
Client-Based Distributed Video Conferencing via

WebRTC

Dominic Kern 1,* and Matthias Teßmann 2

1 KURZ Digital Solutions GmbH & Co. KG, 90763 Fürth, Germany
2 Nuremberg Institute of Technology Georg Simon Ohm, 90489 Nürnberg, Germany;

Email: matthias.tessmann@th-nuernberg.de (M.T.)

* Correspondence: dominic.kern@kurzdigital.com (D.K.)

Abstract—The most common video conferencing topologies

are mesh and star topologies. The star topology requires a

powerful server which leads to high costs. In the mesh

topology, this is not the case, as each participant is directly

connected to every other participant. However, due to the

load caused by the numerous connections, the mesh

topology is not suitable for larger video conferences. In this

paper, we propose a video conferencing service that

combines the advantages of the mesh and star topologies to

enable larger video conferences without the need for

powerful servers. This is achieved by distributing the video

streams over the most powerful participants instead of a

server. The resulting system achieves an improvement in

video quality compared to a reference test in the mesh

topology, which was determined based on the transmission

rate and frame rate.

Keywords—video conferencing, distributed, webRTC

I. INTRODUCTION

Video conferencing services are often used for one-to-

one conversations between two participants. In this

scenario, a direct connection between them is the best

way to perform the transmission. Video conferencing

with significantly more than two participants is common,

especially in the business environment. However, with

the outbreak of the Corona pandemic, they also found

their way into schools, universities, and private life.

WebRTC adds real-time communication capabilities to

all web browsers. It allows video conferencing without

the installation of an additional program [1]. The most

common topologies used to build WebRTC conferences

are the mesh and star topologies [2]. In the star topology,

participants send their video streams to a server, that

distributes them to all other participants [3]. One of the

drawbacks of this topology is, however, that powerful

servers must be deployed, which increases cost and limits

scalability according to the power of the server

infrastructure [4]. Also, this topology includes a single

point of failure for the video conference [5].

In a mesh topology, each participant is directly

connected to every other participant. Therefore, no

powerful server is required. However, the scalability of

Manuscript received August 27, 2022; revised October 21, 2022;

accepted December 7, 2022; published March 14, 2023.

the topology is also limited because the numerous

connections with other participants put a heavy load on

the bandwidth and CPU of each individual participant as

the conference size increases. Therefore, this topology is

not suitable for larger video conferences [6].

Nevertheless, to enable large videoconferences without

a powerful server, another way must be found to

distribute the video streams to the participants. A video

conferencing service that distributes the video streams

over the most capable participants could enable high

performance as in the star topology at low infrastructure

costs like mesh topology.

In this paper we propose a WebRTC service that does

not require a powerful server infrastructure. This is

achieved by distributing parts of the server's tasks among

the most capable participants. To do so, two problems

must be solved. On the one hand, a method is required to

determine the performance of the individual participants.

Additionally, an algorithm is needed that constructs the

topology based on the performance of the participants. In

this paper we describe a possible solution to both

problems and show that a high-quality video

conferencing service can be established without the need

for a powerful infrastructure.

II. RELATED WORK

In 2007, Horiuchi et al. [7] presented a method to

implement a network for a scalable video conferencing

system using a tree structure. The work includes concepts

for a network tree mechanism, a tree reorganization

mechanism, and a fault recovery mechanism. Their

functionality has been demonstrated in simulations.

Beyond simulation, however, no practical experiments

have been conducted.

The work of Anitha and Rajkumar [8] describes the

use of a tree structure. By using multilayer video

transmission, they achieved high quality video

transmission without disadvantages caused by

participants with weak bandwidth for the rest of the

conference. The signaling for setting up the

videoconference network and an algorithm for selecting

the root nodes are not discussed, though.

The work by Hamzaoui et al. [2] provides a conceptual

design for a signaling topology for heterogeneous

204

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

10.12720/jait.14.2.204-211doi:

dynamically changing networks. In addition, the use of

root nodes is proposed as a replacement for turn servers

that would otherwise have to be provided externally.

A protocol that builds on WebRTC and enables

distributed video conferencing is presented in Hallberg's

work [9]. It incorporates a distributed algorithm for

voice-activated quality control to reduce the

computational and network resources used. A proof-of-

concept web application is developed using the protocol

and its performance is evaluated. The author notes that

the maximum possible conference size is limited by the

network capacity of the active speaker. As a solution, a

distribution of the speaker's load among the other

participants is proposed. It was not within the scope of

the work, to implement this approach or to specify

possible implementations in more detail.

In 2014, Grönberg and Meadows-Jönsson [10] also

proposed a tree topology for use in video conferencing

services. They implemented the service based on

appear.in, a WebRTC video conferencing application

that has been renamed to whereby 1 in the meantime.

Based on their implementation, they show with

experiments that the load on most nodes could be reduced,

and the overall resolution of the image transmissions

increased. With the reduced load on multiple nodes, a

larger video conference can be conducted with the same

quality as the reference implementation. However, their

approach lacks the development of an adaptive method to

build a tree. The selection of root nodes relies on manual

selection by the developers.

III. DISTRIBUTED VIDEOCONFERENCING SYSTEM

DCS was chosen as the abbreviation for the

Distributed Conference Service. The basic functions are

structured as follows. The DCS consists of a server and a

web application that is running on the user's side. The

user requests the web application from the server. A

socket connection is established between the server and

the web application to exchange messages. The server

processes incoming messages itself or otherwise forwards

them to the corresponding participant. A message

protocol created for this purpose enables the correct

assignment and processing of messages. The server is

responsible for the mutual finding and coordination of the

users. The WebRTC connections on the other hand are

established directly between the participants. The transfer

of image and sound data happens directly between the

participants over the WebRTC connections. The

necessary information for establishing the WebRTC

connections is transmitted by messages that are

forwarded by the server. The server is then no longer

necessary for the operation of the connections.

A. Topology Adjustment Procedure

In order to enable distributed conferences with many

participants low-performing participants must be relieved.

This is achieved by strong participants forwarding the

video streams of weak participants. Fig. 1 illustrates how

1 https://whereby.com/

the load can be relieved by forwarding. In part a) the

initial situation is described. Five users are in a video

conference using the mesh topology. User A must encode

and send four video streams. Part b) shows the video

conference when user B relieves user A by forwarding.

Only one outgoing connection from user A to user B is

necessary as the latter forwards the video stream to the

other participants. The smaller number of outgoing

transmissions reduces the workload for user B. Among all

participants, those must be found who are able to perform

this kind of stream forwarding. Participants who need the

most support must be assigned to them.

The structure of the DCS is based on the following

characteristics. A supernode is a powerful participant. It

forwards video streams from one or more weak nodes to

the others and thus supports them by reducing their

workload. Participants that do not forward video streams

are subsequently referred to as simple nodes. They are

either supported by a supernode or participate as a neutral

node that handle sending of their own video stream to all

participants themselves.

Figure 1. Comparison of the outgoing video streams of user A in an
ordinary mesh topology against when forwarded by user B.

This depends on the availability of a supernode and

their own workload. Each participant can take the role of

a simple node or a supernode in a video conference.

The DCS must decide autonomously how the network

should be structured. A mechanism is needed that

determines which participant acts as a supernode and

what tasks it must perform. An overview of the

performance of all participants is required as a basis for

decision-making. It is also necessary to record and keep

up-to-date which tasks are currently being performed by a

supernode. In the video conferencing solution presented

in this paper, the network is controlled by the server.

The way the video conferencing service organizes its

topology is as described below.

The participants determine their performance before

joining the video conference and send it to the server in

the form of a performance value. This value represents

the maximum number of video streams that a participant

can handle and is referred to as the connection score.

How this score is calculated is described in further detail

in Section III-C.

205

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

The Server has the task of maintaining the participant

directory. This contains the connection score of each

participant. Based on this data, the server calculates an

optimized topology structure with the goal of enabling

the largest possible video conference. It keeps a record of

which video streams are forwarded in the participant

directory. Then the server sends messages with

instructions to all participants who are supposed to

forward streams. Whenever the initial situation changes,

the optimized structure of the topology is updated. This

happens every time a user joins or leaves the conference.

B. Network Organization

The algorithm developed for network organization

runs on the server and computes an optimized structure of

the required topology of the network. The server uses the

participant directory as the source of data. The aim of the

procedure is to restructure the topology in such a way that

participants with a low score are relieved from network

load. In this way, the goal of making the video

conferencing service suitable for larger conferences can

be achieved. To achieve this goal, high-scoring

participants are instructed to forward the video streams of

low-scoring participants.

The procedure can be described as follows. The initial

situation of the video conference is a mesh topology.

Each participant is directly connected to every other

participant. This setup is maintained for as long as

possible. In this situation, the network latency is

particularly low.

After more and more participants join, the video

conference becomes too large and the network connection

or the CPU performance of a participant is no longer

sufficient to handle the number of connections. Then the

participant should be relieved to keep the conference

running. For this purpose, the algorithm must assign the

appropriate forwardings. The process is as follows. As

soon as a participant is identified as running out of

network bandwidth and/or processing power and thus

requires forwarding by other participants, it is completely

assigned to a supernode. This makes the participant a

child node of that supernode. The supernode is then

responsible for forwarding all of the child nodes video

streams. The node that has the most capacity left is

always selected as the supernode. An allocation only

takes place under the condition that the supernode itself is

not running out of bandwidth or processing power by this

operation.

To determine if a low performing participant is

running out of power and how many forwardings a high

performing participant can handle the remaining capacity

is calculated. This is done by the server based on the

participant directory which includes the connection score

per participant. This score represents the total number of

WebRTC connections with transmission in both

directions that a participant can handle. The remaining

capacity is the number of outgoing transmissions that a

subscriber can additionally handle in the current state of

the topology.

Just the outgoing transmissions are used, as only the

number of these are relevant for the algorithm. The

number of incoming connections that must be handled by

the participants remains unaffected by the restructuring of

the topology. At any given time, it corresponds to the

number of other conferees as one participant must receive

the video stream of all other participants. The difference

with outgoing transmissions is that with the help of a

supernode only one transmission is needed regardless of

the number of other participants. The number of outgoing

connections increases for supernodes with each

transmission they forward and decreases at the same rate

for their child nodes. Therefore, only the outgoing

capacity is relevant for the number of additional

forwardings that a supernode can handle.

The remaining capacity is calculated as follows. The

burden of a participant in the current state of the topology

is composed from the meshBurden and the relayBurden.

The meshBurden is the number of times the participant

must send its own video stream and equals the number of

other participants in the conference:

If the participant is forwarded by a supernode, the

meshBurden is 1. This is the case because the participant

must send his video stream only to the supernode and not

to all other participants.

The relayBurden is applicable to supernodes and

equals the number of nodes the supernode is forwarding

to. The burden of forwarding all video streams of one

participant therefore is

This is because the video stream must be forwarded to

everyone except the supernode and the source.

The two values are then summed and subtracted from

the score

in order to get the remaining capacity.

The remaining capacity of each participant can then be

used to assign the weak participants to the stronger ones

in order to optimize the topology. Algorithm 1 shows the

implementation.

The CalculateOptimizedTopology function is passed

the clientRegister. It makes changes to it and returns it.

These changes are the optimizations to the topology in

the form of the selection of supernodes and their

associated children.

206

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

In Line 2 of Algorithm 1, the main loop of the function

starts. In Line 3, the remaining capacity of all participants

is calculated and saved in a dictionary. Then

minCapacityNode and maxCapacityNode are used to

determine the two participants with the highest and

lowest remaining capacity. They are stored in the two

variables weakest and strongest from where these can be

easily accessed.

The condition in Lines 6–10 expresses the following

ideas. The first check weakest.value < 0 determines

whether the weakest node is running out of capacity. If its

remaining capacity is less than 0, it needs support. The

second check ensures that the strongest node has enough

remaining capacity to support the weakest node.

Therefore, its capacity must correspond to at least the

conference size – 2. If both conditions are met, the entry

of the strongest node is changed, and the weakest node is

added to the list of child nodes of the strongest node.

Then the whole loop is executed again.

When the loop is executed again, the remaining

capacity is recalculated for each participant while the

changes to the topology from previous runs are

considered. Another node will now take the position of

the weakest node as their remaining capacity has

improved due to the support. The position of the strongest

node changes depending on which node has the sparest

capacity under the new circumstances.

The loop terminates as soon as either the weakest node

is no longer overwhelmed, or the strongest node no

longer has enough capacity for further support. The

adjusted clientRegister is then returned. The server finally

begins to communicate the topology changes to the

network by issuing instructions to the participants.

C. Determination of the Connection Score

The developed software performs a restructuring of the

topology with the goal of relieving the low-performing

participants at the expense of the strong participants. For

this purpose, it is essential to be able to determine how

powerful a participant is. This cannot be easily

determined by a web application running in a browser.

Therefore, the web application performs a self-test.

The result is the connection score of a participant and this

score is sent to the server after joining a conference.

Figure 2. Procedure of the self-check to determine the score. The user

establishes WebRTC connections to himself until their transmission
quality falls below a certain level.

The principle behind the developed self-check is

shown in Fig. 2. The client web-application establishes

multiple WebRTC connections to itself relayed over a

TURN-server. It sends a video stream over each of these

connections. The streams pass through the complete

WebRTC media pipeline on the users device. After

establishing a WebRTC connection the client waits a

predefined time interval of two seconds before the next

connection is initiated. After a certain, system specific

number of simultaneous transmissions, the system runs

into an overloaded state. This becomes noticeable as the

quality of the transmissions degrade. To detect the

overload of the system, the status values of the WebRTC

connections are collected (see below). This is achieved

through the WebRTC statistics API [11]. The self-check

is aborted if the quality of the transmission is considered

insufficient for a videoconference. How this is

determined based on the collected data is described below.

The number of connections established until the abort is

the resulting connection score. It corresponds to the

maximum number of transmissions a participant is

capable of handling.

The self-check is performed only once before the start

of the video conference. The value determined remains

for the entire conference. The reason for this is this

purposeful overload would lead to a severe degradation

of quality in the running conference. In addition, a video

conference running in parallel would also falsify the

measurement.

The overload of the host system is detected based on

status values of the WebRTC connections. The following

three values are calculated from these and were chosen as

indicators for the transmission quality.

Frame rate refers to the number of frames that are

played back per time span. This indicator is read on the

receiver side to measure how smoothly the video stream

appears to the user during playback. If it falls below the

threshold of 10 fps, the transmission is disturbed and the

video stutters. In this case, the quality is considered

insufficient.

Delay is composed of several values and here

describes the delay over the entire path from the

recording to the playback of a video frame. In addition to

the transmission time via the network, this also includes

the processing time on the transmitter and receiver side.

Among other things, this includes the duration of

encoding, decoding, and the delay due to jitter buffer

until a video frame is played. If the delay exceeds a

threshold of 250ms, bidirectional video communication is

considered unfeasible.

The transmission rate is taken on the receiver side

and measures the amount of data transmitted over a

certain period of time. It drops when the internet

connection is overloaded. If its value falls below 350

Kbit/s, the quality of the video stream is considered

insufficient.

The thresholds used were determined empirically with

the help of three colleagues. They were asked to watch

the video streams of an ongoing self-check and to

determine the point at which they perceived the video

quality to be insufficient for a conversation. The value of

the indicators at this point were used as a baseline. The

test was repeated under different conditions. On each run,

the thresholds were manually adjusted to match the

perception of the video until the measured score matched

the subjective rating.

207

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

Using this approach, a threshold could be defined for

each of the indicators individually. As soon as one of

these values falls below the threshold, the quality is

considered being below an acceptable level. The system

has run out of resources to handle more connections and

the self-check is aborted.

IV. EXPERIMENTS

This section presents the results of the conducted

experiments. They are intended to answer to what extent

the objective of the work could be fulfilled. For this

purpose, DCS and its components are tested to make

statements about a video conferencing service with the

described concept. The DCS was examined regarding the

following aspects

• Does the developed self-check deliver meaningful

results?

• Do the forwarding actions initiated by the system lead

to an improvement?

A. Self-Check on Different Bandwidths

The score must be reasonably close to the number of

possible connections that the participant is capable of. If

the self-check does not deliver appropriate results, no

meaningful optimizations of the topology can be made.

To find out to what extent the determined score

corresponds to the performance of the system, the

self-check was performed under different conditions and

the results were compared.

In the first step, test runs were performed under

different network conditions. For this purpose, the

bandwidth of a test device was limited by the “Network

Link Conditioner” software tool to simulate a poor

Internet connection. The test series was intended to show

how the self-check reacts to different network conditions

and how this affects the calculated score. As TURN-

server the open-source project Coturn2 was installed on a

rented virtual server.

A MacBook Pro 15"2017 was used as the test device to

run the self-check. The bandwidth of the test device was

limited to 3 Mbps, 5 Mbps and 10 Mbps. For each of

these settings, the self-check was run six times. Two

minutes wait time between each run allowed the

temperature of the CPU to stabilize and prevented the

result from being affected by heat-induced CPU throttling.

Only the upload bandwidth was limited. Since the videos

are transferred to a turn server and back during the self-

check, the required up- and download bandwidth are the

same. Therefore, only the lower of the two is relevant and

usually most residential internet connections have more

download than upload bandwidth.

The scores calculated during the self-checks are listed

in Table I. From the data, it is evident that there is a direct

proportionality between the available bandwidth and the

measured score. A video transmission of the DCS

requires 500 kbit/s bandwidth. An upload bandwidth of

3 Mbit/s should therefore be sufficient for six connections.

For this bandwidth, the self-check resulted in an average

2 https://github.com/coturn

score of 6, which is in line with expectations under these

conditions. A bandwidth of 5 Mbit/s should be sufficient

for ten transmissions. Under these conditions, the average

score was 9.8 and is thus close to the theoretical estimate

of performance. A bandwidth of 10 Mbit/s should be

sufficient for 20 transmissions. The average score in this

test series was 18.3. The determined scores only deviate

slightly from each other within the test series.

TABLE I. SCORES CALCULATED BY THE SELF-CHECK AT DIFFERENT

UPLOAD BANDWIDTHS

Bandwidth Test series Average

3 Mbit/s 5 6 7 6 6 6 6.0

5 Mbit/s 10 10 9 12 9 9 9.8

10 Mbit/s 19 18 16 20 18 19 18.3

The experiment shows that the self-check can reliably

determine the performance of the Internet connection

under the testing conditions. The determined score is very

close to the number of transmissions that should be

possible with the respective bandwidth. Therefore, it is

plausible that the determined score corresponds to the

number of transmissions. The small deviation between

the scores measured at the same bandwidth shows that the

results of the self-check are reliable.

B. Self-Check on Different Devices

In addition to the tests under different network

conditions, the self-check was also run on different

devices. This is to determine whether the self-check can

detect the performance of the hardware.

The conditions for this test were almost the same as for

the previous one. However, redirection of video

transmissions via the turn server was disabled. The reason

for this was the limited upload bandwidth at the test site.

This would have meant an upper limit for the result of the

self-check testing different hardware. Therefore, this limit

was removed for this test.

The following devices were used for the test. A

Lenovo Yoga 720 convertible with Intel Core i5-8250U

processor and 15W TDP as a laptop with lower

performance. A MacBook Pro 15"2017 with i7 and 45W

TDP as a laptop with higher performance. Lastly, a

desktop computer with Ryzen 5 1600 and 60W TDP as

the most powerful device.

TABLE II. SCORES CALCULATED BY THE SELF-CHECK WITH DIFFERENT

HARDWARE

Device Test series Average

Convertible 6 25 24 24 21 23 20.5

MacBook 37 41 37 38 40 38 38.5

Desktop 64 63 62 60 64 63 62.7

Table II lists the scores determined for the individual

devices during the self-checks. The average score

achieved by the devices over the measurement series

differs noticeably between the devices. The smallest

average score was achieved by the convertible with a

value of 20.5. The MacBook achieved a higher average

score of 38.5. The desktop computer, as the most

powerful test device, achieved the highest average score

208

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

of 62.7. The determined scores also only deviate slightly

within the test series. The more powerful devices

received a higher score than the weaker ones which is

according to our expectations. This indicates that the self-

check takes the processing performance of the devices

into account. The small deviation between different test

series indicate that the score can be determined reliably.

C. Videoconferencing with Six Participants (no DCS)

Within the scope of this paper, the DCS was evaluated

in a video conference with six participants. The

bandwidth of one participant was limited to simulate a

weak internet connection. The test was performed with

the full functionality of DCS as well as with deactivated

load redistribution as a reference test. Status values of all

WebRTC transmissions were recorded, evaluated, and

compared.

A MacBook Pro 15"2017, a desktop computer and four

Lenovo Yoga 720 convertibles were used as test devices.

The upload bandwidth of the MacBook was limited to

1500 kbit/s using the software tool “Network Link

Conditioner”. The network connection of the other test

devices remained unaffected. The test devices joined the

video conference at intervals of 20 seconds. The test

setup is shown in Fig. 3.

Figure 3. Experimental setup of the reference test in the mesh

topology. The six participants join the video conference in the order
noted. The first device’s transmissions to the others, are shown as black
arrows.

First, the reference test was conducted. Therefore, the

functions for relieving weak participants were deactivated.

As a result, the video conference takes place in the mesh

topology.

The transmission rate at which the other participants

receive the video stream from participant 1 is shown over

time in Fig. 4. The time points at which participants

joined are inserted as vertical lines. The first transmission

starts when user 2 joins. The line shown in dark blue

indicates the transmission rate at which he receives the

video stream from participant 1. The transmission rate is

500 kbit/s until the next participant joins. When user 3

joins, the transmission rate of the two participants

initially drops, but stabilizes again and rises back to the

previous 500 kbit/s. The transmission rate of user 2 drops

to 500 kbit/s. After user 4 joins, the transmission rate of

all participants fluctuates increasingly and continues to

decrease as more users join the conference. The graph

also shows that the transfer rates differ greatly between

the participants. While the transfer rate of user 5

increases up to 500 kbit/s for a short time directly after

joining, the transfer rate of participant 1 is below 100

kbit/s at this time.

Figure 4. The transmission rate at which user 1 transmits his video

stream to the other participants in the reference test. The users join the
video conference one by one.

The trend of the transmission rate during this test run is

also shown by Table III. In this table, the average

transmission rate of all users in the respective phases is

listed. It is noticeable that the average transmission rate

decreases steadily as the number of participants increases.

While the average transmission rate for two participants

was 488 kbit/s at the beginning of the conference, it is

only 157 kbit/s after six participants joined.

TABLE III: THE AVERAGE TRANSMISSION RATE IN THE REFERENCE

TEST FOR THE RESPECTIVE CONFERENCE SIZE

Number of participants 2 3 4 5 6

Average transmission rate
on kbit/s

488 379 291 196 157

Fig. 5 shows the frame rate at which user 1’s

transmissions are played back on the other devices. At the

beginning with only two participants, this is constant at

30 frames per second. As the number of participants

increases, the number of dropouts also increases.

Figure 5. The frame rate over time of the videoconference in the
reference test. The fluctuations increase as the conference size increases.

D. Videoconferencing Using DCS with Six Participants

After the reference test, the load distribution functions

were reactivated. The test was repeated with the same test

setup to compare the measured values. The participants

performed the self-check automatically prior to

participation as they would under real conditions. The

resulting scores are shown in Fig. 6.

209

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

In the specified joining order, the course of the

experiment is as follows. With its score of 3, user 1 is

overloaded as soon as there are more than three other

participants in the conference. This is the case when user

5 joins the conference. From that moment on, his video

stream is forwarded by user 2 as a supernode.

Figure 6. Test with load balancing enabled. The test devices are shown
with the scores they calculated.

This forwarding is visualized by the black arrows in

the figure. Before user 5 joins the conference, the

topology does not differ between the two test runs

performed.

Figure 7. The transmission rate at which user 1 transmits its video

stream to the other participants. When user 5 joins, the forwarding takes
effect and the transmission rates increase again.

The transmission rate at which the other participants

receive the video stream from participant 1 is shown in

Fig. 7. Until user 5 joins, the course here is similar to the

reference test. In both cases, when the fourth participant

joins, the transmission rate for users 2 and 3 drops

significantly. With the joining of user 5 the forwarding

becomes active. From here on, the topology differs

between the two trials. As visible in the figure, the

transmission rates of user 3 and user 4 initially drop to

zero. Direct transmissions have been terminated at this

point. They are replaced by new connections via the

supernode. The graph shows the transmission rate of the

new connections from this point on. After the switch, the

graph shows that the transfer rates of all users increase

sharply. Even after user 6 joins, the transmission rate

remains stable - close to the maximum transmission rate

per transmission of 500 kbit/s.

The effect that forwarding has on the transmission rate

can also be seen in the average transmission rate in

Table IV. Similar to the situation during the reference test,

the average transmission rate initially decreases as the

number of participants increases. When the fifth

participant joined and forwarding started, the results

clearly differed. While the transfer rate in the reference

test continues to drop from participant 5 and is only

around 196 kbit/s for 5 participants, it increases from

about 286 to 417 kbit/s when load balancing is enabled.

The difference is even greater when the full conference

size of six participants is reached. The average

transmission rate in the reference test is about 157 kbit/s

while when using DCS the rate increases to about 495

kbit/s.

TABLE IV: THE AVERAGE TRANSMISSION RATE IN THE TEST WITH

ACTIVATED LOAD DISTRIBUTION

Number of participants 2 3 4 5 6

Average transmission rate
on kbit/s

492 491 286 417 495

Figure 8. The frame rate over time during the video conference. After

forwarding from user 5 joining, the frame rate is more stable.

If we look at the frame rate in Fig. 8, we see that there

are significantly smaller fluctuations here. Like the

transmission rate, the fluctuations increase from the 4th

participant on. When the fifth participant joins, the

change takes place and the frame rate shows less

fluctuation from this point on than before. Compared with

the reference test, the dips in frame rate from the fifth

participant onward are smaller and less frequent.

The results demonstrate that the DCS can perform

topology changes based on the state of the current video

conference. In the given experimental setup, it reacts

correctly. The user with limited bandwidth was identified

and his video streams are automatically forwarded by the

best performing participant in the conference.

From the gathered data, it can be concluded that the

performed forwarding has improved the quality of the

video transmission. The transmission rate is significantly

higher with activated forwarding than in the reference test

with the same conference size. If only little bandwidth is

available, WebRTC automatically reduces the

transmission rate at the expense of image quality. For this

purpose, the resolution is reduced or the video stream is

encoded in lower quality. A higher transmission rate can

therefore be assumed to also yield a higher image quality.

In addition to the transmission rate, the frame rate

shows that the quality is improved by the forwarding.

Fig. 5 shows that the frame rate in the reference test is

subject to increasingly frequent fluctuations as the

conference size increases. If the frame rate is irregular

and drops frequently, stuttering is to be expected. In such

a case, it can be assumed that this lowers the perceived

210

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

quality of the video transmission. Fig. 8 shows that in the

test with activated load balancing, the dips in frame rate

become less with activation of forwarding. With a more

constant frame rate with fewer dips, a smoother display

can be assumed.

V. CONCLUSION

In this work, we proposed a WebRTC based

videoconferencing service that autonomously optimizes

the network topology named DCS. The goal of DCS was

to enable larger video conferences without maintaining a

powerful server infrastructure. This was implemented by

identifying the most powerful participants in the video

conference in terms of network bandwidth and computing

power in order to support the weakest participants by

forwarding and distributing their video streams. The

paper presented the concepts on which DCS is based.

These included how the videoconferencing service is

organized, how the performance of the participants is

determined, and how, on this basis, it is decided what

changes to the network topology should be made to find

the optimal solution for the distribution of streams.

Subsequently, a series of experiments were carried out to

determine the applicability of the system for the desired

purpose. The experiments showed that DCS can make

changes to the network topology based on the

information about the current videoconference. The

changes resulted in an improvement in video quality, as

determined by transmission rate and frame rate. As an

important precondition, it was shown that the

performance of the participants could be reliably

determined. In experiments with different bandwidth and

hardware, the self-check yielded plausible results. The

number of participants in the experiments was limited to

6. The optimization of the topology should also be

effective for larger videoconferences, as long as there are

enough strong participants to support the weak ones.

From the perspective of a weak participant that gets

support, the performance should be comparable to that of

a star topology. An overload of the download bandwidth

in large conferences could become problematic, however,

but this problem would also apply to star topologies with

a server carrying the load. As further work we plan to

evaluate our software on a larger number of devices

under varying network conditions, including mobile

networks, in order to undermine our findings. Overall, it

could be shown that our implementation of a client-based

distributed conferencing service, DCS, is a valuable tool

for the provision of conferencing services without the

need for an expensive server infrastructure.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Dominic Kern conducted the primary research of the

subject, provided the implementation, and has written the

major parts of the paper. Prof. Teßmann supervised the

research project and contributed text, reviewed, and

edited parts of the paper.; all authors had approved the

final version.

REFERENCES

[1] A. B. Johnston and D. C. Burnett, “APIs and RTCWEB protocols
of the HTML5 real-time web,” in Digital Codex LLC, St. Louis,

MO, USA, 2012.
[2] A. Hamzaoui, H. Bensaid, and A. En-Nouaary. “A new signaling

topology for multiparty web real-time video conference

networks,” in Proc. SITA’18. Rabat, Morocco: Association for
Computing Machinery, 2018.

[3] M. Wenzel and C. Meinel, “Full-body WebRTC video
conferencing in a web-based real-time collaboration system,” in

Proc. IEEE 20th International Conference on Computer

Supported Cooperative Work in Design (CSCWD), 2016, pp. 334–

339.

[4] A. A. Lozano, V. Singh, and J. Ott, “Performance analysis of
topologies for Web-based Real-Time Communication

(WebRTC),” M.S. thesis, School of Electrical Engineering, Espoo,

Finland, 2013.
[5] F. D. López-Fuentes, “Video multicast in peer-to-peer networks,”

Dr. Eng. dissertation, Technical University of Munich, 2009.
[6] B. Grozev, G. Politis, E. Ivov, T. Noel, and V. Singh,

“Experimental evaluation of simulcast for WebRTC,” IEEE

Communications Standards Magazine, vol. 1, no. 2, pp. 52–59,
2017.

[7] H. Horiuchi, N. Wakamiya, and M. Murata, “A network
construction method for a scalable P2P video conferencing

system,” in Proc. the Third IASTED European Conference on

Internet and Multimedia Systems and Applications, EurolMSA ’07,
ACTA Press, 2007, pp. 196–201.

[8] M. Anitha and K. Rajkumar, “P2P multipoint video conferencing
using layered video and multi-tree structure,” International

Journal of Engineering and Technology, vol. 5, pp. 857–861,

April 2013.
[9] A. Hallberg, “A protocol for decentralized video conferencing

with WebRTC: Solving the scalability problems of conferencing
services for the web,” Ph.D. dissertation, KTH Royal Institute of

Technology, Stockholm, 2016.

[10] J. Gronberg and E. Meadows-Jönsson, “Tree topology networks in
WebRTC: An investigation into the feasibility of supernodes in

WebRTC video conferencing,” M.S. thesis, Chalmers Univ.,
Göteborg, Sweden, May 2014.

[11] H. Alvestrand, B. A. Singh, and H. Boström. (2022). Identifiers

for WebRTC’s statistics API. W3C Candidate Recommendation
Draft. [Online]. Available: https://www.w3.org/TR/2022/CRD-

webrtc-stats-20220517

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

Dominic Kern was born in Erlangen, Germany,

in 1996. He received the B.S. degree from the
Nuremberg Institute of Technology Georg Simon

Ohm, in 2019 and the M.S. degree from the same

Institute in 2022, both in computer science.
Currently he is working as a software developer

for the company Kurzdigital.

Matthias Teßmann is a professor of computer

science at the Nuremberg Institute of Technology.

His research interests include, amongst others,
web application development and real-time audio

and video communication over IP networks.

211

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

https://www.w3.org/TR/2022/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

