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Abstract—The most common video conferencing topologies 

are mesh and star topologies. The star topology requires a 

powerful server which leads to high costs. In the mesh 

topology, this is not the case, as each participant is directly 

connected to every other participant. However, due to the 

load caused by the numerous connections, the mesh 

topology is not suitable for larger video conferences. In this 

paper, we propose a video conferencing service that 

combines the advantages of the mesh and star topologies to 

enable larger video conferences without the need for 

powerful servers. This is achieved by distributing the video 

streams over the most powerful participants instead of a 

server. The resulting system achieves an improvement in 

video quality compared to a reference test in the mesh 

topology, which was determined based on the transmission 

rate and frame rate.   

Keywords—video conferencing, distributed, webRTC 

I. INTRODUCTION

Video conferencing services are often used for one-to-

one conversations between two participants. In this 

scenario, a direct connection between them is the best 

way to perform the transmission. Video conferencing 

with significantly more than two participants is common, 

especially in the business environment. However, with 

the outbreak of the Corona pandemic, they also found 

their way into schools, universities, and private life.  

WebRTC adds real-time communication capabilities to 

all web browsers. It allows video conferencing without 

the installation of an additional program [1]. The most 

common topologies used to build WebRTC conferences 

are the mesh and star topologies [2]. In the star topology, 

participants send their video streams to a server, that 

distributes them to all other participants [3]. One of the 

drawbacks of this topology is, however, that powerful 

servers must be deployed, which increases cost and limits 

scalability according to the power of the server 

infrastructure [4]. Also, this topology includes a single 

point of failure for the video conference [5]. 

In a mesh topology, each participant is directly 

connected to every other participant. Therefore, no 

powerful server is required. However, the scalability of 
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the topology is also limited because the numerous 

connections with other participants put a heavy load on 

the bandwidth and CPU of each individual participant as 

the conference size increases. Therefore, this topology is 

not suitable for larger video conferences [6]. 

Nevertheless, to enable large videoconferences without 

a powerful server, another way must be found to 

distribute the video streams to the participants. A video 

conferencing service that distributes the video streams 

over the most capable participants could enable high 

performance as in the star topology at low infrastructure 

costs like mesh topology. 

In this paper we propose a WebRTC service that does 

not require a powerful server infrastructure. This is 

achieved by distributing parts of the server's tasks among 

the most capable participants. To do so, two problems 

must be solved. On the one hand, a method is required to 

determine the performance of the individual participants. 

Additionally, an algorithm is needed that constructs the 

topology based on the performance of the participants. In 

this paper we describe a possible solution to both 

problems and show that a high-quality video 

conferencing service can be established without the need 

for a powerful infrastructure. 

II. RELATED WORK

In 2007, Horiuchi et al. [7] presented a method to 

implement a network for a scalable video conferencing 

system using a tree structure. The work includes concepts 

for a network tree mechanism, a tree reorganization 

mechanism, and a fault recovery mechanism. Their 

functionality has been demonstrated in simulations. 

Beyond simulation, however, no practical experiments 

have been conducted. 

The work of Anitha and Rajkumar [8] describes the 

use of a tree structure. By using multilayer video 

transmission, they achieved high quality video 

transmission without disadvantages caused by 

participants with weak bandwidth for the rest of the 

conference. The signaling for setting up the 

videoconference network and an algorithm for selecting 

the root nodes are not discussed, though. 

The work by Hamzaoui et al. [2] provides a conceptual 

design for a signaling topology for heterogeneous 
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dynamically changing networks. In addition, the use of 

root nodes is proposed as a replacement for turn servers 

that would otherwise have to be provided externally.  

A protocol that builds on WebRTC and enables 

distributed video conferencing is presented in Hallberg's 

work [9]. It incorporates a distributed algorithm for 

voice-activated quality control to reduce the 

computational and network resources used. A proof-of-

concept web application is developed using the protocol 

and its performance is evaluated. The author notes that 

the maximum possible conference size is limited by the 

network capacity of the active speaker. As a solution, a 

distribution of the speaker's load among the other 

participants is proposed. It was not within the scope of 

the work, to implement this approach or to specify 

possible implementations in more detail. 

In 2014, Grönberg and Meadows-Jönsson [10] also 

proposed a tree topology for use in video conferencing 

services. They implemented the service based on 

appear.in, a WebRTC video conferencing application 

that has been renamed to whereby 1  in the meantime. 

Based on their implementation, they show with 

experiments that the load on most nodes could be reduced, 

and the overall resolution of the image transmissions 

increased. With the reduced load on multiple nodes, a 

larger video conference can be conducted with the same 

quality as the reference implementation. However, their 

approach lacks the development of an adaptive method to 

build a tree. The selection of root nodes relies on manual 

selection by the developers. 

III. DISTRIBUTED VIDEOCONFERENCING SYSTEM

DCS was chosen as the abbreviation for the 

Distributed Conference Service. The basic functions are 

structured as follows. The DCS consists of a server and a 

web application that is running on the user's side. The 

user requests the web application from the server. A 

socket connection is established between the server and 

the web application to exchange messages. The server 

processes incoming messages itself or otherwise forwards 

them to the corresponding participant. A message 

protocol created for this purpose enables the correct 

assignment and processing of messages. The server is 

responsible for the mutual finding and coordination of the 

users. The WebRTC connections on the other hand are 

established directly between the participants. The transfer 

of image and sound data happens directly between the 

participants over the WebRTC connections. The 

necessary information for establishing the WebRTC 

connections is transmitted by messages that are 

forwarded by the server. The server is then no longer 

necessary for the operation of the connections. 

A. Topology Adjustment Procedure

In order to enable distributed conferences with many

participants low-performing participants must be relieved. 

This is achieved by strong participants forwarding the 

video streams of weak participants. Fig. 1 illustrates how 

1 https://whereby.com/ 

the load can be relieved by forwarding. In part a) the 

initial situation is described. Five users are in a video 

conference using the mesh topology. User A must encode 

and send four video streams. Part b) shows the video 

conference when user B relieves user A by forwarding. 

Only one outgoing connection from user A to user B is 

necessary as the latter forwards the video stream to the 

other participants. The smaller number of outgoing 

transmissions reduces the workload for user B. Among all 

participants, those must be found who are able to perform 

this kind of stream forwarding. Participants who need the 

most support must be assigned to them. 

The structure of the DCS is based on the following 

characteristics. A supernode is a powerful participant. It 

forwards video streams from one or more weak nodes to 

the others and thus supports them by reducing their 

workload. Participants that do not forward video streams 

are subsequently referred to as simple nodes. They are 

either supported by a supernode or participate as a neutral 

node that handle sending of their own video stream to all 

participants themselves. 

Figure 1. Comparison of the outgoing video streams of user A in an 
ordinary mesh topology against when forwarded by user B.  

This depends on the availability of a supernode and 

their own workload. Each participant can take the role of 

a simple node or a supernode in a video conference. 

The DCS must decide autonomously how the network 

should be structured. A mechanism is needed that 

determines which participant acts as a supernode and 

what tasks it must perform. An overview of the 

performance of all participants is required as a basis for 

decision-making. It is also necessary to record and keep 

up-to-date which tasks are currently being performed by a 

supernode. In the video conferencing solution presented 

in this paper, the network is controlled by the server.  

The way the video conferencing service organizes its 

topology is as described below. 

The participants determine their performance before 

joining the video conference and send it to the server in 

the form of a performance value. This value represents 

the maximum number of video streams that a participant 

can handle and is referred to as the connection score. 

How this score is calculated is described in further detail 

in Section III-C. 
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The Server has the task of maintaining the participant 

directory. This contains the connection score of each 

participant. Based on this data, the server calculates an 

optimized topology structure with the goal of enabling 

the largest possible video conference. It keeps a record of 

which video streams are forwarded in the participant 

directory. Then the server sends messages with 

instructions to all participants who are supposed to 

forward streams. Whenever the initial situation changes, 

the optimized structure of the topology is updated. This 

happens every time a user joins or leaves the conference. 

B. Network Organization 

The algorithm developed for network organization 

runs on the server and computes an optimized structure of 

the required topology of the network. The server uses the 

participant directory as the source of data. The aim of the 

procedure is to restructure the topology in such a way that 

participants with a low score are relieved from network 

load. In this way, the goal of making the video 

conferencing service suitable for larger conferences can 

be achieved. To achieve this goal, high-scoring 

participants are instructed to forward the video streams of 

low-scoring participants. 

The procedure can be described as follows. The initial 

situation of the video conference is a mesh topology. 

Each participant is directly connected to every other 

participant. This setup is maintained for as long as 

possible. In this situation, the network latency is 

particularly low. 

After more and more participants join, the video 

conference becomes too large and the network connection 

or the CPU performance of a participant is no longer 

sufficient to handle the number of connections. Then the 

participant should be relieved to keep the conference 

running. For this purpose, the algorithm must assign the 

appropriate forwardings. The process is as follows. As 

soon as a participant is identified as running out of 

network bandwidth and/or processing power and thus 

requires forwarding by other participants, it is completely 

assigned to a supernode. This makes the participant a 

child node of that supernode. The supernode is then 

responsible for forwarding all of the child nodes video 

streams. The node that has the most capacity left is 

always selected as the supernode. An allocation only 

takes place under the condition that the supernode itself is 

not running out of bandwidth or processing power by this 

operation. 

To determine if a low performing participant is 

running out of power and how many forwardings a high 

performing participant can handle the remaining capacity 

is calculated. This is done by the server based on the 

participant directory which includes the connection score 

per participant. This score represents the total number of 

WebRTC connections with transmission in both 

directions that a participant can handle. The remaining 

capacity is the number of outgoing transmissions that a 

subscriber can additionally handle in the current state of 

the topology.  

Just the outgoing transmissions are used, as only the 

number of these are relevant for the algorithm.  The 

number of incoming connections that must be handled by 

the participants remains unaffected by the restructuring of 

the topology. At any given time, it corresponds to the 

number of other conferees as one participant must receive 

the video stream of all other participants. The difference 

with outgoing transmissions is that with the help of a 

supernode only one transmission is needed regardless of 

the number of other participants. The number of outgoing 

connections increases for supernodes with each 

transmission they forward and decreases at the same rate 

for their child nodes. Therefore, only the outgoing 

capacity is relevant for the number of additional 

forwardings that a supernode can handle. 

The remaining capacity is calculated as follows. The 

burden of a participant in the current state of the topology 

is composed from the meshBurden and the relayBurden. 

The meshBurden is the number of times the participant 

must send its own video stream and equals the number of 

other participants in the conference: 

 
If the participant is forwarded by a supernode, the 

meshBurden is 1. This is the case because the participant 

must send his video stream only to the supernode and not 

to all other participants. 

The relayBurden is applicable to supernodes and 

equals the number of nodes the supernode is forwarding 

to. The burden of forwarding all video streams of one 

participant therefore is 

 
This is because the video stream must be forwarded to 

everyone except the supernode and the source. 

The two values are then summed and subtracted from 

the score  

 

in order to get the remaining capacity. 

The remaining capacity of each participant can then be 

used to assign the weak participants to the stronger ones 

in order to optimize the topology. Algorithm 1 shows the 

implementation.  

 

 
 

The CalculateOptimizedTopology function is passed 

the clientRegister. It makes changes to it and returns it. 

These changes are the optimizations to the topology in 

the form of the selection of supernodes and their 

associated children. 
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In Line 2 of Algorithm 1, the main loop of the function 

starts. In Line 3, the remaining capacity of all participants 

is calculated and saved in a dictionary. Then 

minCapacityNode and maxCapacityNode are used to 

determine the two participants with the highest and 

lowest remaining capacity. They are stored in the two 

variables weakest and strongest from where these can be 

easily accessed.  

The condition in Lines 6–10 expresses the following 

ideas. The first check weakest.value < 0 determines 

whether the weakest node is running out of capacity. If its 

remaining capacity is less than 0, it needs support. The 

second check ensures that the strongest node has enough 

remaining capacity to support the weakest node. 

Therefore, its capacity must correspond to at least the 

conference size – 2. If both conditions are met, the entry 

of the strongest node is changed, and the weakest node is 

added to the list of child nodes of the strongest node. 

Then the whole loop is executed again. 

When the loop is executed again, the remaining 

capacity is recalculated for each participant while the 

changes to the topology from previous runs are 

considered. Another node will now take the position of 

the weakest node as their remaining capacity has 

improved due to the support. The position of the strongest 

node changes depending on which node has the sparest 

capacity under the new circumstances. 

The loop terminates as soon as either the weakest node 

is no longer overwhelmed, or the strongest node no 

longer has enough capacity for further support. The 

adjusted clientRegister is then returned. The server finally 

begins to communicate the topology changes to the 

network by issuing instructions to the participants. 

C. Determination of the Connection Score 

The developed software performs a restructuring of the 

topology with the goal of relieving the low-performing 

participants at the expense of the strong participants. For 

this purpose, it is essential to be able to determine how 

powerful a participant is. This cannot be easily 

determined by a web application running in a browser. 

Therefore, the web application performs a self-test. 

The result is the connection score of a participant and this 

score is sent to the server after joining a conference.  

 

 

Figure 2. Procedure of the self-check to determine the score. The user 

establishes WebRTC connections to himself until their transmission 
quality falls below a certain level. 

The principle behind the developed self-check is 

shown in Fig. 2. The client web-application establishes 

multiple WebRTC connections to itself relayed over a 

TURN-server. It sends a video stream over each of these 

connections. The streams pass through the complete 

WebRTC media pipeline on the users device. After 

establishing a WebRTC connection the client waits a 

predefined time interval of two seconds before the next 

connection is initiated. After a certain, system specific 

number of simultaneous transmissions, the system runs 

into an overloaded state. This becomes noticeable as the 

quality of the transmissions degrade. To detect the 

overload of the system, the status values of the WebRTC 

connections are collected (see below). This is achieved 

through the WebRTC statistics API [11]. The self-check 

is aborted if the quality of the transmission is considered 

insufficient for a videoconference. How this is 

determined based on the collected data is described below. 

The number of connections established until the abort is 

the resulting connection score. It corresponds to the 

maximum number of transmissions a participant is 

capable of handling. 

The self-check is performed only once before the start 

of the video conference. The value determined remains 

for the entire conference. The reason for this is this 

purposeful overload would lead to a severe degradation 

of quality in the running conference. In addition, a video 

conference running in parallel would also falsify the 

measurement. 

The overload of the host system is detected based on 

status values of the WebRTC connections. The following 

three values are calculated from these and were chosen as 

indicators for the transmission quality. 

Frame rate refers to the number of frames that are 

played back per time span. This indicator is read on the 

receiver side to measure how smoothly the video stream 

appears to the user during playback. If it falls below the 

threshold of 10 fps, the transmission is disturbed and the 

video stutters. In this case, the quality is considered 

insufficient. 

Delay is composed of several values and here 

describes the delay over the entire path from the 

recording to the playback of a video frame. In addition to 

the transmission time via the network, this also includes 

the processing time on the transmitter and receiver side. 

Among other things, this includes the duration of 

encoding, decoding, and the delay due to jitter buffer 

until a video frame is played. If the delay exceeds a 

threshold of 250ms, bidirectional video communication is 

considered unfeasible. 

The transmission rate is taken on the receiver side 

and measures the amount of data transmitted over a 

certain period of time. It drops when the internet 

connection is overloaded. If its value falls below 350 

Kbit/s, the quality of the video stream is considered 

insufficient. 

The thresholds used were determined empirically with 

the help of three colleagues. They were asked to watch 

the video streams of an ongoing self-check and to 

determine the point at which they perceived the video 

quality to be insufficient for a conversation. The value of 

the indicators at this point were used as a baseline. The 

test was repeated under different conditions. On each run, 

the thresholds were manually adjusted to match the 

perception of the video until the measured score matched 

the subjective rating. 
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Using this approach, a threshold could be defined for 

each of the indicators individually. As soon as one of 

these values falls below the threshold, the quality is 

considered being below an acceptable level. The system 

has run out of resources to handle more connections and 

the self-check is aborted.  

IV. EXPERIMENTS 

This section presents the results of the conducted 

experiments. They are intended to answer to what extent 

the objective of the work could be fulfilled. For this 

purpose, DCS and its components are tested to make 

statements about a video conferencing service with the 

described concept. The DCS was examined regarding the 

following aspects 

• Does the developed self-check deliver meaningful 

results? 

• Do the forwarding actions initiated by the system lead 

to an improvement? 

A. Self-Check on Different Bandwidths 

The score must be reasonably close to the number of 

possible connections that the participant is capable of. If 

the self-check does not deliver appropriate results, no 

meaningful optimizations of the topology can be made. 

To find out to what extent the determined score 

corresponds to the performance of the system, the  

self-check was performed under different conditions and 

the results were compared. 

In the first step, test runs were performed under 

different network conditions. For this purpose, the 

bandwidth of a test device was limited by the “Network 

Link Conditioner” software tool to simulate a poor 

Internet connection. The test series was intended to show 

how the self-check reacts to different network conditions 

and how this affects the calculated score. As TURN-

server the open-source project Coturn2 was installed on a 

rented virtual server.  

A MacBook Pro 15"2017 was used as the test device to 

run the self-check. The bandwidth of the test device was 

limited to 3 Mbps, 5 Mbps and 10 Mbps. For each of 

these settings, the self-check was run six times. Two 

minutes wait time between each run allowed the 

temperature of the CPU to stabilize and prevented the 

result from being affected by heat-induced CPU throttling. 

Only the upload bandwidth was limited. Since the videos 

are transferred to a turn server and back during the self-

check, the required up- and download bandwidth are the 

same. Therefore, only the lower of the two is relevant and 

usually most residential internet connections have more 

download than upload bandwidth. 

The scores calculated during the self-checks are listed 

in Table I. From the data, it is evident that there is a direct 

proportionality between the available bandwidth and the 

measured score. A video transmission of the DCS 

requires 500 kbit/s bandwidth. An upload bandwidth of  

3 Mbit/s should therefore be sufficient for six connections. 

For this bandwidth, the self-check resulted in an average 

 
2 https://github.com/coturn 

score of 6, which is in line with expectations under these 

conditions. A bandwidth of 5 Mbit/s should be sufficient 

for ten transmissions. Under these conditions, the average 

score was 9.8 and is thus close to the theoretical estimate 

of performance. A bandwidth of 10 Mbit/s should be 

sufficient for 20 transmissions. The average score in this 

test series was 18.3. The determined scores only deviate 

slightly from each other within the test series. 

TABLE I. SCORES CALCULATED BY THE SELF-CHECK AT DIFFERENT 

UPLOAD BANDWIDTHS 

Bandwidth Test series Average 

3 Mbit/s 5 6 7 6 6 6 6.0 

5 Mbit/s 10 10 9 12 9 9 9.8 

10 Mbit/s 19 18 16 20 18 19 18.3 

 

The experiment shows that the self-check can reliably 

determine the performance of the Internet connection 

under the testing conditions. The determined score is very 

close to the number of transmissions that should be 

possible with the respective bandwidth. Therefore, it is 

plausible that the determined score corresponds to the 

number of transmissions. The small deviation between 

the scores measured at the same bandwidth shows that the 

results of the self-check are reliable. 

B. Self-Check on Different Devices 

In addition to the tests under different network 

conditions, the self-check was also run on different 

devices. This is to determine whether the self-check can 

detect the performance of the hardware. 

The conditions for this test were almost the same as for 

the previous one. However, redirection of video 

transmissions via the turn server was disabled. The reason 

for this was the limited upload bandwidth at the test site. 

This would have meant an upper limit for the result of the 

self-check testing different hardware. Therefore, this limit 

was removed for this test. 

The following devices were used for the test. A 

Lenovo Yoga 720 convertible with Intel Core i5-8250U 

processor and 15W TDP as a laptop with lower 

performance. A MacBook Pro 15"2017 with i7 and 45W 

TDP as a laptop with higher performance. Lastly, a 

desktop computer with Ryzen 5 1600 and 60W TDP as 

the most powerful device. 

TABLE II. SCORES CALCULATED BY THE SELF-CHECK WITH DIFFERENT 

HARDWARE 

Device Test series Average 

Convertible 6 25 24 24 21 23 20.5 

MacBook 37 41 37 38 40 38 38.5 

Desktop 64 63 62 60 64 63 62.7 

 

Table II lists the scores determined for the individual 

devices during the self-checks. The average score 

achieved by the devices over the measurement series 

differs noticeably between the devices. The smallest 

average score was achieved by the convertible with a 

value of 20.5. The MacBook achieved a higher average 

score of 38.5. The desktop computer, as the most 

powerful test device, achieved the highest average score 
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of 62.7. The determined scores also only deviate slightly 

within the test series. The more powerful devices 

received a higher score than the weaker ones which is 

according to our expectations. This indicates that the self-

check takes the processing performance of the devices 

into account. The small deviation between different test 

series indicate that the score can be determined reliably. 

C. Videoconferencing with Six Participants (no DCS) 

Within the scope of this paper, the DCS was evaluated 

in a video conference with six participants. The 

bandwidth of one participant was limited to simulate a 

weak internet connection. The test was performed with 

the full functionality of DCS as well as with deactivated 

load redistribution as a reference test. Status values of all 

WebRTC transmissions were recorded, evaluated, and 

compared. 

A MacBook Pro 15"2017, a desktop computer and four 

Lenovo Yoga 720 convertibles were used as test devices. 

The upload bandwidth of the MacBook was limited to 

1500 kbit/s using the software tool “Network Link 

Conditioner”. The network connection of the other test 

devices remained unaffected. The test devices joined the 

video conference at intervals of 20 seconds. The test 

setup is shown in Fig. 3. 
 

 

Figure 3. Experimental setup of the reference test in the mesh 

topology. The six participants join the video conference in the order 
noted. The first device’s transmissions to the others, are shown as black 
arrows. 

First, the reference test was conducted. Therefore, the 

functions for relieving weak participants were deactivated. 

As a result, the video conference takes place in the mesh 

topology.  

The transmission rate at which the other participants 

receive the video stream from participant 1 is shown over 

time in Fig. 4. The time points at which participants 

joined are inserted as vertical lines. The first transmission 

starts when user 2 joins. The line shown in dark blue 

indicates the transmission rate at which he receives the 

video stream from participant 1. The transmission rate is 

500 kbit/s until the next participant joins. When user 3 

joins, the transmission rate of the two participants 

initially drops, but stabilizes again and rises back to the 

previous 500 kbit/s. The transmission rate of user 2 drops 

to 500 kbit/s. After user 4 joins, the transmission rate of 

all participants fluctuates increasingly and continues to 

decrease as more users join the conference. The graph 

also shows that the transfer rates differ greatly between 

the participants. While the transfer rate of user 5 

increases up to 500 kbit/s for a short time directly after 

joining, the transfer rate of participant 1 is below 100 

kbit/s at this time. 
 

 

Figure 4. The transmission rate at which user 1 transmits his video 

stream to the other participants in the reference test. The users join the 
video conference one by one. 

The trend of the transmission rate during this test run is 

also shown by Table III. In this table, the average 

transmission rate of all users in the respective phases is 

listed. It is noticeable that the average transmission rate 

decreases steadily as the number of participants increases. 

While the average transmission rate for two participants 

was 488 kbit/s at the beginning of the conference, it is 

only 157 kbit/s after six participants joined. 

TABLE III: THE AVERAGE TRANSMISSION RATE IN THE REFERENCE 

TEST FOR THE RESPECTIVE CONFERENCE SIZE 

Number of participants 2 3 4 5 6 

Average transmission rate 
on kbit/s 

488 379 291 196 157 

 

Fig. 5 shows the frame rate at which user 1’s 

transmissions are played back on the other devices. At the 

beginning with only two participants, this is constant at 

30 frames per second. As the number of participants 

increases, the number of dropouts also increases. 
 

 

Figure 5. The frame rate over time of the videoconference in the 
reference test. The fluctuations increase as the conference size increases. 

D. Videoconferencing Using DCS with Six Participants 

After the reference test, the load distribution functions 

were reactivated. The test was repeated with the same test 

setup to compare the measured values. The participants 

performed the self-check automatically prior to 

participation as they would under real conditions. The 

resulting scores are shown in Fig. 6. 
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In the specified joining order, the course of the 

experiment is as follows. With its score of 3, user 1 is 

overloaded as soon as there are more than three other 

participants in the conference. This is the case when user 

5 joins the conference. From that moment on, his video 

stream is forwarded by user 2 as a supernode. 
 

 

Figure 6. Test with load balancing enabled. The test devices are shown 
with the scores they calculated. 

This forwarding is visualized by the black arrows in 

the figure. Before user 5 joins the conference, the 

topology does not differ between the two test runs 

performed. 
 

 

Figure 7. The transmission rate at which user 1 transmits its video 

stream to the other participants. When user 5 joins, the forwarding takes 
effect and the transmission rates increase again. 

The transmission rate at which the other participants 

receive the video stream from participant 1 is shown in 

Fig. 7. Until user 5 joins, the course here is similar to the 

reference test. In both cases, when the fourth participant 

joins, the transmission rate for users 2 and 3 drops 

significantly. With the joining of user 5 the forwarding 

becomes active. From here on, the topology differs 

between the two trials. As visible in the figure, the 

transmission rates of user 3 and user 4 initially drop to 

zero. Direct transmissions have been terminated at this 

point. They are replaced by new connections via the 

supernode. The graph shows the transmission rate of the 

new connections from this point on. After the switch, the 

graph shows that the transfer rates of all users increase 

sharply. Even after user 6 joins, the transmission rate 

remains stable - close to the maximum transmission rate 

per transmission of 500 kbit/s. 

The effect that forwarding has on the transmission rate 

can also be seen in the average transmission rate in  

Table IV. Similar to the situation during the reference test, 

the average transmission rate initially decreases as the 

number of participants increases. When the fifth 

participant joined and forwarding started, the results 

clearly differed. While the transfer rate in the reference 

test continues to drop from participant 5 and is only 

around 196 kbit/s for 5 participants, it increases from 

about 286 to 417 kbit/s when load balancing is enabled. 

The difference is even greater when the full conference 

size of six participants is reached. The average 

transmission rate in the reference test is about 157 kbit/s 

while when using DCS the rate increases to about 495 

kbit/s. 

TABLE IV: THE AVERAGE TRANSMISSION RATE IN THE TEST WITH 

ACTIVATED LOAD DISTRIBUTION 

Number of participants 2 3 4 5 6 

Average transmission rate 
on kbit/s 

492 491 286 417 495 

 

 

Figure 8. The frame rate over time during the video conference. After 

forwarding from user 5 joining, the frame rate is more stable. 

If we look at the frame rate in Fig. 8, we see that there 

are significantly smaller fluctuations here. Like the 

transmission rate, the fluctuations increase from the 4th 

participant on. When the fifth participant joins, the 

change takes place and the frame rate shows less 

fluctuation from this point on than before. Compared with 

the reference test, the dips in frame rate from the fifth 

participant onward are smaller and less frequent. 

The results demonstrate that the DCS can perform 

topology changes based on the state of the current video 

conference. In the given experimental setup, it reacts 

correctly. The user with limited bandwidth was identified 

and his video streams are automatically forwarded by the 

best performing participant in the conference.  

From the gathered data, it can be concluded that the 

performed forwarding has improved the quality of the 

video transmission. The transmission rate is significantly 

higher with activated forwarding than in the reference test 

with the same conference size. If only little bandwidth is 

available, WebRTC automatically reduces the 

transmission rate at the expense of image quality. For this 

purpose, the resolution is reduced or the video stream is 

encoded in lower quality. A higher transmission rate can 

therefore be assumed to also yield a higher image quality.  

In addition to the transmission rate, the frame rate 

shows that the quality is improved by the forwarding.  

Fig. 5 shows that the frame rate in the reference test is 

subject to increasingly frequent fluctuations as the 

conference size increases. If the frame rate is irregular 

and drops frequently, stuttering is to be expected. In such 

a case, it can be assumed that this lowers the perceived 
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quality of the video transmission. Fig. 8 shows that in the 

test with activated load balancing, the dips in frame rate 

become less with activation of forwarding. With a more 

constant frame rate with fewer dips, a smoother display 

can be assumed. 

V. CONCLUSION 

In this work, we proposed a WebRTC based 

videoconferencing service that autonomously optimizes 

the network topology named DCS. The goal of DCS was 

to enable larger video conferences without maintaining a 

powerful server infrastructure. This was implemented by 

identifying the most powerful participants in the video 

conference in terms of network bandwidth and computing 

power in order to support the weakest participants by 

forwarding and distributing their video streams. The 

paper presented the concepts on which DCS is based. 

These included how the videoconferencing service is 

organized, how the performance of the participants is 

determined, and how, on this basis, it is decided what 

changes to the network topology should be made to find 

the optimal solution for the distribution of streams. 

Subsequently, a series of experiments were carried out to 

determine the applicability of the system for the desired 

purpose. The experiments showed that DCS can make 

changes to the network topology based on the 

information about the current videoconference. The 

changes resulted in an improvement in video quality, as 

determined by transmission rate and frame rate. As an 

important precondition, it was shown that the 

performance of the participants could be reliably 

determined. In experiments with different bandwidth and 

hardware, the self-check yielded plausible results. The 

number of participants in the experiments was limited to 

6. The optimization of the topology should also be 

effective for larger videoconferences, as long as there are 

enough strong participants to support the weak ones. 

From the perspective of a weak participant that gets 

support, the performance should be comparable to that of 

a star topology. An overload of the download bandwidth 

in large conferences could become problematic, however, 

but this problem would also apply to star topologies with 

a server carrying the load. As further work we plan to 

evaluate our software on a larger number of devices 

under varying network conditions, including mobile 

networks, in order to undermine our findings. Overall, it 

could be shown that our implementation of a client-based 

distributed conferencing service, DCS, is a valuable tool 

for the provision of conferencing services without the 

need for an expensive server infrastructure.  
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