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Abstract—With the development of various technologies such 

as sensors and communications, the scope of application for 

UAVs (unmanned aerial vehicles) is expanding. The use of 

UAVs is increasing not only in the military sectors, but also 

in the civilian industries. For the operation of UAVs, pilots 

must use a control system called the GCS (ground control 

system). With the GCS, pilots need to understand and be 

informed of the full operational context of the UAVs. 

However, the GCS can only provide the pilots with limited 

resources. Therefore, in order to overcome these limitations, 

excessive information may be provided to the pilots, which 

may cause abnormal conditions such as mission overload. In 

this context, there is a need for a system that can prevent 

abnormal conditions of the pilot and increase the mission 

success rate. In this paper, the pilot state information is 

collected through a camera and wearable devices to 

understand the pilot state in real time. An algorithm that can 

derive the pilot state from the collected information was 

developed. Algorithms can provide feedback to prevent 

accidents caused by mistakes and contingencies that can arise 

from the pilot's abnormal conditions. The algorithm shows 

high accuracy and stability when applied to simulated flight 

conditions. In addition, it is simple to use and there are no 

physical restrictions on the pilot's action, hence efficient 

mission performance is expected. 

 

Index Terms—pilot state, abnormal condition, biosignals, 

face recognition, posture estimation, state identification 

 

I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) operate without a 

pilot on board. Therefore, unlike manned aircraft, where 

the pilot directly boards and obtains information, it is 

highly dependent on an operating system called the 

Ground Control System (GCS). UAVs are basically 

monitored and controlled through the GCS. Therefore, 

pilots must always stare at the GCS screen, and control the 

UAV with attention [1], [2].  

The UAV’s mission is performed through the screen 

provided by the GCS in a limited space rather than in the 

open field [3]. Therefore, as the UAV operation time 

increases, the pilot may make mistakes due to distraction, 

fatigue, or carelessness [4]. Due to the characteristics of 

the UAVs, a simple mistake by the pilot may result in an 

accident such as personal injury or material damage, which 

may result in large losses.  

Currently, the GCS used for UAV control only provides 

notifications and warnings about the UAV's status and 

flight status. There is no feedback regarding the state of the 

pilot controlling the UAVs. If the pilot posture can be 

recognized and the pilot's biosignals can be collected to 

clearly understand the pilot condition, it is expected that 

the pilot mistakes can be prevented by providing feedback 

accordingly [5]-[7]. Therefore, an attempt was made to 

develop a system algorithm that can identify and derive the 

current state of the pilot. This is expected to ensure high 

safety by preventing accidents, and is expected to increase 

the pilot's mission success rate. In this light, it will be 

possible to prepare an opportunity to develop a high-safety 

GCS system by using UAVs in various ways in more 

diverse industrial activities [8], [9]. 

The structure of this paper is as follows. Chapter 2 

discusses the image recognition technique and biosignal 

acquisition process. Chapter 3 defines the state variables 

for estimating the pilot state through the collected 

information, while Chapter 4 defines the criteria for 

deriving the pilot state. Chapter 5 describes the algorithm 

for real-time monitoring of the pilot state. The last chapter 

describes the experiments and conclusions to verify the 

designed algorithm.  

II. COLLECTING PILOT STATE INFORMATION 

A. Pilot’s Face Recognition 

One of the pieces of information that can be used to 

recognize a pilot condition is facial expression. This is the 

data that can be primarily helpful in understanding the pilot 

condition, such as closing his eyes or yawning. Therefore, 

the face of the pilot controlling the UAVs is collected 

through the camera in order to estimate the state through 

the facial expression. Facial features were used to 

distinguish the pilot face through the collected images. The 

position of the eyes, nose and mouth, which are the biggest 

features of the face, is designated as a Region of Interest 

(ROI). Then, the pilot facial expression is recognized 

through the feature points extracted from the ROI.  

When image recognition is used, the face must be 

recognized even in the intervention of various disturbances 

(varying face directions, ambient light intensities, etc.) that 

may interfere with the environment. Therefore, it was 

decided to utilize the unique features of the face to clearly 

recognize the face in varying conditions. The HOG 

(histogram of oriented gradients) algorithm was used to 

define the unique features [10]. A video is a sequence of 
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numerous images according to the number of frames. 

Therefore, the RGB image for each frame was converted 

into a GRAY image using the HOG algorithm. In this way, 

the image brightness changes that can be identified as a 

change in pixel values through the HOG algorithm is 

expressed as a gradient. After that, the positioning and 

projection of the face were carried out. This compensates 

for the pixel values that change depending on the pilot 

head directions. In addition, a process for recognizing face 

images collected by recognizing landmarks such as eyes, 

nose, and mouth is performed, as in Fig. 1. 

 

Figure 1. Face recognition process. 

For the process, the iBUG 300-W data set, a machine 

learning model, was applied. A trained facial landmark 

predictor model was used for face recognition. 

B. Pilot Posture Recognition 

In addition to the pilot facial expression, it is possible to 

grasp the pilot condition through certain actions and 

postures. However, the pilot posture recognition can be 

limited due to numerous possible postures, concealment of 

the body, other object obstruction, and actions that occur 

outside the camera angle. Therefore, it is more difficult 

than understanding the state through the pilot face 

recognition. In this study, the pilot posture was detected 

using a Machine Learning (ML)-based body recognition 

method. In order to understand the pilot posture, the 

landmark, the 2D boundary part of the body of the 

recognized object, was inferred for each single frame from 

dozens of frames. After that, the position of the body was 

defined by matching the skeleton with the landmark. 

Through this, the MediaPipe's Blaze Pose algorithm was 

used to estimate the pilot full body posture [11]. 

 

Figure 2. Estimation of the pilot's posture. 

The pilot posture estimation algorithm was applied to 

each single frame, as shown in Fig. 2, to estimate the 

posture in real time. Even if the pilot's whole body is out 

of the camera angle, the posture can be estimated by 

matching the key points of other joints with the skeletal 

model. Fig. 3 shows the posture estimation pipeline. 

 

Figure 3. Pilot's posture estimation pipeline. 

C. Pilot’s Biosignal Collection 

In order to collect the pilot's biometric information, 

various sensors must be attached to collect the information. 

However, because the equipment used in the past hinders 

the pilot movements by attaching a complex and heavy 

sensors, a wearable device that can be used conveniently 

is used. Although it has the disadvantage of collecting 

fewer biosignals compared to the existing devices, it was 

more suited for the purpose of this study. The wearable 

device used in this study is the Samsung Galaxy Watch 3 

model. It collects the heart rate, which is one of the pilot’s 

biometric information. When the wearable device collects 

biometric information, it measures the heart rate by using 

the built-in photo plethysmography (PPG) sensor. Heart 

rate measurement using a cuff-type blood pressure monitor 

and wearable device was classified into normal and post-

activity states, and heart rate per minute was measured. 

The average BPM (in Eq. (1)) was obtained by measuring 

5 times for each state. The difference between the averages 

was analyzed and the existing heart rate values were 

adjusted as correction values applied. 

𝐵𝑃𝑀𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
1

𝑛
∑ 𝐵𝑃𝑀1

𝑘=1 =  
𝐵𝑃𝑀1+ ⋯+𝐵𝑃𝑀𝑛

𝑛
     (1)  

III. VARIABLE MEASUREMENT TO DETERMINE THE 

PILOT STATE 

In this study, to understand the pilot state, it was 

classified into two types: Normal and Abnormal. Image 

recognition and biometric information were used to 

estimate the abnormal state. Therefore, the image 

information detects the position and condition of the pilot 

eyes through face recognition, and the biometric 

information brings the operator's heart rate. In order to 

estimate the pilot condition through this information, 

numerical values for each condition are analyzed, and 

judgment criteria for each abnormal condition are defined. 

A. Eye Aspect Ratio (EAR) 

EAR (Eye Aspect Ratio) is one of the main indicators in 

determining the state of the pilots. In this study, the eye 

condition of the operator was used as an index to estimate 

the condition of the pilot. The facial landmark detection-

based library is used to recognize the pilot face, find the 

landmark of the face, and recognize the eye state through 
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the process of recognizing the position of the eye on the 

face. Fig. 4 shows the location of landmarks in the eye. 

 

Figure 4. Definition of landmarks in the eye. 

EAR =  
||𝐸2 − 𝐸6|| + ||𝐸3  −  𝐸5||

2||𝐸1  −  𝐸4||
                (2) 

EAR, which can determine the state of the eyes through 

face recognition, was used (as in Eq. (2)). In order to 

understand the appropriate reference values for this EAR, 

the numerical values for each state in the image was 

analyzed through the operation image for each work area 

on the screen, and the appropriate value was used as the 

reference index. As shown in Fig. 5, the EAR value was 

classified through the operation screen for each ROI on the 

screen, and the average EAR for each state was derived 

and used by analyzing the EAR for each area. 

 

Figure 5. Process for pilot EAR measurements. 

 

Figure 6. Display for EAR measurement. 

Fig. 6 shows the actual measurement screen of the 

program that can measure EAR by ROI. For each location 

of the ROI, the pilot looking at the point at that location is 

collected with a camera. The pilot eye condition is 

identified through the gaze screen for each ROI. 

Through the collected images, the average value of each 

EAR for the left and right eyes, and the difference between 

the EARs are derived. The EAR values derived through 

this process are saved in a CSV file format. After that, the 

file is delivered to the EAR analysis program. The EAR 

recognizes the position of the eyes through the landmark 

of the face recognized on the operation screen. The 

detected eyes are calculated as in Eq. (2) using the six 

landmark coordinates, as shown in Fig. 7. 

 

Figure 7. Deriving the pilot's eye state.  

Through the EAR, it is possible to determine the values 

when the pilot eyes are closed and open. Through this, the 

abnormal state can be derived. In order to define a high-

accuracy measurement standard, the average value of the 

EARs measured by ROI was defined as the state threshold 

of the final EAR of the unmanned aerial vehicle pilot. This 

is shown in Table I. 

TABLE I. EAR MEASUREMENTS BY ROI 

ROI Open eyes EAR(Avg) Closed eyes EAR(Avg) 

1st. ROI 0.323323 0.206443 

2nd. ROI 0.316506 0.127466 

3rd. ROI 0.357145 0.14307 

4th. ROI 0.297546 0.139888 

5th. ROI 0.341245 0.128734 

EAR Avg 0.327153 0.14912 

As shown in Fig. 8 and Fig. 9, the standard EAR was 

defined through the measured EAR. The smallest error was 

measured when the threshold was set as the standard 

according to the change of the pilot conditions. 

 

Figure 8. Average variance for EAR. 
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Figure 9. EAR bland & altman plot. 

Through the EAR measured according to the pilot 

conditions, the standard EAR values in the open and closed 

state were defined and used as one of the indicators to 

judge the normal and the Abnormal state. Table II 

illustrates the variable values in accordance with the eye 

conditions.  

TABLE II.  VARIABLE VALUES ACCORDING TO EYE CONDITIONS 

List Open eyes Closed eyes 

Mean 0.024454 0.013589 

Standard Deviation 0.016106 0.013191 

Variance 0.000259 0.000174 

 
In order to determine whether there is a drowsiness, 

which is one of the abnormal behavior states, a judgment 

is made through the formula (Eq. (3)) together with the 

EAR indicator. 

𝐷𝑟𝑜𝑤𝑠𝑖𝑛𝑒𝑠𝑠 𝑆𝑡𝑎𝑡𝑒 =  
𝑁𝐴𝑙𝑒𝑟𝑡

1𝐹𝑃𝑆
                      (3) 

𝑁𝐴𝑙𝑒𝑟𝑡  represents the number of durations of the 

behavioral alert state for 1 fps, which means when the EAR 

value drops below the standard for closed eyes. In the 

collected camera image, if the duration of this state 

exceeds 70% based on fps, it is the warning stage. If it 

exceeds 90%, it is designated as an alert stage and divided 

into detailed states according to the severity of the 

abnormal behavior state, as in Table III. 

TABLE III.  STEP-BY-STEP DROWSINESS STATE 

State Ratio (%) 

Warning 70(%) 

Alert 90(%) 

B. Body-Face Ratio (BFR) 

Body-Face Ratio (BFR) is a value to define the attitude 

variable for the pilot state part collected on the camera 

screen during GCS operation of the unmanned aerial 

vehicle. When the posture of the pilot controlling the 

unmanned aerial vehicle changes, the shoulder spacing of 

the upper body shows a constant value. It also means the 

ratio of these two figures based on the change in the 

distance difference from the face. In this study, the position 

of each joint was identified through the operator posture 

recognition, and the amount of change in BFR was 

analyzed and used as one of the indicators to define the 

pilot's current posture. The key point location and 

definition are given in Fig. 10. 

BFR =  
||𝐵0 −  𝐵1||

||𝐵2 − 𝐵3||
                            (4) 

 

Figure 10. Key points and definitions. 

In this study, BFR was used as an index to determine the 

pilot's current posture using the joint position of the 

posture (Eq. (4)). This can be seen in Fig. 11. The BFR 

value changes according to the change of the pilot posture, 

which is to measure the aspect ratio through the position 

of the body and face by collecting the position information 

of each joint using the Pose API provided by MediaPipe 

[11]. 

B1 is the center point of both shoulder joints, and BFR 

is defined as the aspect ratio based on B2-B3 and B0-B1. 

Fig. 12 and Fig. 13 show the change of the shoulder 

according to the direction, in which the pilot looks at the 

screen.  

The ROI area on the screen was divided into three parts 

(i.e., left, center, and right), and the operation screen was 

continuously captured, while the pilot was looking at the 

area. The average coordinate distance values between B2-

B3 for each ROI were compared for a certain period of 

time.  

 

Figure 11. Key points according to posture changes. 
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Figure 12. Shoulder change according to gaze direction. 

 

Figure 13. Change of body position according to ROI area gaze. 

Based on the FHD resolution for each ROI area, it was 

confirmed that the difference in image coordinates for the 

B2-B3 interval was about 5 pixels. The shoulder width of 

the subject measured as a frontal standard is about 44 cm, 

and a five-pixel difference on the image coordinates 

indicates a change within 1 cm based on the measured 

result value. Therefore, the change in the longitudinal 

length of the body according to the position to be observed 

according to the work is negligible. This is shown in Fig. 

14. 

 

Figure 14. Numerical change according to posture change. 

TABLE IV. BFR VALUES BY STATE 

Number Normal (BFR) Drowsiness (BFR) 

1 0.455138 0.128096 

2 0.454272 0.155723 

3 0.463585 0.074218 

4 0.471524 0.061614 

5 0.454478 0.114493 

Total Avg 0.459799 0.106829 

 

Figure 15. BFR measurement screen according to state. 

It was confirmed that the change in 'Shoulder Width' 

was insignificant, when changing from the normal posture 

to the prone position, while the change in 'Body-Face 

Length' was large. Through these numerical changes, the 

posture can be estimated by grasping the aspect ratio 

values according to the changes in the operator posture. By 

dividing the pilot posture into the normal state and the 

prone state, the BFR is obtained and the aspect ratio for 

each posture is defined, as shown in Fig. 15. The BFR 

values for each posture were derived by measuring the 

average BFR value per hour by measuring a total of 5 times 

for 1 minute for each posture. As a result of the 

measurement in the normal state, values between 0.45 and 

47 were distributed and detected, as in Table IV. Through 

this, it was confirmed that the BFR standard was 

maintained above 0.45 in the normal state. Therefore, the 

reference index value of the BFR general state was defined 

as 0.45. As a result of the measurement in the prone 

position, it is distributed between 0.06 and 0.15. It can be 

seen that the number differs depending on the degree to 

which the head is bowed. The reference index value in the 

prone state was defined as 0.15 using the distribution 

average of the highest value. 

C. Heart Rate (BPM)  

BPM, which represents the heart rate per minute, 

represents a heart rate of 60-100 beats per minute in a 

normal state (resting period) based on a healthy adult 

standard. Since this heart rate changes rapidly due to 

physiological phenomena such as exercise, anxiety, 

tension, and stress, the changes in heart rate per minute can 

be used as an index for mental and physical abnormalities. 

In this study, the operator's biosignal information was 

collected through a commercial wearable device, and BPM 

(as in Eq. (5)) was extracted and used as one of the 

indicators to determine the operator's abnormal condition. 

𝐵𝑃𝑀(𝐵𝑒𝑎𝑡𝑠 𝑝𝑒𝑟 𝑀𝑖𝑛𝑢𝑡𝑒) =  
60

𝑅 − 𝑅
(𝑏𝑝𝑚)     (5) 

When the average heart rate per minute for each state is 

measured, it shows a certain difference between the 
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wearable device and the cuff type blood pressure monitor. 

This difference was applied as a correction value of the 

sensor value of the wearable device, and the heart rate of 

the final pilot was extracted and applied. Table V shows 

the BPM in accordance with the state. 

TABLE V. BPM ACCORDING TO STATE 

 
Normal Activity 

cuff wearables cuff wearables 

1st. 82 85 102 105 

2nd. 81 84 100 104 

3rd. 80 83 101 104 

4th. 83 86 103 105 

5th. 82 85 102 106 

Avg. 81.3 84.6 101.6 104.8 

IV. DEFINING CRITERIA FOR STATE IDENTIFICATION 

In controlling an unmanned aerial vehicle, the pilot state 

can be largely divided into a normal state and an abnormal 

state. If a pilot can control the unmanned aerial vehicle 

normally without any problem, it is defined as a normal 

state. In addition, a case in which a problem occurs in 

controlling the unmanned aerial vehicle is defined as an 

abnormal state. The steady state and the abnormal state are 

classified as shown in Table VI, and standard indicators 

for each should be presented. 

TABLE VI. PILOT STATE CLASSIFICATION 

Behavior State 

Normal Abnormal 

Idle Prone Idle Prone AWOL Risk Error 

Normal 

Working 

Condition 

Sleep 
Out of C
ockpit 

Heart D
anger 

Not w
orn 

Distracted 

Operation 

Fig. 16 shows the measured variable values according 

to each state. 

 

Figure 16. State measurement screen. 

When the pilot is in a normal state, it could be confirmed 

that BFS kept constant over 0.4. Although the EAR 

fluctuates, it is generally maintained above 0.35, and the 

BPM also maintains a constant value. In the abnormal state 

(e.g., sleep state), unlike the previous normal state, it can 

be seen that the EAR drops from 0.35 to 0.2 or less. You 

can see the graph where the BPM also gradually decreases. 

Therefore, the state of the unmanned aerial vehicle pilot is 

defined as shown in Table VII, Table VIII and Table IX on 

the criteria for defining the state through the previously 

measured variable values. 

TABLE VII.   DEFINING CRITERIA BY PILOT STATE_1 

Behavior State Pilot Behavior EAR 

Normal 
Idle 𝟎. 𝟑𝟐 <  𝑺𝑬𝑨𝑹 

Prone Not Detected 

Abnormal 

Idle 
𝟎. 𝟏𝟒 <  𝑺𝑬𝑨𝑹 

Not Detected 

Prone 
Not Detected 

Not Detected 

AWOL Not Detected 

Danger Don't Care 

Equipment Error Don't Care 

TABLE VIII. DEFINING CRITERIA BY PILOT STATE_2 

Behavior State Pilot Behavior BFR 

Normal 
Idle 𝟎. 𝟏𝟓 <  𝑺𝑩𝑭𝑹 < 𝟎. 𝟒𝟓 

Prone 𝑺𝑩𝑭𝑹 < 𝟎. 𝟏𝟓 

Abnormal 

Idle 
𝟎. 𝟒𝟓 < 𝑺𝑩𝑭𝑹 

𝟎. 𝟒𝟓 < 𝑺𝑩𝑭𝑹 

Prone 
𝑺𝑩𝑭𝑹 < 𝟎. 𝟏𝟓 

𝑺𝑩𝑭𝑹 < 𝟎. 𝟏𝟓 

AWOL Not Detected 

Danger Don't Care 

Equipment Error Don't Care 

TABLE IX. DEFINING CRITERIA BY PILOT STATE_3 

Behavior State Pilot Behavior BPM 

Normal 
Idle 𝟔𝟎 <  𝑺𝑩𝑷𝑴 < 𝟏𝟎𝟎 

Prone 𝟔𝟎 <  𝑺𝑩𝑷𝑴 < 𝟏𝟎𝟎 

Abnormal 

Idle 
𝟔𝟎 <  𝑺𝑩𝑷𝑴 < 𝟖𝟎 

𝟔𝟎 <  𝑺𝑩𝑷𝑴 < 𝟏𝟎𝟎 

Prone 
𝟔𝟎 <  𝑺𝑩𝑷𝑴 < 𝟖𝟎 

𝟔𝟎 <  𝑺𝑩𝑷𝑴 < 𝟕𝟎 

AWOL Not Detected 

Danger 𝟔𝟎 >  𝑺𝑩𝑷𝑴 𝒐𝒓 𝑺𝑩𝑷𝑴 > 𝟏𝟏𝟎 

Equipment Error Not Detected 

V. PILOT STATE DETERMINATION ALGORITHM 

In order to detect the state of the unmanned aerial 

vehicle pilot, video information is collected using a camera, 

and bio-signals are collected using a wearable device. To 

determine the pilot state while the pilot is controlling the 

unmanned aerial vehicle, it is necessary to collect 

information in real time, analyze the information, and 

finally derive the state. In this study, three major indicators 

were used to determine the pilot condition. The pilot 

expression through image recognition was used as the first 

index, and the second index is the pilot behavior. The third 

and final indicator used the heart rate, which is a vital 

signal. For each of the three indicators, the cloud server of 

AWS (Amazon Web Service) was used for the collection 

and pre-processing to proceed simultaneously through 
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each collection process. After implementing the DB 

through the cloud server, the conditional statements for 

deriving each state were implemented in Python. Since the 

pilot state identification algorithm derives the state 

through three pieces of information, EAR, BFR, and BPM 

were visualized to understand the pre-processing process 

at the same time as the information collection. This is 

shown in Fig. 17. 

 

Figure 17. Real-time pilot state screen. 

Fig. 18 shows the schematic diagram of the unmanned 

aerial vehicle pilot state detection algorithm. 

 

Figure 18. Schematic diagram of real-time pilot state identification 
algorithm. 

VI. ALGORITHM VERIFICATION THROUGH 

EXPERIMENTATION 

To verify the pilot state identification algorithm, the 

accuracy of the UAV GCS simulation algorithm and the 

judgment results through the algorithm were analyzed. As 

shown in Table X, the ‘actual’ means the actual value 

(pilot behavior), and the ‘predicted’ means the determined 

behavioral state. TP (true positive) is when an abnormal 

behavior is correctly detected, TN (true negative) is when 

a normal behavior is not detected as an abnormal behavior. 

FP (false positive) is when a normal behavior is detected 

as an abnormal behavior. FN (false negative) means that 

the abnormal behavior is not detected as an abnormal 

behavior. 

TABLE X. PREDICTION ERROR TABLE 

Predicted 

Actual 
Positive Negative 

Positive True Positive Fallse Negative 

Negative False Positive True Negative 

 

Sensitivity =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                      (6) 

Specificity =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                      (7) 

In the GCS simulation experiment result, the sensitivity 

indicates the number of detections for abnormal behavior 

(in Eq. (6)). It means that the higher the number, the higher 

the probability of detection of abnormal behavior. 

Specificity indicates the number of times that normal 

behavior and abnormal behavior were judged (in Eq. (7)). 

It means that the higher the number, the better the 

distinction between normal behavior and abnormal 

behavior. In this paper, the accuracy of the monitoring 

system is evaluated using the sensitivity and specificity, as 

in Table XI. Operational images were collected for each 

action within the range that can be simulated, and the 

evaluation was conducted based on the results of 

determining the action for successive frames. 

TABLE XI. MEASURED SENSITIVITY, SPECIFICITY 

State Behavior Sensitivity Specificity 

Normal 
Idle 99.49 99.49 

Prone 99.49 98.98 

Abnormal 

Idle (Drowsiness) 92.66 91.84 

Idle (Distracted Op

eration) 
93.66 95.41 

Prone (Drowsiness) 95.42 96.77 

Prone (Sleep) 94.07 98.98 

AWOL 97.46 95.41 

Equipment Error 98.98 98.95 

 
In the operation of the UAVs, it was confirmed that high 

sensitivity and specificity were obtained in the behavioral 

judgment in the normal state, respectively. It can be seen 

that, in determining the behavioral state in the normal state, 

the pilot who takes the upright posture has a higher 

recognition rate of face and posture, resulting in such a 

result. It was confirmed that the accuracy of the behavioral 

state judgment in the abnormal state is slightly lower than 

that in the normal state. It can be seen that the specificity 

in the prone state, where the recognition of abnormal 

behavior judgment is relatively simple, is higher than the 

classification in the idle state. It was confirmed that, in the 

judgment in which the eye state information is additionally 
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added along with the posture information, the smaller the 

judgment variable in the classification, the higher the 

accuracy. It is also possible to check that both Sensitivity 

and Specificity are high in a state that can be judged by one 

state variable, such as an equipment error. Through these 

results, it was confirmed that the less state variables or the 

more clearly recognizable state, the higher the accuracy in 

judging the operator's abnormal behavior. 

VII.  RESULTS AND CONCLUSIONS 

In order to build a system that derives the pilot state in 

real time, we developed an image information collection 

system and a biometric information collection system to 

collect necessary data. Based on these data, we derived a 

reference index for judging abnormal behavior through 

measurement. In addition, these indicators were applied to 

each algorithm for judging abnormal behavior. This allows 

the operator to determine normal and abnormal behaviors. 

Using the system proposed in this paper, the environment 

can be configured more simply than the existing 

monitoring system configuration through webcams and 

wearable devices. However, it was difficult to obtain more 

diverse data in limited experimental subjects and 

experimental settings. By improving these parts, it will be 

possible to identify states with higher accuracy, and more 

diverse states can be derived. 

In the future, if any research is conducted to more 

accurately derive the pilot conditions in real time through 

eyes, body posture, and biosignals, a guideline for 

providing a warning sound to alert a pilot in a drowsy state. 

If additional research is conducted on a feedback system 

that provides customized feedback according to the pilot 

conditions, the pilot state derivation algorithm can show 

more meaningful results by increasing the safety of UAV 

operation and minimizing risks. In particular, if the pilot 

state is derived more diversely and research is conducted 

to provide appropriate feedback for each derived state, it 

can be of great help in increasing the mission success rate. 
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