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Abstract—Over the last couple of decades, numerous 

optimisation algorithms have been introduced to optimise 

machine learning models. However, until now, no evidence or 

framework can be found in the literature that adequately 

describes how to select the best algorithm for parameter and 

hyperparameter optimisation of the Deep Neural Network 

(DNN) model. In this paper, an enhanced Fragmented Grid 

Search (FGS) method has been introduced for tuning several 

hyperparameters and finding the optimal architecture of the 

DNN model using less computation power and time. 

Furthermore, several experimental models are trained on the 

asthma dataset using various optimisers to find the optimal 

parameters, which can help the DNN model converge 

towards the lowest loss value. The results show that the Adam 

optimiser provides the best accuracy rate (96%). 

Consequently, the optimised DNN model can be used for 

accurately providing personalised predictions of asthma 

exacerbations for effective asthma self-management.  

 

Index Terms—machine learning, deep neural networks, 

optimisation algorithm, personalization 

 

I. INTRODUCTION 

Deep Neural Network (DNN) architecture allows 

optimisation and adjustment of its parameters (e.g. 

learning rate) and hyperparameters (e.g. hidden layers) 

before and during the training until the desired outcome is 

met and an optimised model is created [1]. It was observed 

that the DNN model is capable of providing robust 

performance when it is optimised [2]. This is because 

setting the optimal architecture and learning process of the 

DNN model helps to provide predictions with minimum 

errors and maximum accuracy. As such, optimising the 

DNN model can minimise the loss function (i.e. find the 

lowest loss value on a given dataset). However, this could 

be challenging and time consuming. To solve this issue, 

over the last couple of decades, various optimisation 

algorithms have been proposed which can automate the 

optimisation process and find the optimal neural 

architecture and training parameters. These algorithms can 

be divided into two primary groups: search-based 

optimisation and criteria-based optimisation algorithms, as 

seen in Fig. 1. 

 

Figure 1.  Optimisation methods of the DNN model. 

The problem is, until now, there is no evidence or 

framework exists in the literature that adequately describes 

how to select the best optimisation algorithm for 

optimising the DNN model parameters and 

hyperparameters. Therefore, in this paper, several existing 

optimisation algorithms are reviewed and their limitations 

are identified. Subsequently, experimental procedures and 

comparative analyses are conducted to build an optimised 

regression-based DNN model for predicting personalised 

asthma exacerbations. 

II. SEARCH-BASED OPTIMISATION ALGORITHMS 

Search-based optimisation algorithms are responsible 

for finding the optimum values of the DNN architecture 

parameters (known as hyperparameters), which are set 

before training the model, such as hidden layers and 

hidden neurons. The procedure of finding optimal 

hyperparameters is called hyperparameter tuning [1]. 
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Identifying the optimal hyperparameters of the DNN 

model is significant and considered an optimisation 

problem. Nonetheless, it should be noted that there is no 

standard formula or criterion for calculating the optimum 

values of the DNN hyperparameters. 

Normally, for a shallow neural structure with limited 

hyperparameters, the tuning procedure can be done using 

the manual trial process. However, for a complex and deep 

neural structure with numerous potential hyperparameters, 

the tuning procedure is considered a combinatorial 

problem which is challenging and time-consuming [3]. In 

this regard, search-based optimisation algorithms are used 

which automate the trial procedure of tuning the 

hyperparameters and building the optimal architecture of 

the DNN model [4]. This happens by testing different 

potential hyperparameter values that exist in the search 

space through iterative trials, and thus selecting the best set 

of hyperparameter values for the model. As a result, the 

performance of the DNN model increases, which in turn 

gives the most accurate target outputs with less prediction 

errors [5]. 

Common optimisation algorithms include Grid Search 

(GS) [6], Tabu Search (TS) [3], Bayesian Optimisation 

(BO) [7], Random Search (RS) [8], and Genetic Algorithm 

(GA) [9]. High-level optimisation algorithms, such as BO 

and GA, can automate the trial procedure of 

hyperparameter tuning intelligently [5]. This is a 

significant limitation of the basic traditional optimisation 

algorithms, especially GS which requires a pre-defined 

search space set by the individual machine learning 

developer [6]. Having said that, GS provides more 

freedom than the other algorithms and offers the platform 

to test every possible combination of DNN 

hyperparameters and their potential values easily [10]. 

This is beneficial for testing the hyperparameter values 

that have been previously proven to perform well with 

other similar DNN models and prediction problems. 

Meanwhile, it has been recognised that the main 

limitation of the majority of the existing optimisation 

algorithms is that they require prolonged execution time 

and need excessive computational power to test a large 

number of DNN hyperparameters and their potential 

values [11]. In this case, a key benefit of using GS is that 

it can be parallelised, which is useful to reduce time by 

parallelly applying the algorithm on multiple platforms. 

Nevertheless, there is a need to further explore the 

parallelisation feature of GS and identify its impact on 

hyperparameter tuning speed and time for optimising the 

DNN model. Hence, in this paper, a simple modified GS-

based algorithm is proposed, which applies parallelisation 

along with an enhanced fragmentation method that can 

optimise the DNN model and tune several 

hyperparameters with less time and computational power. 

III. CRITERIA-BASED OPTIMISATION ALGORITHMS 

Criteria-based optimisation algorithms (known as 

optimisers), are responsible for carrying out the learning 

process of the DNN model which takes place during its 

training [2]. The learning rate determines the step size for 

the DNN model that is required to minimise its loss 

function, thus achieving low error and high accuracy rates. 

This happens by ensuring that the model converges 

towards the lowest loss value possible efficiently [12]. 

Typically, the optimiser trains the DNN model in several 

iterations, known as epochs. At each epoch, the optimiser 

adjusts the parameters from the parameter space to 

decrease the loss value until the model converges towards 

the global minima. The optimiser often uses stopping 

criteria which makes the algorithm stop the iteration when 

a specific condition is met. Examples of common early 

stopping criteria include number of epochs, loss function 

value, and run-time. Fig. 2 shows how the parameters are 

optimised in the DNN model. 

 

Figure 2.  Optimisation process of the DNN model parameters. 

Normally, when the loss function is convex, standard 

optimisers, such as Gradient Descent (GD), can find the 

optimal model parameters to converge towards the global 

minima [1]. Nevertheless, when the loss function is 

nonconvex, convergence to the global minima becomes 

difficult due to the existence of local regions with local 

minima. For the DNN model, the loss function is mostly 

nonconvex which could be due to the use of nonlinear 

activation functions. The Stochastic Gradient Descent 

(SGD) can handle nonconvex optimisation problems [2]. 

However, it has been identified that significant issues can 

arise when employing SGD with DNN, such as oscillation 

of the learning rate in the later training stages of the model. 

This can lead to increased variance and non-converging 

problems. Moreover, SGD tends to maintain a single 

learning rate in each epoch [13]. As a result, it might 

become difficult to identify the optimum learning rate 

value for training the DNN model. 

In recent years, adaptive learning-based optimisers have 

been proposed to enhance both the learning rate and the 

convergence speed, such as Adaptive Gradient Descent 

(AdaGrad) [14], Root Mean Square Propagation 

(RMSProp) [15], and Adaptive Moment Estimation 

(Adam) [16]. Unlike SGD, the main property of AdaGrad 

is changing the learning rate for every parameter in each 

epoch [14]. One major issue of AdaGrad is that the 

learning rate keeps decreasing while training, which might 

result in vanishing gradients [17]. RMSProp solves this 

problem by using averaged squared gradients to normalise 

the gradients and avoid vanishing [15]. However, with 

RMSProp, the averaging process in each epoch can result 
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in repeated updating of the same learning rate, thus leading 

to a slower convergence and a longer optimisation process 

[13]. 

Fortunately, the Adam optimiser rectifies the gradient 

vanishing problem of AdaGrad using bounded gradients 

and the learning rate updating problem of SGD using 

adaptive learning rates. In addition, compared to RMSProp, 

Adam is known for its fast and smooth convergence while 

training the DNN model [16]. Therefore, Adam is a 

popular optimiser used in deep learning models because it 

can minimise the loss function efficiently. Furthermore, it 

was recognised that Adam can generate better prediction 

results than other adaptive learning-based optimisers on 

structured datasets, such as the asthma dataset [10]. 

Selected studies, however, have claimed that Adam might 

lead to worse generalisation performance than SGD. 

Nonetheless, it should be mentioned that the parameter 

spaces used in these studies are inadequate and 

incomparable because the optimum parameter values of 

the optimisers vary largely between datasets. In fact, to this 

date, there is no framework that adequately describes how 

to select the best optimiser for the DNN model based on 

the type of the dataset. Hence, in this paper, several 

experimental optimisation procedures are conducted and 

the comparative analyses of various optimisers are 

discussed. Consequently, the goal is to select the best 

optimiser for training the DNN model that can provide 

personalised predictions of asthma exacerbations with 

lowest errors and highest accuracy rates for effective 

asthma self-management. 

IV. PERSONALISED PREDICTIONS OF ASTHMA 

A. Asthma Dataset 

The asthma dataset employed in this paper is collected 

from a mobile health application, known as Weather 

Asthma (WEA) [10]. The dataset includes weather 

variables (temperature, humidity, air pressure, wind speed, 

and UV index) and demography variables (age, gender, 

location, outdoor job, and outdoor activities) as the input 

features. The real-time values of the weather variables are 

collected from each location of individual WEA 

application users, which represent the weather conditions 

that trigger a particular user’s asthma and lead to 

exacerbations. Meanwhile, the demography variables are 

collected from each user upon their registration in the 

WEA application, which are used for providing 

personalised predictions of asthma exacerbations based on 

weather triggers. 

The asthma dataset also contains the Asthma Control 

Test (ACT) scores as the output variable, as seen in Table 

I. Users of the WEA application have been regularly 

conducting ACTs to report their asthma severity by 

answering five multiple choice questions. Each question 

scores from 1 to 5 and the total ACT scores can be from 5 

to 25. According to the Global Initiative for Asthma [10], 

low ACT scores indicate high chances of asthma 

exacerbations and high ACT scores indicate low chances 

of asthma exacerbations. As such, each ACT score is 

stored in the dataset along with the demography 

information of the user who submitted the ACT, and the 

weather information of that day and time in that user’s 

location. Consequently, the aim is to create an optimised 

DNN model that can recognise the patterns in the asthma 

dataset, predict the ACT scores based on their 

corresponding weather and demography variables, and 

offer personalised predictions of asthma exacerbations to 

WEA users based on daily weather forecasts. 

TABLE I.  ASTHMA DATASET VARIABLES 

No Variable Name Variable Type 

1 ACT_score Target Output 

2 Temperature Input (Weather Features) 

3 Humidity Input (Weather Features) 

4 Pressure Input (Weather Features) 

5 Wind_speed Input (Weather Features) 

6 Location Input (Demography Features) 

7 Age Input (Demography Features) 

8 Gender Input (Demography Features) 

9 Outdoor_job Input (Demography Features) 

10 Outdoor_activities Input (Demography Features) 

B. Regression-Based DNN 

DNN can be employed for modelling different ML 

techniques, such as regression and classification. 

Regression is a supervised learning technique which is 

responsible for quantifying and characterising the 

relationships between the input and the output variables. 

Regression is used for predicting numerical or continuous 

values. As such, in this paper, a regression-based DNN 

model is applied on the asthma dataset to predict the ACT 

scores. 

Fig. 3 illustrates the predictive model architecture. The 

input layer contains ten input variables (x). The hidden 

layer contains n hidden layers and m number of hidden 

neurons at each hidden layer (h). The values of m and n are 

determined in the optimisation stage. The output layer 

contains one output variable (y). The rectifier (ReLU) is 

used as the activation function because of its ability to 

conduct simple nonlinear transformation of the input 

values in the hidden layers. The model assigns weights (w) 

to input values before passing them on to the hidden layer 

and output layer. Moreover, bias (b) is used which is a 

constant number that acts as an intercept value added for 

the purpose of adjustment. The following equations 

calculate the predicted values (ŷ) using the DNN model: 

 𝑥 = [𝑥1, 𝑥2, … , 𝑥10] (1) 

 𝑤 = [𝑤1, 𝑤2, … , 𝑤10] (2) 

 𝑓(𝑒) = {
0   𝑓𝑜𝑟   𝑒 < 0
𝑒   𝑓𝑜𝑟   𝑒 ≥ 0

 (3) 

 𝑒 = ∑ 𝑥𝑤10
𝑖=1 + 𝑏 (4) 

 �̂� = 𝑓(𝑒) (5) 
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Figure 3.  Regression-based DNN model architecture. 

C. Evaluation Metrics 

To evaluate the prediction performance of any 

regression model, error metrics are used as the evaluation 

metrics. Common error metrics include Mean Absolute 

Error (MAE), Mean Squared Error (MSE), and Root Mean 

Squared Error (RMSE). The MAE is a basic loss function 

which sums up the absolute difference between the output 

values and the predicted values. This is achieved by 

measuring the median magnitude of the residuals from the 

prediction result equally. The MSE is a common loss 

function used for regression models which sums up the 

squared differences between the actual values and the 

predicted values. This is achieved by measuring the 

average of the squares of the errors. The main difference 

between the MAE and the MSE is that the latter can 

measure the outlier predicted values in the dataset. 

Meanwhile, the RMSE is the square root of MSE. The 

main difference between the MSE and the RMSE is that 

the latter is measured with the same unit as the target 

values. The following equations calculate the MAE, MSE 

and RMSE of the DNN model: 

 𝑀𝐴𝐸 =  
1

𝑛
∑ |�̂�𝑖 −  𝑦𝑖|𝑛

𝑖=1  (6) 

 𝑀𝑆𝐸 =  
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1  (7) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1  (8) 

where n is the number of records in the dataset, y is the 

actual output values, and ŷ is the predicted values. 

For further performance analysis, the overall accuracy 

rate and the Explained Variance Score (EVS) of the 

experimental models were calculated. The EVS indicates 

how well each model can capture the variance in the data 

that exists in the nonlinear dataset. The following equation 

calculates the EVS of the DNN model: 

 𝐸𝑉𝑆 = 1 −
𝑉𝑎𝑟(𝑦−�̂�)

𝑉𝑎𝑟(𝑦)
 (9) 

where v is the biased variance, y is the actual output values, 

and ŷ is the predicted values. 

V. OPTIMISATION RESULTS AND ANALYSIS 

A. Hyperparameter Optimisation 

In this paper, a Fragmented Grid Search (FGS) method 

is proposed for tuning the hyperparameters and finding the 

optimal DNN model architecture. FGS is a GS-based 

optimisation algorithm which utilises the parallelisation 

feature of GS and combines it with the fragmentation 

method [10]. In FGS, each hyperparameter is tuned 

independently along with its potential values, and the 

optimum value obtained from tuning one hyperparameter 

is used to tune the subsequent hyperparameter/s. The 

search space in each hyperparameter tuning experiment 

includes several potential values that have been commonly 

used with DNN and deep learning-based models. 

Algorithm 1 demonstrates the steps of FGS for tuning the 

DNN hyperparameters. Consequently, five DNN 

hyperparameters were tuned using the FGS algorithm, 

which include number of hidden layers, number of hidden 

nodes at each hidden layer, batch size, number of epochs, 

and type of the weight initialiser. Interestingly, the overall 

tuning process time of all five hyperparameters took 

around only 26 minutes in total. This is significantly faster 

than using GS, which takes 4 hours to tune only two 

hyperparameters [11]. Table II shows the optimum 

hyperparameter values used for building the regression-

based DNN model architecture. 

ALGORITHM 1: FRAGMENTED GRID SEARCH (FGS) 

consider hyperparameter P 
consider P candidate C 

for each P, do 

create DNN model 
create list of P candidates in search space 

for each C in the list of P candidates, do  

 train DNN model with C 
 calculate model MSE 

 if MSE < MinMSE, do 

           set MinMSE = MSE 
           set BestC = C 

return MinMSE 

return BestC 
repeat for next P using previous BestC 

TABLE II.  OPTIMUM HYPERPARAMETERS OF DNN MODEL 

No Hyperparameter Search Space Values Optimum Value 

1 Hidden Layers 1, 2, 3, 4, 5 2 

2 Hidden Nodes 20, 30, 40, 50, 60 50 

3 Bach Size 5, 10, 50, 100 10 

4 Epochs 50, 100, 200, 1000 100 

5 Weight Initialiser Normal, Uniform Normal 

B. Parameter Optimisation 

Several models were trained with the asthma dataset 

using various optimisers, including SGD, Adam, 

RMSProp, AdaDelta, and AdaGrad. The optimum number 

of epochs was used as the stopping criteria during each 

optimisation process. The dataset was split into a train set 

(1616 samples) for training and test set (404 samples) for 

validation. Fig. 4 and Fig. 5 compare the performance of 

the optimisers based on the training and test loss and 

evaluation metrics. It can be observed that the regression-

based DNN model has achieved the best prediction results 

with the lowest error rates and the least training and 

validation loss using the Adam optimiser. It can also be 

recognised that the generalisation error is relatively low 

when the model is trained using Adam. 
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Furthermore, it can be seen that the Adam optimiser 

gives the best prediction results with the highest EVS and 

an accuracy rate of around 95% and 96% respectively. The 

experimental results concur with previous work [16], 

where it was recognised that Adam is an effective 

optimiser for training DNN models and produces better 

prediction results than other optimisers, such as SGD. 

Moreover, the findings reveal that training the DNN model 

on the structured dataset takes the least amount of time 

using the Adam optimiser. With this, the model converges 

towards the lowest loss value efficiently. Table III 

summarises the prediction results of each model training 

optimiser. 

TABLE III.  PERFORMANCE RESULTS OF THE DNN OPTIMIZERS 

Optimiser MAE MSE RMSE EVS Accuracy 

SGD 0.23 0.10 0.31 0.91 92% 

Adam 0.13* 0.05* 0.22* 0.95* 96%* 

RMSProp 0.16 0.06 0.25 0.94 95% 

AdaDelta 0.18 0.08 0.27 0.93 94% 

AdaGrad 0.25 0.11 0.34 0.89 91% 

*Note: Bold fonts to show the best achieved results. 

 

 
 

 

Figure 4.  (a) comparison of training loss (Train MSE), (b) comparison 
of validation loss (Test MSE). 

 
 

 

Figure 5.  (a) comparison of error metrics, (b) comparison of variance 
and prediction accuracy. 

VI. CONCLUSION 

In this paper, several optimisation algorithms for 

optimising the DNN model parameters and 

hyperparameters have been reviewed. Two types of 

optimisation methods have been identified: search-based 

optimisation algorithms for hyperparameter tuning, and 

criteria-based optimisation algorithms (optimisers) for 

model training and updating the learning rates. 

Subsequently, a regression-based DNN model has been 

proposed and applied to the asthma dataset. To find the 

optimal model architecture, the FGS algorithm was used 

to tune several hyperparameters efficiently. Afterward, 

various experimental models were trained using common 

optimisers. Adam proved to outperform the other 

optimisers providing predictions with the lowest errors and 

highest accuracy rate. Moreover, the experimental results 

show that the Adam optimiser produces good 

generalisation performance when the model is trained on 

structured dataset (e.g. asthma dataset). Consequently, the 

optimised DNN model can be integrated to the WEA 

application to provide accurate personalised predictions of 

asthma exacerbations and offer tailored feedback to users 

for effective asthma self-management and weather-based 

healthcare. 

(a) 

(b) 

(a) 

(b) 
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