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Abstract—Optimal control is a high-quality and challenging 

control approach that requires very explorative 

metaheuristic optimisation techniques to find the most 

efficient control profile for the performance index function, 

especially in the case of highly nonlinear dynamic processes. 

Considering the success of differential evolution in nonlinear 

optimal control problems, the current research proposes the 

use of sequential niching differential evolution to boost 

further the solution accuracy of the solver owing to its 

globally convergent feature. Also, because sequential niching 

bans previously discovered solutions, it can propose several 

competing optimal control profiles relevant for control 

practitioners. Simulation experiments of the proposed 

algorithm have been first conducted on IEEE CEC2017/2019 

datasets and n-dimensional classical test sets, yielding 

improved solution accuracy and robust performances on 

optimal control case studies.  

Keywords—sequential niching, differential evolution, 

nonlinear optimal control 

I. INTRODUCTION

Optimal Control (OC) is a control policy that aims to 

find the control trajectory that drives a dynamic system 

from one state to another with the least cost possible. This 

control philosophy has had a transformational impact on 

industrial processes allowing the use of optimisation 

theory to improve the quality of plant processes. To solve 

Optimal Control Problems (OCP), three solution 

techniques exist in the literature based on either the 

Pontryagin Maximum principle [1], dynamic 

programming [2] or direct nonlinear optimisation. While 

the first two methods can yield very accurate results, they 

are often not applicable when the complexity and 

dimensionality of the problem increase. Direct methods, 

however, discretise the optimal control problems (control 

and state) into nonlinear programming problems that can 

be solved by a plethora of solvers [3]. In the optimal 

control space, differential evolution has been one of the 

leading solvers used preferably among other meta-

heuristic algorithms [4–7]. In order to further improve the 
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performance of the solver, the current study proposes the 

use of sequential niching differential evolution. Because 

niching strategies permit the discovery of more than one 

candidate optimum, its integration with differential 

evolution will further boost the solution accuracy of the 

solver and also provide additional competing optimal 

control profiles relevant for control practitioners. The main 

contributions of this study are: 

1) A sequential niching differential evolution (SNDE)

coupled with parallel workers is proposed to

discover multiple optima and fine-tune the search

with the same amount of function evaluations.

2) An application of SNDE to Nonlinear Optimal

Control (NOC) problems is proposed offering

improved solution accuracy and several candidate

control profiles.

3) A comparative analysis is performed against the

state-of-the-art competing metaheuristic

optimisation approaches applied to NOC problems.

The structure of this paper is as follows. Section II 

presents the class optimal control problems considered in 

the current study. Section III briefly discusses differential 

evolution and sequential niching. Section IV describes the 

proposed algorithm. Section V stipulates the simulation 

experiments used to benchmark the proposed algorithm as 

well as presents and discusses the results. Section VI 

provides a conclusion to the research work. 

II. CLASS OF OPTIMAL CONTROL PROBLEMS

Consider the class of optimal control problems of Bolza 

type with a fixed time window. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑢

 𝐽(𝑢) = ℎ (𝑥(𝑡𝑓)) + ∫ 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓

0
 (1) 

Subject to 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) 

𝑥(0) = 𝑥0, 𝑥 ∈ 𝑋 , 𝑢 ∈ 𝑈

𝑓 is 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 
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where 𝐽(𝑢) is the performance measure to minimize, ℎ(. ), 

the terminal cost of the system, 𝑔(·) the running cost of the 

system, 𝑓(·), the nonlinear dynamic system, 𝑡𝑓, the final 

time and 𝑢(𝑡), the control trajectory that needs estimation. 

The above OCP can be solved by direct discretisation 

methods that discretise the control and state system 

dynamics depending on the case, thus transforming the 

cost functional into a nonlinear programming problem. 

Three major discretisation techniques exist: single 

shooting that discretises the control only, multiple 

shooting that discretises the control in sub-intervals with 

knot constraints and the collocation methods that discretise 

both the control and system dynamics. More insight into 

these discretisation methods can be found in the work of 

Rao [8]. Direct single shooting is used in this work which 

can be described as follows: 

𝑚𝑖𝑛 
𝑢

 𝐽(𝑢) = ℎ(𝑥[𝑁]) + ∑ ∫ 𝑔(𝑥(𝑡), 𝑢[𝑘], 𝑡)
(𝑘+1)𝑇

𝑡=𝑘𝑇
𝑁−1
𝑘=0  (2) 

Subject to 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡),  𝑘 = 0,1,2, … 𝑁, 

𝑥(0) = 𝑥0, 𝑥 ∈ 𝑋 , 𝑢 ∈ 𝑈 

The current OCP requires numerical integration and an 

ODE solver in order to solve the optimisation problem 

numerically. To simplify the problem, the OCP Eq. (2) can 

be converted to a Mayer-type formulation by the 

augmentation of a state variable 𝑥𝑛+1 which represents the 

integral term: 

 𝑥𝑛+1̇ = 𝑔(𝑥(𝑡), 𝑦(𝑡), 𝑡) (3) 

𝑥𝑛+1(0) = 0  

which yields 

 
𝑚𝑖𝑛 

𝑢
 𝐽(𝑢) = ℎ(𝑥(𝑡𝑓), 𝑡𝑓) + 𝑥𝑛+1(𝑡𝑓)  (4) 

Subject to 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡),  𝑘 = 0,1,2, … 𝑁, 

𝑥𝑛+1̇ = 𝑔(𝑥(𝑡), 𝑦(𝑡), 𝑡) 

𝑥(0) = 𝑥0 , 𝑥𝑛+1(0) = 0, 𝑥 ∈ 𝑋 , 𝑢 ∈ 𝑈 

III. DIFFERENTIAL EVOLUTION 

Several optimal control problems have used differential 

evolution to find optimal control profiles [4–6]. The work 

in the literature advises that it has been the meta-heuristic 

optimisation technique of choice, especially for chemical 

engineering problems. Differential evolution (DE) is an 

evolutionary optimisation algorithm developed by  

Storn [9], Storn and Price [10], that proceeds similarly to 

the genetic algorithm (GA), however, with differences in 

its mutation and crossover approach.  

Like GA, an initial population of 𝑁 candidate solutions 

𝑥𝑖  is generated uniformly across the d-dimensional 

solution space. Each candidate solution vector is called a 

genome or chromosome. After initialisation, mutant or 

donor vectors 𝑣𝑖 are created per population member (target 

vector 𝑥𝑖) typically using Eq. (5): 

 𝑣𝑖
𝑘 = 𝑥𝑗

𝑘 + 𝐹(𝑥𝑘
𝑘 − 𝑥𝑙

𝑘)  (5) 

whereby a new vector 𝑣𝑖  is created by a combination of 

three independent and randomly selected vectors from the 

current population different from 𝑥𝑖  and 𝐹  is a scaling 

factor that varies from 0 to 1. Several variants of the 

mutation equation exist, and more details can be found in 

Das et al.’s research [11]. Crossover follows the mutation 

process, upon which trial or offspring vectors 𝑢𝑖  are 

created by combination of the mutant vectors 𝑣𝑖 and the 

target vectors 𝑥𝑖 in the current population whereby either 

component of the target or mutant vector is used in 

forming 𝑢𝑖: 

 𝑢𝑖,𝑗
𝑘 = {

𝑣𝑖,𝑗
𝑘  if p ≤ Cr

𝑥𝑖,𝑗, otherwise
 (6) 

where 𝑗 ∈ [1,2, . . . , 𝑑], p is a randomly generated number 

from the crossover probability distribution and 𝐶𝑟  is the 

cross probability ranging between 0 and 1. 

Upon crossover, a selection phase follows that 

determines which 𝑁  vectors can move to the next 

generation. In this phase, a comparison is made between 

the trial vector 𝑣𝑖 and the target vector 𝑥𝑖 per population 

member according to their fitness value. The fittest 

individuals move to the next generation: 

 xi
k+1 = {

ui
k   if f(ui

k) ≤ f(xi
k)

𝑥𝑖
𝑘, otherwise

 (7) 

This process continues iteratively until a stopping 

criterion is met. Algorithm 1 shows the pseudo-code of a 

typical DE procedure. 

 
Algorithm 1: Typical DE procedure 

1 Let 𝑋0 = [𝑥𝑙 , 𝑥𝑢], 𝑉 = [−𝑣𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥] 
2 Set pop size N, max_iter 𝐾 and 𝑘 = 0, 𝐵𝑈𝐵=−∞ 

3 Randomly generate initial population: 𝑥𝑗
0 ∈ 𝑋0 

4 while 𝑘 <  𝐾 and heuristic stop not reached do 

5      for j=1: N do 

6 𝑣𝑗
𝑘 = 𝑥𝑝

𝑘 + 𝐹(𝑥𝑞
𝑘 − 𝑥𝑟

𝑘), 𝑝 ≠ 𝑞 ≠ 𝑟 ≠ 𝑗 

7         𝑣𝑗
𝑘 = 𝑏𝑜𝑢𝑛𝑑(𝑣𝑘 , 𝑥𝑙 , 𝑥𝑢) 

8         𝑢𝑗
𝑘 = cross_over (𝑣𝑗

𝑘 , 𝑥𝑗
𝑘) 

9         𝑥𝑗
𝑘+1 = arg min (𝑓(𝑢𝑗

𝑘), 𝑓(𝑥𝑗
𝑘)) 

10     (𝑥∗, 𝐵𝑈𝐵) = min (𝑓(𝑥𝑗
𝑘+1), 𝐵𝑈𝐵) 

11 end 

12     𝑘 = 𝑘 + 1 

13 end 

14 return (𝑥∗, BUB) 
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A. Sequential Niching Metaheuristics 

Sequential niching is a niching strategy that proceeds by 

a repeated search of the problem space during which 

previously discovered optima are banned in order to permit 

the discovery of new ones [12]. When a minimum is found 

in the search domain, the surrounding area, referred to as a 

niche, is “filled in” and rendered repulsive to other 

individuals, typically by modification of the objective 

function as new optima are discovered. Initially, a given 

meta-heuristic algorithm proceeds, as usual, using the raw 

objective function. Upon discovery of the first minimum, 

the objective function values of the individuals in the 

vicinity of the minimum are modified, and the swarm is 

restarted. The objective function is modified by the 

inclusion of a derating function using a recursive formula: 

 ∏ (𝑥)𝑛+1 = ∏ (𝑥)𝐺(𝑥, 𝑠𝑛)𝑛  (8) 

where ∏ (𝑥)𝑛+1  is the modified objective function to be 

used for searching the 𝑛 + 1𝑡ℎ  minimum, ∏ (𝑥)𝑛 is the 

objective function used to for searching for the 𝑛𝑡ℎ 

minimum, 𝐺(𝑥, 𝑠𝑛) is the derating function, and 𝑠𝑛 is the 

𝑛𝑡ℎ found minimum. A typical derating function used in 

the literature is found in the work of Beasley et al. [12], 

Shabbir and Omenzetter [13]. 

 𝐺(𝑥, 𝑠𝑛) = {
𝑒𝑥𝑝 (𝑙𝑜𝑔 𝑚

𝑟−𝑑(𝑥,𝑠𝑛)

𝑟
)

1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
if 𝑑(𝑥, 𝑠𝑛) < 𝑟  (9) 

where 𝑚 is the derating value, 𝑟 is the niche radius and 

𝑑(𝑥, 𝑠𝑛) the distance between the current point 𝑥 and the 

previously found minimum 𝑠𝑛 . Unlike other niching 

approaches, Sequential Niching Techniques (SNT) present 

the good feature of approaching global optimality 

guarantees that offer deterministic global optimisation 

techniques [14]. It can be hypothesised that by sequentially 

banning previously discovered optima, all global optima in 

the problem space can be discovered [15]. 

IV. PROPOSED SNDE ALGORITHM 

A. Constant Derating Function 

In the current work, a much simpler derating function is 

used to achieve dynamic tunnelling by flagging the 

objective function of exploration individuals when within 

the basin of convergence of previously discovered optima: 

 𝑓(𝑥𝑖) = {
𝑓(𝑥𝑖) if ||𝑥𝑖 − 𝑥𝑔|| > 𝑟

+∞  if ||𝑥𝑖 − 𝑥𝑔|| ≤ 𝑟
 (10) 

This process Eq. (10) will ensure that when individuals 

fall into forbidden region, they will be pulled out of the 

region after a few iterations due to the process of mutation 

and evolutionary selection. The radius estimate proposed 

by Deb is used in this study [16]. 

 𝑟 =
√𝑑

2 √𝑝𝑑  (11) 

where 𝑑  is the dimension of the problem, and 𝑝, is the 

number of optima the problem is expected to have. In the 

same vein as Shabbir and Omenzetter’s work [13], only 

50% of the radius is used practically. 

B. Search Stages 

In the current implementation, the sequential niching 

approach proceeds in three phases: Discovery of promising 

basins of convergence, Parallel fine-tuning of the basins of 

convergence and Post optimisation of candidate optima 

using convex optimisation. 

1) Discovering promising basins of convergence 

Initially, a 𝑁𝑐  number of discoverable basins of 

convergence is set to determine the maximum number of 

search restarts. A promising area is deemed obtained if the 

optimum function does not improve after a number of 

iterations: 

 |𝑓𝑡
𝐵𝑒𝑠𝑡 − 𝑓𝑡−𝑚

𝐵𝑒𝑠𝑡| ≤ ε (12) 

Upon discovery of a promising area, a basin of 

convergence is created around the best individual, and a 

niche sub-population is formed within the hyper-sphere (or 

hyper-box) containing all elite individuals within the basin 

and uniformly distributed additional individuals within the 

basin up to an 𝑁  number of individuals overall. 

Differential evolution is thus repeated to discover new 

promising areas up to 𝑁𝑠𝑝. m is set to 3 in the same vein as 

other works pertaining to the discovery of niche areas [17]. 

2) Refining the search quality 

Each basin of convergence needs to be exploited to 

improve the quality of the optimum. Practically, it is worth 

noting that due to the collaborative nature of exploitation 

individuals, the exploitation quality of the search is also 

dependent on the number of exploitation individuals. In 

order to maintain the same exploitation performance as 

unimodal differential evolution, the use of parallel workers 

is proposed. This will ensure that the same number of 

function evaluations (i.e., maxFev) is used in all workers 

and each with N exploitation individuals. 

3) Post optimisation 

 

 

Figure 1. Sequential Niching Differential Evolution (SNDE). 
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Upon completion of the parallel workers, the best 

individuals in each sub-populations are used as initial 

vectors for convex optimisation in order to ensure that the 

candidate solutions converge to true minima. Considering 

that continuous NOCPs are typically differentiable, SQP 

solvers have been used in this study. Fig. 1 and  

Algorithm 2 present a summary of the proposed algorithm. 

 
Algorithm 2: Sequential niching DE 

1 Set pop size N, max_iter 𝐾, maxClusters 𝑁𝑠𝑝 

2 Create initial population 𝑥𝑖 ∈ 𝑋0 

3 Set cluster_num 𝑛𝑠𝑝 = 1 

4 while 𝑖𝑡𝑒𝑟 < 𝐾 and 𝑛𝑠𝑝 < 𝑚𝑎𝑥𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do 

5 for x in main sub-population 

6      v = mutation(x)  
7      v = bound (𝑣, 𝑥𝑙, 𝑥𝑢) 

8      u = cross_over(v,x) 

9      if x or u enter a niche_sub_pop 
10     penalise the fitness (f(x) = +∞ or f(u)=+∞)) 

11          end 

12          select next-generation individual 

13  end 
14  if main sub-pop stalls and 𝑛𝑠𝑝 < 𝑁𝑠𝑝 

15           create hyberbox around gBest 

16       copy all fittest individuals, 𝑛𝑓 in hyberbox 

17           create niche_sub_pop with 𝑛𝑓 individuals 

18       add 𝑁 − 𝑛𝑓 individuals in the hyberbox 

19         restart main sub_pop with N new individuals 

20       end 

21   𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

22 end 
23 for w=1:𝑁𝑠𝑝 

24    assign DE_solver(𝑠𝑢𝑏𝑝𝑜𝑝𝑤,ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑥𝑤) to      

   worker 𝑤 

25     set max_iter to (𝐾 − 𝑖𝑡𝑒𝑟) 

26 𝑔𝐵𝑒𝑠𝑡𝑤  = local_search(f,𝑔𝐵𝑒𝑠𝑡𝑤) 

27     update (gBest,BUB) = min(BUB,f(𝑔𝐵𝑒𝑠𝑡𝑤)) 

28 end 

29 return (𝑥∗=gBest,BUB) 

V. SIMULATION EXPERIMENTS 

A. Multimodal Test Functions for Benchmarking 

In order to test the performance of the niching 

differential evolution, CEC2017/2019 datasets and n-

dimensional multimodal classical sets from an extensive 

literature review have been used, all at the 10𝑡ℎ dimension 

(Table I). Performance profiles have been used to compare 

optimisation algorithms. The performance profile 

measures the likelihood of an algorithm performing better 

than other solvers at a given scaling factor (𝜏) tested over 

several test problems. It is a common index used to 

compare the robustness of optimisation algorithms and can 

be used with several metrics (i.e., CPU time, solution 

accuracy, function evaluation, etc.). A performance profile 

in terms of solution accuracy has been used in this study to 

assess the quality of the solution of each solver [18]. A 

solution accuracy measure 𝑚(𝑝,𝑠)  defines the scaled 

distance to the optimal function value 𝑓∗ a solver 𝑠 obtains 

on a problem 𝑝: 

 𝑚(𝑝,𝑠) =
𝑓(𝑝,𝑠)̂ −𝑓∗

(𝑓𝑤−𝑓∗)
  (13) 

where 𝑓(𝑝,𝑠)̂  denotes the average estimate of the optimal 

function by solver 𝑠 , 𝑓𝑤  the worst function value found 

among the solvers on the problem and 𝑓∗, the true optimal 

function value if available or the best-found optimal 

function value for problem 𝑝  among all solvers. The 

performance profile 𝜌𝑠(𝜏) of a solver s is thus defined as 

  𝜌𝑠(𝜏) =
1

𝑛𝑝
𝑠𝑖𝑧𝑒{𝑝 ∈ 𝑃: 𝑟𝑝,𝑠} (14) 

 𝑟𝑝,𝑠 =
𝑚(𝑝,𝑠)

𝑚𝑖𝑛{𝑚(𝑝,𝑠) for all s∈𝑆}
 (15) 

which thus finds the total number of problems that solver 

𝑠  has a performance ratio 𝑟(𝑝,𝑠)  with a factor 𝜏 . Fig. 2 

presents the performance profiles of the genetic algorithm 

(GA-SQP), differential evolution (DE-SQP), particle 

swarm optimisation (PSO-SQP) and SQP-convex 

optimisation against the niching algorithm (SNDE-SQP). 

Table II gives a summary of each algorithm parameter 

configuration. All metaheuristic algorithms were tested 

with a maximum iteration count of 500, a population size 

of 30 and the average results after fifty optimisation runs 

were recorded. 

TABLE I. DIFFERENTIABLE MULTIMODAL FUNCTIONS FROM 

CEC2017/2019 AND FROM AN EXTENSIVE SURVEY ON GLOBAL 

OPTIMIZATION BENCHMARK FUNCTIONS (DIMENSION: 𝑛 = 10) [19–21] 

𝐹𝑛 Functions range 

CEC 2019 

𝐹4 Shifted and Rotated Rastrigin [−100,100]𝐷 

𝐹5 Shifted and Rotated Griewank [−100,100]𝐷 

𝐹6 Shifted and Rotated Weierstrass [−0.5,0.5]𝐷 

𝐹8 Shifted and Rotated Expanded Schaffer’s 
F6 

[−100,100]𝐷 

𝐹9 Shifted and Rotated Griewank’s plus 

Rosenbrock 

[−100,100]𝐷 

𝐹10 Shifted and Rotated Ackley [−100,100]𝐷 

CEC 2017 

𝐹3 Shifted and Rotated Rosenbrock [−100,100]𝐷 

𝐹6
∗ Shifted and Rotated Schaffer’s F7  [−100,100]𝐷 

𝐹9
∗ Shifted and Rotated Levy  [−100,100]𝐷 

𝐻𝐹1 Hybrid Function 1 [0,100]𝐷 

𝐻𝐹4 Hybrid Function 4 [0.1,100]𝐷 

𝐻𝐹9 Hybrid Function 9 [−0.5,0.5]𝐷 

Classical n-dimensional 

SF4 Modified Ackley function [−35,35]𝐷 

𝑆𝐹7 Alpine 2 Function [0.1,100]𝐷 

𝑆𝐹38 Cosine Mixture Function [−10,10]𝐷 

𝑆𝐹43 Deb 1 Function [−100,100]𝐷 

𝑆𝐹44 Deb 3 Function [0.1,100]𝐷 

𝑆𝐹87 Pathological Function [−5,5]𝐷 

𝑆𝐹89 Pinter Function [−100,100]𝐷 

𝑆𝐹110 Salomon Function [−100,100]𝐷 

𝑆𝐹133 Shubert Function [0,5]𝐷 

𝑆𝐹134 Shubert 3 Function [0,5]𝐷 

𝑆𝐹135 Shubert 4 Function [0,5]𝐷 

𝑆𝐹144 Styblinski-Tang Function [−5,5]𝐷 

𝑆𝐹153 Trigonometric 1 Function [−100,100]𝐷 

𝑆𝐹154 Trigonometric 2 Function [−500,500]𝐷 

𝑆𝐹165 W / Wavy Function [−100,100]𝐷 

𝑆𝐹167 Whitley Function [−10,10]𝐷 

𝑆𝐹171 Xin-She Yang Function [−20,20]𝐷 
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TABLE II. PARAMETER CONFIGURATION OF TEST ALGORITHMS 

GA crossover: single point 

mutation: adaptive 

selection: stochastic uniform 

DE F = 0.9, 𝑐𝑟 = 0.4 

PSO 𝑠𝑟 = 2, 𝑐𝑟 = 2,  𝑤𝑚𝑎𝑥 = 0.9,  𝑤𝑚𝑖𝑛 = 0.4 

SNDE SNDE & F = 0.9, 𝑐𝑟 = 0.4, maxNiches = 5 

 

B. Optimal Control Case-Studies 

1) Isothermal CSTR with complex reactions [22] 

 

𝑥1̇ = 𝑞1 − 𝑞𝑥1 − 17.6𝑥1𝑥2 − 23𝑥1𝑥6𝑢3 

𝑥2̇ = 𝑢1 − 𝑞𝑥2 − 17.6𝑥1𝑥2 − 146𝑥2𝑥3 

𝑥3̇ = 𝑢2𝑞𝑥3 − 73𝑥2𝑥3 

𝑥4̇ = −𝑞𝑥4 + 35.2𝑥1𝑥2 − 51.3𝑥4𝑥5 

 𝑥5̇ = −𝑞𝑥5 + 219𝑥2𝑥3 − 51.3𝑥4𝑥5 (16) 

𝑥6̇ = −𝑞𝑥6 + 102.6𝑥4𝑥5 − 23𝑥1𝑥6𝑢3 

𝑥7̇ = −𝑞𝑥7 + 46𝑥1𝑥6𝑢3 

𝑥8̇ = 5.8(𝑞𝑥1 − 𝑞1) − 3.7𝑢1 − 4.1𝑢2 + 

𝑞(23𝑥4 + 11𝑥5 + 28𝑥6 + 35𝑥7) − 5𝑢3
2 − 0.099 

 

where 𝑞 = 𝑞1 + 𝑢1 + 𝑢2 and 𝑞1 = 6. 

The optimal control problem consists of maximising the 

following cost function:  

 𝐽(𝑢) = 𝑥8(𝑡𝑓) (17) 

where the final time is 0.2 h. The initial state is 𝑥(0) =
[0.1883 0.2507 0.0467 0.0899 0.1804 0.1394 0.10460]𝑇 

and the control variables are bounded by  

0 ≤ 𝑢1 ≤ 20, 0 ≤ 𝑢2 ≤ 6, 0 ≤ 𝑢3 ≤ 4 

In the current study, the control variable has been 

discretised into 25 steps. 

2) Fed-batch reactor [22] 

 

𝑥1̇ = 𝑔1(𝑥2 − 𝑥1) −
𝑢

𝑥5

𝑥1 

𝑥2̇ = 𝑔2𝑥3 −
𝑢

𝑥5

𝑥2 

𝑥3̇ = 𝑔3𝑥3 −
𝑢

𝑥5
𝑥3            (18) 

𝑥4̇ = −7.3𝑔3𝑥3 +
𝑢

𝑥5

(20 − 𝑥4) 

𝑥5̇ = 𝑢 

 

where 

 𝑔3 =
21.87𝑥4

(𝑥4+0.4)(𝑥4+62.5)
 (19) 

 𝑔2 =
𝑥4𝑒−5𝑥4

0.1+𝑥4
 (20) 

 𝑔1 =
4.75𝑔3

0.12+𝑔3
 (21) 

The cost function to be maximised is the amount of 

secreted SUC2-s2 produced at the final time: 

 𝐽(𝑢) = 𝑥1(𝑡𝑓)𝑥5(𝑡𝑓) (22) 

with 𝑡𝑓 = 15h, and the control variable bounded as 

0 ≤ 𝑢 ≤ 10 

The control variable is discretised into 25 steps as per 

the original publication. 

3) Bifunctional catalyst blend OCP [5, 23] 

 

𝑥1̇ = −𝑘1𝑥1 

𝑥2̇ = 𝑘1𝑥1 − (𝑘2 + 𝑘3)𝑥2 + 𝑘4𝑥5 

𝑥3̇ = 𝑘2𝑥2 

 𝑥4̇ = −𝑘6𝑥4 + 𝑘5𝑥5  (23) 

𝑥5̇ = 𝑘3𝑥2 + 𝑘6𝑥4 − (𝑘4 + 𝑘5 + 𝑘8 + 𝑘9)𝑥5 + 𝑘7𝑥6

+ 𝑘10𝑥7 

𝑥6̇ = 𝑘8𝑥5 − 𝑘7𝑥6 

𝑥7̇ = 𝑘9𝑥5 − 𝑘10𝑥7 

 

where the control variables are cubic functions: 

 𝑘𝑖 = 𝑐𝑖1 + 𝑐𝑖2𝑢 + 𝑐𝑖3𝑢2 + 𝑐𝑖4𝑢3 (24) 

The values of the coefficients 𝑐𝑖𝑗  can be found in [23]. 

The problem consists of maximising the following cost 

function: 

 𝐽(𝑢) = 𝑥7(𝑡𝑓)103 (25) 

where 𝑡𝑓 = 2000. The control variable discretisation step 

is set to 10. 

4) Free-floating robot [24] 

 

𝑥1̇ = 𝑥2 

𝑥2̇ =
(𝑢1 + 𝑢3)𝑐𝑜𝑠(𝑥5) − (𝑢2 + 𝑢4)𝑠𝑖𝑛(𝑥5)

𝑀
 

𝑥3̇ = 𝑥4 

 𝑥4̇ =
(𝑢1+𝑢3)𝑠𝑖𝑛(𝑥5)+(𝑢2+𝑢4)𝑐𝑜𝑠(𝑥5)

𝑀
 (26) 

𝑥5̇ = 𝑥6 

𝑥6̇ =
(𝑢1 + 𝑢3)𝐷 − (𝑢2 + 𝑢4)𝐿𝑒

𝑙𝑛
 

 

The problem consists of minimising the following cost 

function: 

 𝐽(𝑢) = ℎ (𝑥(𝑡𝑓)) + ∫
1

2
(𝑢1

2 + 𝑢2
2 + 𝑢3

2 + 𝑢4
2)𝑑𝑡

5

0
  (27) 

ℎ(𝑥) = (𝑥1 − 4)2 + (𝑥3 − 4)2 + 𝑥2
2 
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 +𝑥4
2 + 𝑥5

2 + 𝑥6
2  (28) 

With 𝑀 =  10.0, 𝐷 = 5.0, 𝐿𝑒 =  5.0  and 𝑙𝑛 =  12.0 , 
|𝑢𝑖| ≤ 5 The control variable discretisation step is set to 

10. Ten optimisation runs were performed for each solver 

for a maximum iteration count of 300, and the average 

solution accuracy for each solver is presented in Table III. 

C. Results and Discussion 

1) On the performance of sequential niching DE on 

benchmarking test functions 

The performance profiles in Fig. 2 show that sequential 

niching DE is the best performing solver among the three 

traditional metaheuristics obtaining the best fitness value 

for 48% of all test problems while DE, GA, PSO and SQP 

obtain respectively 24%, 28%, 7% and 0%. GA obtained 

the best performance among the traditional metaheuristic 

algorithms, while DE was the most robust, with the highest 

likelihood of obtaining the lowest fitness values. It is worth 

noting that the choice of DE in the current study was 

preferential owing to research findings in optimal control 

problems, particularly for chemical engineering problems. 

These metaheuristics algorithms can be used 

interchangeably depending on the context [13, 25, 26]. 

 

Figure 2. Performance profiles of competing algorithms: PSO, DE, 
GA, SQP, SNDE. 

2) On the performance of sequential niching DE on 

optimal control case studies 

The results in Table III show that sequential niching 

differential evolution is the most robust among alternatives 

obtaining the best average results across all NOC problems, 

which exemplifies the benefit of the proposed algorithm. 

Although the framework has been conceptualised for three 

decades now [12], the current study has proposed a 

practical implementation that does not require a complex 

derating function as well as propose a parallel framework 

of implementation that can shorten the search time and 

easily scale up when parallel computation resources are 

available. In order to enhance the optimisation results, 

sensitivity analysis can be performed to select the best DE 

parameters (i.e., F, 𝑐𝑟 ). From a computational point of 

view, the use of merging operators can be investigated to 

potentially merge niches that are likely to converge to the 

same basin and save search iterations for the discovery of 

other promising niches [27]. Also, efficient adaptive 

approaches to estimate the niche radius can be investigated. 

TABLE III. SOLUTION ACCURACY OF NONLINEAR CONTROL 

PROBLEMS (NOCP) PER SOLVER 

 NOCP1 NOCP2 NOCP3 NOCP4 

SNDE 20.0948 35.5493 10.0942 13.0390 

PSO 20.0842 5.1846 9.8010 13.0390 

GA 20.0556 32.5493 9.9317 13.0390 

DE 20.0870 32.4768 10.0942 13.0390 

SQP 20.0855 0.0000 9.6473 13.0390 

VI. CONCLUSION 

The current study focused on improving the solution 

accuracy of differential evolution, which is often used for 

the optimal control of nonlinear processes. It has 

proceeded with the use of sequential niching to discover 

other promising regions, followed by a concurrent 

exploitation methodology using all available individuals 

owing to parallel workers. This approach not only 

improves the solution accuracy of the cost functional, but 

it also permits the obtention of alternate control profiles 

relevant to control practitioners. Future work will consist 

of estimating the radius of the basin of convergence 

adaptively and will make use of merging operators to join 

basins of convergence that could converge to the same 

optima and thus save computational resources or permit 

the search for other potential promising areas. Finally, 

sensitivity analysis of DE parameters will also be 

investigated. 
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