) based workload forecasting

model for cloud datacenters,” Procedia Computer Science, vol. 125,

pp. 676–682, 2018.
[10] D. Janardhanan and E. Barrett, “CPU workload forecasting of

machines in data centers using LSTM recurrent neural networks and

ARIMA models,” in Proc. 2017 12th International Conference for
Internet Technology and Secured Transactions (ICITST),

Cambridge, 2017, pp. 55–60.

[11] S. Ouhame and Y. Hadi, “Multivariate workload prediction using
vector autoregressive and stacked LSTM models,” in Proc. the New

Challenges in Data Sciences: Acts of the Second Conference of the

Moroccan Classification Society (SMC’19), ACM, New York, NY,
USA, 2019.

[12] S. Gupta and D. A. Dinesh, “Resource usage prediction of cloud

workloads using deep bidirectional long short term memory
networks,” in Proc. 2017 IEEE International Conference on

Advanced Networks and Telecommunications Systems (ANTS),

Bhubaneswar, 2017, pp. 1–6.
[13] N. Tran, T. Nguyen, B. M. Nguyen, and G. Nguyen, “A multivariate

fuzzy time series resource forecast model for clouds using LSTM

and data correlation analysis,” Procedia Computer Science, vol.
126, pp. 636–645, 2018.

[14] S. Y. Shah, Z. Yuan, S. Lu, and P. Zerfos, “Dependency analysis of

cloud applications for performance monitoring using recurrent
neural networks,” in Proc. 2017 IEEE International Conference on

Big Data, Boston, MA, 2017, pp. 1534–1543.

[15] B. Song, Y. Yu, Y. Zhou, et al., “Host load prediction with long

short-term memory in cloud computing,” Journal of

Supercomputing, vol. 74, pp. 6554–6568, 2018.
[16] The Grid Workloads Archive. GWA-T-12 Bitbrains. [Online].

Available: http://gwa.ewi.tudelft.nl/datasets

[17] S. Shen, V. Beek, and A. Iosup, “Statistical characterization of
business-critical workloads hosted in cloud datacenters,” in Proc.

the 15th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid), 2015.
[18] J. M. McCracken, “Exploratory causal analysis with time series

data,” in Exploratory Causal Analysis with Time Series Data,

Morgan & Claypool, 2016.

Copyright © 2023 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

Jyoti Shetty is an assistant professor of Computer

Science and Engineering Department, RV

College of Engineering, Bengaluru, India. She
has 16 years of teaching and 2 years of industry

experience. Her specialization includes data

mining, machine learning and cloud computing.
She has published research papers in reputed

journals and conferences. She has also executed
sponsored projects funded by various agencies nationally and

internationally. She was the recipient of awards such as the SAP Award

of excellence from IIT Bombay for demonstrating ICT in education in
2016 and the HPCC Systems Mentor Badge Award in 2021 for

providing guidance and direction towards the successful completion of

intern open source projects.

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

269

http://dblp.uni-trier.de/pers/hd/c/Coppolino:Luigi
http://dblp.uni-trier.de/pers/hd/d/D=Antonio:Salvatore
http://gwa.ewi.tudelft.nl/datasets
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

G. Shobha is a professor of Computer Science,

and Engineering Department, R.V College of

Engineering, Bengaluru, India. She has teaching
experience of 28 years. Her specialization

includes data mining, machine learning, and

image processing. She has published more than
150 papers in reputed journals/conferences. She

has also executed sponsored projects worth INR

200 lakhs funded by various agencies nationally
and internationally. She is a recipient of various awards such as the

Career Award for young teachers 2007-08 constituted by the All India

Council of Technical Education, Best Researcher award from Cognizant

2017, GHC Faculty Scholar for Women in Computing in 2018, IBM

Shared University Research Award in 2019, HPCC Systems community

recognition award 2020.

Karthik Cottur is a computer science student
who graduated from RVCE in 2020. He is

interested in building cool automation using basic

coding and some machine learning.
He is currently working at a data pipeline startup

called Fivetran.

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

270

