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Abstract—Forecasting resource usage values of a cloud 

service has ample applications such as service performance 

management, auto-scaling, capacity planning, and so on. 

While univariate forecasting techniques are the focus of 

current research, multivariate forecasting is rarely explored. 

This research work focuses on multivariate forecasting of 

resource usage values believing that there exists 

interdependency among the features of the underlying system 

that must be considered while forecasting. At first, the 

interdependency among the attributes is verified using 

Granger causality tests. Then the research explores various 

forecasting approaches — univariate Multi-Layer 

Perceptron (MLP), univariate Long Short Term Memory 

(LSTM), multivariate Vector Autoregression (VAR), and 

multivariate stacked LSTM. Further based on the 

observations of performances of these models the research 

proposes an implementation of a weighted ensemble of VAR 

and LSTM models to forecast key cloud resource usage 

metrics. The models thus proposed are implemented and 

validated using the publicly available GWA-T-12 Bitbrains 

time series dataset. The results show that the multivariate 

models outperform univariate models with lesser Normalised 

Root Mean Square Error (NRMSE) values. Also, the 

multivariate stacked LSTM outperforms VAR and the 

proposed ensemble forecasting model with lesser NRMSE 

values within a range of 1–5% for various resources across 

different lag values.   
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forecasting, Long Short Term Memory (LSTM), stacked 
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I. INTRODUCTION  

 Cloud computing is the amalgamation of service-

oriented computing and utility computing paradigms 

where both hardware and software are provided as-a-

service model [1]. The cloud computing environment is 

distributed, dynamic, shared, and elastic. These 

characteristics of the cloud makes cloud service 

performance unpredictable and vary over time. Thus, 

cloud service performance management is challenging and 

requires to have intelligent and informed management. 
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Cloud service performance management involves 

operations such as capacity planning, auto-scaling, fault 

management, and so on. Currently, these performance 

management operations use a threshold-based reactive 

approach which is ineffective and time-consuming, 

affecting the quality of cloud services. For example, in 

Amazon Web Services (AWS) when a user sets the scale-

out threshold policy to 85% of CPU utilization then as the 

CPU utilization of the service reaches 85% a new Virtual 

Machine (VM) is spawned, however, the quality of service 

may decrease by the time a new VM is spawned [2]. The 

disruption or decrease in performance of service can be 

avoided by forecasting resource usage of the service and 

auto-scaling policy based on the forecasted values. Such a 

proactive auto-scaling operation which can initiate the 

scaling operation before the threshold is reached can be 

called proactive [3], for instance, the current auto-scaling 

operation is into action once it detects the performance 

degradation, and the service performance gets affected 

until the auto-scaling operation is completed. With 

forecasting, the auto-scaling operation can be initiated well 

before the service performance hits low and thus prevent 

the performance degradation effect.  

The performance of services running on the cloud is 

defined by multiple variables like CPU usage, Memory 

usage, Cache usage, Disk usage, etc. The values are 

collected over time to form multivariate time series data. 

Formally a multivariate time-series data T is a matrix on 

𝑚 𝑥 𝑛  where 𝑚 is the number of variables and 𝑛  is the 

number of observations. 

𝑇 = (𝑡[𝑚]1, … . . , 𝑡[𝑚]𝑛), 

𝑡[𝑚]𝑖 is a vector of m real-valued variables for n 

observations.  

Such time-series data can be used to train statistical 

forecasting models to forecast future data. Univariate 

forecasting takes a single attribute as input for forecasting 

the corresponding future values of the attribute. A 

univariate model does not capture the interactions among 

various attributes that define the performance of service. 

But a resource usage value may not only depend on its past 
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values but also depend on other resources’ past values, i.e., 

there may exist a dependency relation between multiple 

resource usage values, which is ignored in univariate 

forecasting. Multivariate forecasting considers 

dependency among the features for forecasting future 

values. Hence it is proposed to use a multivariate model 

where multiple relevant attributes are taken as input to 

forecast multiple outputs simultaneously. Such a model is 

believed to capture the correlation among the variables to 

provide realistic forecasting. 

In multivariate forecasting there can be multiple 

independent variables and multiple dependent  

variables [4]. The commonly used approaches for 

multivariate time series forecasting algorithms are 

multivariate Long Short Term Memory (LSTM), 

multivariate Vector Autoregression (VAR), multi-layer 

perceptrons, and so on [4, 5]. 

Recurrent networks (RNN) use feedback connections to 

store activations, which are representations of recent 

inputs. As a result, RNN is better suited for short-term 

memory forecasting rather than long-term memory. 

Traditional backpropagation-through time results in 

exploding or vanishing gradients. The LSTM architecture 

is a gradient-based learning algorithm that gets rid of this 

problem by carrying over long-term dependencies [6]. The 

LSTM cell used is shown in Fig. 1.  

 

 

Figure 1. LSTM cell. 

Three gates are used to decide whether a long-term 

dependency is passed on or a new dependency is passed 

on. The forget gate if activated increases the value of c(t-1) 

and carries the dependency while forgetting the current 

value which was calculated. The forget gate is as in Eq. (1). 

 Γ𝑓
𝑡 = 𝜎(𝑤𝑓[𝑎(𝑡−1), 𝑥𝑡] + 𝑏𝑓) (1)  

The update gate is as shown in Eq. (2) 

 Γ𝑢
𝑡 = 𝜎(𝑤𝑢[𝑎(𝑡−1), 𝑥𝑡] + 𝑏𝑢) (2) 

The update gate if high, updates c(t) with the current 

calculated value of c(t) given by Eq. (3) and Eq. (4) 

 𝑐̃(𝑡) = tanh(𝑤𝑐[𝑎(𝑡−1), 𝑥𝑡] + 𝑏𝑐) (3) 

 𝑐(𝑡) = Γ𝑓
(𝑡)

𝜊 𝑐(𝑡−1) + Γ𝑢
(𝑡)

𝜊 𝑐̃(𝑡) (4) 

The output gate is combined with the current c(t) as 

shown in Eq. (5) 

 Γ𝑜
𝑡 = 𝜎(𝑤𝑜[𝑎(𝑡−1), 𝑥𝑡] + 𝑏𝑜) (5) 

The output gate is used for the calculation of a(t) shown 

in Eq. (6) 

 𝑎(𝑡) = Γ𝑜
𝑡  𝜊 tanh(𝑐(𝑡))  (6) 

The value of c(t) carries the actual data required whereas 

a(t) determines which gate is activated and what happens to 

the value c(t). 

VAR is an auto regressive model for multivariate  

data [7]. Each forecast in VAR is a linear function of its 

past lags as well as the past lags of all other variables. The 

VAR model of lag 1 for three variables 𝑥𝑡,1,  𝑥𝑡,2,  𝑥𝑡,3 can 

be represented as VAR (1), with the Eqs. (7)–(9): 

𝑥𝑡,1  =  𝛼1  +  ∅11 𝑥𝑡−1,1 + ∅12 𝑥𝑡−1,2 + ∅13 𝑥𝑡−1,3 + 𝑒𝑡,1 (7) 

𝑥𝑡,2  =  𝛼2  +  ∅21 𝑥𝑡−1,1 + ∅22 𝑥𝑡−1,2 + ∅23 𝑥𝑡−1,3 +  𝑒𝑡,2 (8) 

𝑥𝑡,3  =  𝛼3  +  ∅31 𝑥𝑡−1,1 + ∅32 𝑥𝑡−1,2 + ∅33 𝑥𝑡−1,3 +  𝑒𝑡,3 (9) 

where 𝛼1, 𝛼2, 𝛼3  are constants, ∅𝑡𝑥  are coefficients, and 

𝑒𝑡,𝑥 represent error terms. 

Similarly for VAR (2), the lag 2 variables will be added 

to the above equations. In general, the multiple variables 

in the equation can be defined as Vectors, hence the name 

VAR as in Eq. (10). 

 [

  𝑥𝑡,1

  𝑥𝑡,2

  𝑥𝑡,3

] =  [

𝛼1

𝛼2

𝛼3

] + [

∅11∅12 ∅13

∅21∅22 ∅23

∅31∅32 ∅33

] [

  𝑥𝑡−1

  𝑥𝑡−2

  𝑥𝑡−3

] + [

  𝑒𝑡,1

  𝑒𝑡,1

  𝑒𝑡,1

]  (10) 

The contributions of the proposed work are as follows 
i. Statistical validation of the causal relationship between 

different time-series values of resource usage using 
Granger Causality tests.  

ii. Implementation and evaluation of VAR, LSTM, and a 
weighted ensemble of VAR+LSTM multivariate 
forecasting models.  

The further sections of the paper are organized as 

follows: first, we will discuss the method, and 

implementation, followed by the results, and finally the 

conclusion. 

II. LITERATURE SURVEY 

Any forecasting approach aims to improve upon the 

accuracy while not overfitting the model. Various 

univariate and multivariate approaches have been used for 

forecasting resource usage values; however, a limited 

study is done on multivariate forecasting. The literature 

study shows that the multivariate approach can outperform 

the univariate approach sometimes [4]. This work is an 

extension of work done in [8], where an ensemble of 
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univariate forecasting models is used for forecasting the 

resource usage values in the cloud. This section reviews 

the previous work related to multivariate forecasting and 

forecasting using the LSTM model in the domain of virtual 

machine resource usage values such as CPU, memory, disk, 

network, and cache usage.  

The very first work on multivariate resource usage 

forecasting is proposed in [4] using Dynamic Linear 

Model (DLM) and VAR model, the paper proposed to use 

ensemble models for improved accuracy [4]. The VAR and 

DLM require the time series to be stationary and 

memoryless. They are suitable for short-term forecasting. 

However, the cloud workload exhibits long-range 

dependencies i.e. the next step value depends on past lags 

in the series. The work in [9] compared Autoregressive 

Integrated Moving Average (ARIMA) and LSTM for CPU 

usage forecasting. The results show that LSTM accuracy 

outweighs ARIMA model accuracy. But the approach 

forecasts only CPU usage values instead of multiple other 

resource usage values. An LSTM and RNN based 

workload forecasting is proposed in [10] for CPU usage 

forecasting. The LSTM RNN Model was tested using three 

benchmark datasets and the empirical results obtained are 

about the mean squared error of 3.17  10−3. Both the 

works of Kumar et al. [9], Janardhanan and Barrett [10] 

demonstrated that LSTM is better suited for long-term 

resource usage forecasting. However, both approaches are 

univariate but demonstrate the electiveness of LSTM for 

forecasting.  

An ensemble model by combines VAR and LSTM for 

multivariate forecasting is designed in [11]. The VAR 

model is used to filter linear interdependencies among the 

multivariate time series and stacked LSTM is used to 

capture non-linear trends in residuals obtained from VAR 

model. This approach is short-term forecasting up to a lag 

order of 3 only.  

An LSTM and Bidirectional LSTM for long-term 

resource usage forecasting is proposed in [12]. The paper 

compared LSTM performance with various other state-of-

art approaches to find that LSTM yields better accuracy. 

The approach does not exploit the multivariate feature of 

the dataset. Tran and Nguyen et al. proposed a multivariate 

fuzzy time series forecasting model using LSTM [13]. To 

smooth the fluctuations the author proposes a fuzzification 

technique followed by LSTM Neural network modelling. 

However the stacked model increases the model 

complexity and computation requirement. The technique 

in [14] uses LSTM to identify dependencies among 

performance metrics like identifying the strongest 

performance predictors and identifying lagged/temporal 

dependencies. The author compares LSTM dependency 

results to Granger causality tests to verify the results. The 

results indicate that LSTM and Granger test results match. 

Further using the dependency information, the accuracy of 

forecasting is improved. The approach proposed in [15] 

used LSTM for mean host load prediction over 

consecutive intervals and actual workload multi-step-

ahead prediction. The results were tested using two 

datasets with good accuracy. The approach demonstrates 

multi-step-ahead prediction using LSTM but not the 

multivariate characteristic. 

It is clear from the analysis of earlier work that 

multivariate forecasting is a promising methodology for 

forecasting, and LSTM is a useful tool in that regard. As a 

result, the main focus of this study is LSTM-based 

multivariate forecasting. 

III. METHOD  

The dataset contains the performance metrics of 1,750 

VMs from Bitbrains distributed datacenter [16]. The traces 

consist of VM performance metrics: CPU cores, CPU 

capacity provisioned, CPU usage, memory provisioned, 

memory usage, disk read throughput, disk write 

throughput, the network received throughput, and network 

transmitted throughput [16, 17]. The CPU usage, memory 

usage, disk write throughput, network received and 

network transmitted metrics are selected for the study. The 

reason for dropping other metrics is that they did not 

exhibit any variation in the values, i.e., they were constant 

values, for example, the number of CPUs provisioned was 

2 for all the instances, thus will not contribute significantly 

to forecasting. 

The proposed LSTM model is implemented using the 

Python Keras framework. A series_to_supervised function 

was used using the Pandas library to transform the dataset 

such that the values from the future time steps would be 

appended as outputs to each time step. Since prediction 

was happening for 11 attributes, for predicting 5-time steps, 

55 extra columns would be appended to the dataset and 

likewise for 15-time steps and 25-time steps. Fig. 2 shows 

the output of the series to the supervised function. 

 

 

Figure 2. Output of series to supervised function. 

The dataset was normalized to values [0, 1] and 

redundant columns were dropped from the input. The total 

8225 examples were split into 6000 training examples and 

2225 test examples. A 2-layer stacked deep LSTM network 

architecture was chosen with 275 layers each as shown in 

Fig. 3. 

 

 

Figure 3. LSTM architecture with 5 inputs and 275 outputs. 
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The 275 outputs represent 25 time-step outputs for each 

of the 11 attributes. The model was chosen such that it was 

symmetric with the same number of cells in each layer, 

which provided good results. 

The LSTM model was also compared with a standard 

Multilayer Perceptron (MLP) and VAR. The MLP model 

was chosen similarly to the LSTM architecture, i.e., the 

number of nodes in the two hidden layers was equal to 275 

for the 25-time lag model. VAR took into consideration all 

5 attributes for predicting each of the attributes and was 

implemented using the statsmodels library. It performs 

regression on itself based on the number of lags and 

variables taken into consideration. 

The various forecasting models: multivariate symmetric 

LSTM, multivariate VAR, Univariate MLP, and Univariate 

LSTM are implemented and accuracy is measured for out-

of-sample forecasts using NRMSE metric given by Eq. (11) 

and Eq. (12). NRMSE was used because it provides a 

normalized value so that attributes across different ranges 

of values can be compared via a common metric.  

 𝑅𝑀𝑆𝐸 =  √∑ (𝑦𝑡−𝑦̂𝑡)2𝑁
𝑡=1

𝑁
  (11) 

 𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

max(𝑥)−min (𝑥)
 (12) 

where 𝑦𝑡  is the actual value and 𝑦𝑡̂ is the forecasted value, 

min(x) and max(x) are the minimum and maximum values 

in the dataset.  

To further improve the model the research work 

proposes to implement a weighted ensemble of VAR and 

LSTM models. Where the weight determination method is: 

the weight assigned is inversely proportional to the error, 

i.e., NRMSE value, that is a model with a higher NRMSE 

value will be assigned less weight and vice versa. Further 

relative to other models error the weight is derived as 

follows. Based on the NRMSE values weights are assigned 

to forecasting models such that sum of all weights is equal 

to 1.  

 𝑤1 + 𝑤2 + ⋯ . +𝑤𝑘 = 1 (13) 

 𝑤𝑖   α  
1 

∑ 𝑤𝑗
𝑘
𝑗=0

  (14) 

The weight assigned 𝑤𝑖   is inversely proportional to the 

error NRMSE𝑖  

 𝑤𝑖  α 
1 

NRMSE𝑖
 (15) 

From Eq. (14) and Eq. (15) 

 𝑤𝑖 =
1 

NRMSE𝑖 ∑ 𝑤𝑗
𝑘
𝑗=0

  (16) 

From Eq. (15) substituting for 𝑤𝑗  

 𝑤𝑖 =
1 

NRMSE𝑖 ∑
1

NRMSE𝑗

𝑘
𝑗=0

 (17) 

where 

 ∑ 𝑤𝑖
𝑘
𝑖=1 = 1  

After assigning the weights we combine the forecasts to 

generate the actual forecast as follows: 

 𝑦𝑓̂ =  𝑤1𝑦𝑓
1 +  𝑤2 𝑦𝑓

2 + ⋯ . +𝑤𝑘𝑦𝑓
𝑘 (18) 

where 𝑓 =  1, 2, … , 𝑇  number of forecasts from different 

models. 

IV. RESULTS AND DISCUSSION  

This section discusses the implementation results, first, 

the Granger causality test results are discussed followed by 

accuracy values obtained of univariate and multivariate 

forecasting models are compared and inferred.  

The Granger causality tests were performed using 

python statsmodels library. The Granger causality test 

between two-time series helps determine if one series can 

be used to predict the other [18]. If a time series X-Granger-

Causes-Y then past values of X help predict the value of Y 

above and beyond the information contained in past values 

of Y. Table I shows the Granger causality test results.  

TABLE I. GRANGER CAUSALITY TEST RESULTS 

Granger causality 5 Lag 15 Lag 25 Lag 

CPU usage →Disk write 

p < 0.005 p < 0.005 p < 0.005 

Disk write → CPU usage 

CPU usage →Memory usage 

Memory usage → CPU usage 

Memory usage → Disk write 

Disk write →Memory usage  

 

As the P value for all series is p < 0.005, it is interpreted 

that each time series contributes to the prediction of other 

time series values. Thus, multivariate forecasting takes into 

account the hidden interaction among the features, unlike 

univariate forecasting. 

The various forecasting models: MLP, Univariate LSTM, 

multivariate symmetric stacked LSTM, multivariate VAR, 

and the weighted ensemble of VAR and LSTM models are 

implemented. The accuracy of these models is measured for 

out-of-sample forecasts using the NRMSE metric given by 

Eq. (11) and Eq. (12). NRMSE was used because it 

provides a normalized value so that attributes across 

different ranges of values can be compared via a common 

metric. Table II shows the NMRSE values for CPU usage, 

from Table II, it can be observed that the proposed 

algorithm has an acceptable error and better accuracy for 

different lag values of 5, 15, and 25.  

Further observation of the results in Table II can be 

inferred that multivariate stacked LSTM in comparison 

with univariate LSTM has a lesser NRMSE value in a range 

of 3–90% for various resources across different lag values, 

and thus multivariate approach provides better accuracy 

compared to univariate approach. Further, the multivariate 

stacked LSTM in comparison with VAR and the proposed 

ensemble forecasting has a lesser NRMSE value in a range 

of 1–5% for various resources across different lag values, 

and thus multivariate stacked LSTM approach provides 

better accuracy compared to VAR the proposed ensemble 

forecasting. 

The MLP model does decently well in predicting values, 

but for the most part, it is not as accurate as standard 

approaches used for time series forecasting. The 

Univariate LSTM approach takes only the variable, which 

is being predicted, into consideration for training, not 
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accounting for other variables, and again falls short of 

Multivariate parts. Multivariate LSTM can capture long-

term dependencies while predicting outputs and also 

accounts for all the variables while doing so. VAR also 

does reasonably well on the dataset due to the fact the 

selected attributes are stationary and repeated every few 

time steps. The weighted ensemble VAR+LSTM model 

does not show much variation as only two models, VAR 

and LSTM are used. The ensemble approaches perform 

better when there are multiple heterogeneous base 

predictors.  

TABLE II. OUT-OF-SAMPLE FORECAST NRMSE VALUES 

Model Type 
Univariate 

MLP 

Univariate 

LSTM 

Multivariate 

stacked-LSTM 

Multivariate 

VAR 

Multivariate Weighted Ensemble 

VAR + LSTM 

5 lags 

Network received 2.806 0.994 0.395 0.537 0.435 

Network transmitted 6.693 6.494 6.382 6.422 6.365 

CPU usage 1.543 1.499 0.851 0.916 0.871 

Disk write throughput 2.293 0.774 0.566 0.537 0.545 

15 lags 

Network received 2.816 1.276 0.386 0.537 0.422 

Network transmitted 5.674 6.226 6.396 6.422 6.361 

CPU usage 2.423 0.853 0.822 0.915 0.846 

Disk write throughput 2.852 1.077 0.539 0.537 0.536 

25 lags 

Network received 0.454 0.592 0.415 0.537 0.365 

Network transmitted 6.579 6.423 6.309 6.422 6.352 

CPU usage 1.045 1.688 0.846 0.916 0.869 

Disk write throughput 1.256 1.314 0.556 0.537 0.539 
 

Figs. 4–7 show the graph of the out-of-sample forecast 

of the proposed symmetric LSTM model for various 

resource types.  

 

Figure 4. Network received throughput forecast. 

 

Figure 5. Network transmitted throughput forecast. 

 

Fig. 4 compares the actual and predicted network 

received throughput values in bytes/second. It is evident 

from the graph that the model not only predicts the trend 

but is able to forecast with good accuracy. Fig. 5 compares 

the actual and predicted network transmitted throughput 

values in bytes/second, the model predicts the trend 

accurately but there is a variation in the predicted values 

resulting in NRMSE value of 6.309 (>1). Fig. 6 compares 

the actual and predicted disk write throughput values in 

MegaBytes/second, the model is able to predict the trend 

and forecast the values accurately with NRMSE value 

0.556. Fig. 7 compares the actual and predicted CPU usage 

in percentage utilization, the graph shows that the model is 

able to predict the trend and forecast values with NRMSE 

value of 0.846. Thus, it is evident that multivariate stacked 

LSTM model is able to predict the trend and forecast usage 

values for multiple resources accurately.  

 

 

Figure 6. Disk write throughput forecast. 

 

Figure 7. CPU usage forecast. 
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V. CONCLUSION 

This research proposed the application of a symmetric 

LSTM model for forecasting resource usage values 

focusing on multivariate monitoring data. The knowledge 

of future resource usage information helps in cloud service 

and performance management, which is important from a 

cloud service provider perspective. The production dataset 

from GWA-T-12 Bitbrains is used in this research. At first, 

the causality relationships among various resource usage 

metrics are demonstrated using Granger causality tests. 

Then the LSTM model is then configured for long- and 

short-term forecasting, the results show that accuracy is 

better compared to other univariate and multivariate 

approaches. Furthermore, multivariate forecasting using 

LSTM, VAR, and weighted ensemble VAR+LSTM model 

is designed and implemented, and the result shows that the 

multivariate model using LSTM is able to forecast with 

better accuracy compared to other multivariate and 

univariate approaches. Although the proposed model is 

forecasting the trend of data very well however the 

variation in data is not captured well. The future work is to 

improvise the model to capture the variations in the data by 

tuning the model/parameters further. 
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