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Abstract—Autonomous driving vehicles are considered the 

future of mobility as they can reduce the mortality rate owing 

to traffic accidents. This can also be achieved using cameras 

and a Convolutional Neural Network (CNN) to detect objects 

on the road and take necessary actions to prevent life-

threatening occurrences. However, the current form of CNN 

needs to be trained using large amounts of annotated data, 

which is time consuming, expensive, and requires extensive 

manpower. These limitations can be overcome by using 

Active Learning (AL) systems, which only select a subset of 

informative data from the big data for annotation by humans. 

Although AL reduces the amount of data being used for CNN 

training, humans are still needed to annotate the data. This 

study proposes a Semi-Automated Active Learning system 

(SAAL) to further reduce the need for manpower for data 

annotation. SAAL uses AL and a new algorithm called 

Machine Teachers (MTs), which are stacked algorithms of 

pre-trained CNN and optical flow that use the temporal-

spatial information video data from cameras on vehicles to 

help humans annotate images. This allows SAAL to be 

partially automated and further reduces human effort while 

roughly maintaining the accuracy of CNN to that of AL.  

 

Index Terms—active learning, convolutional neural network, 

image annotation, optical flow  

I.   INTRODUCTION 

Automated driving vehicle technology, a sophisticated 

and accessible technology comprising multiple 

complicated and sensitive systems that are harmonious and 

communicate with each other, is being developed rapidly. 

One of the most crucial components of automated driving 

vehicles is the perception system, which uses multiple 

sensors such as cameras and LiDAR to enable the vehicle 

to sense its surroundings while navigating.  

The camera is considered the most important 

component of the perception system as it closely resembles 

the human eye and provides rich information in the form 

of color and shape. Additionally, given that cameras are 

inexpensive, automated driving vehicles using only 

cameras also become inexpensive. An affordable 

automated driving vehicle can be developed by creating a 

perception system that uses a camera and a Convolutional 

Neural Network (CNN) to help avoid obstacles while 

driving. Tesla Inc. applies this technology, and now, its 

vehicles are common on the road. This technology 

demonstrates the importance of CNNs in the development 

of practical automated driving vehicles. 

Two major tasks are involved when using CNN for the 

image domain: Image Classification Task (ICT), which 

classifies objects or determines the “what” in an image, 

and Object Detection Task (ODT), which detects multiple 

objects or determines the “what” and “where” in an image. 

Fig. 1 shows the differences between the ICT and ODT 

results. The annotating images for ODT are cost-hungry 

compared to ICT owing to multiple bounding boxes and 

class labels that need to be annotated. Autonomous driving 

vehicle systems apply ODT, which will also be discussed 

in this study. 

 

Figure 1. Difference between image classification and object detection 

tasks. 

Before the development of CNN or deep learning, 

conventional image processing methods were widely used 

to realize ICT and ODT. These methods, which include a 

Histogram of Oriented Gradient (HoG) [1], [2], a Bag of 

Visual Words (BOVW) [3]-[5], SIFT [6], and SURF [7], 

need to be defined manually to extract image features, 

which makes them significantly different from CNN. One 

of their advantages is that their internal working is 

transparent and can be easily understood. In addition, these 

methods are considered mature considering they have been 

used for a long time. However, given that they need to be 

defined manually makes it difficult for them to be 

generalized for extensive applications. Furthermore, they 

cannot utilize the big data of the current world [8]. 

Compared to conventional image processing methods, 

CNN, which mimics the biological brain to a certain extent, 
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can automatically extract features from images through 

backpropagation [9], thereby eliminating the need for 

manpower to manually define an extraction algorithm. 

This is highly advantageous considering CNNs can be 

scaled according to the size of the dataset [8], making it 

more accurate to the task to be tackled [10]. CNNs for ICT 

include GoogleNet [11] and ResNet [12], and ODT include 

such CNNs are the You Only Look Once (Yolo) object 

detector family [13]-[15] and Single Shot multibox 

Detector (SSD) [16] (Refer to [8] for more details). 

However, CNN requires a large number of annotated 

datasets to perform tasks. Annotating the image dataset for 

ODT is time-consuming, expensive, and requires 

manpower. This problem can be partially solved by Active 

Learning (AL) [17]-[19]. 

The AL system is designed to reduce manual image 

annotations based on the idea is that not all data are the 

same; that is, some data are more informative than others. 

For example, only half the data in the X number data are 

beneficial to the CNN during training. The beneficial or 

informative data is selected by the model to be trained, and 

a query strategy is implemented within the AL, as shown 

in Fig. 2. However, this oracle still needs to annotate the 

data in the AL system, which does not solve the problem 

of costs. 

Therefore, this study proposes an improved AL system 

called the Semi-Automated Active Learning (SAAL) 

system that comprises AL and a novel algorithm called 

Machine Teachers (MTs) to further reduce the cost. (MTs) 

combine a pretrained CNN and conventional image-

processing techniques to help the oracle by partially and 

automatically annotating images for ODTs. The proposed 

MT was implemented using an optical flow and a pre-

trained CNN, which allowed us to use temporal-spatial 

information from video data recorded by the camera of the 

vehicle to automate the annotation process. This is 

advantageous considering data involving road scenarios 

can easily be used in the form of a video. In particular, a 

certain frame (a particular image from video) is selected, 

and the MTs use the spatial-temporal information 

revolving around that frame to annotate. To the best of our 

knowledge, this method has not been implemented in any 

other research. While ViewAL [20] used video with AL, it 

dealt with multiple videos depicting the same scene from 

different angles, making it unsuitable for the development 

of autonomous driving vehicles. 

 

Figure 2. Loop of a typical AL system. 

SAAL was evaluated by conducting three experiments: 

Experiment 1, Experiment 2, and Experiment 3. In 

Experiment 1, we trained the CNN model using a normal 

AL system to demonstrate that all annotations are made by 

humans. In Experiment 2, we trained the CNN model using 

the proposed SAAL system. Herein, the annotations were 

partially annotated by the MTs, while humans helped the 

annotations result by the MTs. Finally, Experiment 3 was 

conducted using 100% annotations by the MTs without 

human intervention. One can even refer to this as fully 

automated active learning. Results showed that SAAL was 

able to produce a CNN model comparable to AL in terms 

of accuracy while reducing the number of annotations 

work by the oracle. 

II.   MACHINE TEACHERS 

In this section, we discuss the implementation of MTs 

and SAAL. First, we discuss the parts comprising MTs and 

their inner working. The next subsection discusses the 

current state of AL and the inner working of its algorithm. 

Lastly, we discuss the working of our proposed SAAL 

system. 

A. Structure 

Generally, MTs are a set of algorithms comprising a 

pre-trained CNN (hereon referred to as CNNMTs) and 

conventional image processing techniques acting as the 

helper or teacher to automatically annotate image data. 

Note that the CNNMTs are different from the CNN that will 

be trained later. MTs uses both the pre-trained CNN and 

conventional methods owing to their individual 

advantages, as mentioned in the Introduction section. Fig. 

3 illustrates the concept of MTs. The objective of MTs is 

to automatically annotate some of the image data to reduce 

the workload of the oracle. 

 

Figure 3. Implementation of MTs. 

The proposed MTs are implemented to correspond with 

video data. It uses the spatial-temporal information of the 

video to annotate a single frame extracted from the video. 

The annotated frame is then forwarded to the oracle for 

repair before being transferred to the CNN for training. 

This was achieved by implementing an optical flow 

algorithm along with CNNMTs. The concept of optical flow 

was introduced by a psychologist named James J. Gibson 

[21], and has been widely used in applications such as 

robotics and motion tracking. In this study, we used the 

standard optical flow of the Lucas-Kanade method [22], 

wherein the optical flow tracks the motion of neighboring 

pixels across frames, thereby allowing us to keep track of 

a particular region in a video. While other tracking 

methods are available, we chose optical flow considering 

it is easy to use. 
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For CNNMTs, any pre-trained CNN available on the 

Internet can be used. Therefore, for our CNNMTs, we used 

a network called YoloV3 [15] that has a fast inference or 

prediction time with high precision for object detection 

tasks. Published in 2018, YoloV3 is a stable CNN model 

for the proposed study. However, considering MTs are 

designed to be flexible, other CNNs can also be used 

depending on the usage. One can implement multiple 

CNNMTs and conventional image processing methods over 

the optical flow to obtain improved annotation results. 

However, in this research, we do not go to that extent 

because we aim to build a working prototype of MTs. 

The purpose of using a pre-trained CNN model in MTs 

(CNNMTs) to detect object classes and use them as 

annotations to train another model, instead of using the 

model itself for our application considering it can detect 

object classes, is because we can train or retrain a 

particular CNN to be good and optimize it to predict only 

certain object classes in certain contexts, given that pre-

trained models on the Internet are designed generally for a 

wide range of applications. Furthermore, MTs function 

more as an oracle helper than an object detection system 

considering they can be built in complicated ways, such as 

using multiple CNNs, which requires more computational 

power. This can be allowed in the object annotation 

process, such as in the proposed SAAL system, because 

unlike hardware usage in autonomous driving systems, 

hardware that can be used during object annotation does 

not have any constraints in terms of energy usage, size, and 

capacity.  

B. Algorithm 

We will now discuss the inner working of the proposed 

MTs. First, we detect the presence of objects using 

CNNMTs. False positives or falsely detected objects can be 

expected, which can be suppressed and deleted using 

conventional image processing methods (in this case, 

optical flow). 

 

Figure 4. The proposed MTs implementation algorithm. 

The algorithm is as follows: First, YoloV3 detects a 

single frame t of a video to obtain bounding boxes BBt. 

The key point features from every BBt were then extracted 

and tracked backward by n frames. At frame t-n, YoloV3 

once again carries out detection to obtain bounding boxes 

BBt-n. If BBt-n overlaps with the tracked BBt and the 

detected class labels are the same, the corresponding BBt 

can be true positives. Therefore, the BBt will be kept as an 

annotation. In other words, we use the spatial-temporal 

information existing in the video to suppress false 

positives using the first detection at frame t. In our 

implementation, t is set to the 10th second and n is set to 10. 

Fig. 4 illustrates the entire process. 

 

Figure 5. Experimental results of the MTs. 

Fig. 5 shows the experimental results of the MTs for 

vehicle detection when used on a real video. Result 

showed that the optical flow was able to suppress the 

detection of two false positives by the CNNMTs. However, 

true positive detection (correctly detected objects) was also 

deleted, which is inevitable and cannot be completely 

prevented. Because the oracle is required to annotate the 

remaining objects in the image, we called our version of 

AL semi-automated. These results can be improved by 

implementing more algorithms in MTs to improve 

accuracy. In this study, we first adhere to the simple 

implementation. 

III. SEMI-AUTOMATED ACTIVE LEARNING SYSTEM 

A. Active Learning 

Research on AL has been ongoing for several decades. 

The idea is to reduce the amount of data needed to train a 

good model, which in this case, is the CNN. In other words, 

the AL system allows the model to be trained and the 

implemented query strategy framework to select the subset 

of data from our dataset. Only data that are considered 

“informative” are selected, which could lead to a lower but 

acceptable accuracy in the trained model. However, 

annotating all data is expensive. 

Query strategy frameworks, such as uncertainty 

sampling [23], [24] and Query-by-Committee (QBC) [25], 

[26], mentioned above can be considered as the heart of 

the AL system, considering it decides how the system 

selects the data that is considered “informative.” 

Uncertainty sampling is straightforward, where the 

framework selects data that the model is currently least 

confident about using the posterior probability or 

prediction score of the predicted class. The idea is that the 

less confident a model is on a particular data, the more 

informative it is. Additionally, the framework can use the 

difference or margin between the predicted and second 

predicted classes [27], [28]. Conversely, QBC is more 

complex as it involves the use of multiple models trained 

on the current annotated set while having different 

hypotheses. These models can give data instances they 

disagree with, which will then be considered as 
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informative, and selected. Interested readers can review 

these strategies and others from [17]. 

As shown in Fig. 2, an oracle first needs to annotate n 

data from the database to obtain xanno data, which should 

not be large. xanno is then be used to train our CNN 

(hereafter referred to as CNNAL). This training phase 

should be conducted considering the maximum number of 

epochs are fulfilled. After training, validation data was 

used to validate and measure the performance of CNNAL, 

and a subset of unannotated data x was obtained from the 

database. The query strategy framework within AL uses 

the prediction result to determine the informative data to 

be annotated. Finally, the oracle annotates the chosen data, 

and xanno is updated with the new data. This cycle is 

repeated until the number of cycles are fulfilled. It should 

be noted that CNNAL and CNNMTs are of different CNNs. 

 

Figure 6. Loss prediction module. 

However, this study does not use the aforementioned 

classic query strategy frameworks considering they are not 

suitable for use in ODTs. ODT is more complicated than 

ICT, where each image comprises multiple objects of 

different sizes and positions, as shown in Fig. 1, resulting 

in hurdles when applying normal query strategies for 

ODTs. However, research has come along considering the 

different approaches developed to solve this problem. In 

this study, we used the loss prediction module proposed in 

[29], wherein a small deep learning module is attached to 

our CNNAL and trained together. The learning loss module 

is responsible for learning how to choose data that can be 

useful for CNNAL. Furthermore, it learns how to predict the 

loss output by the unannotated image, followed by 

selecting the image with the highest predicted loss. The 

higher the loss is of an image, the more valuable and 

informative it is to the model. Fig. 6 shows how the loss 

prediction module is attached to the CNNAL.  

 

Figure 7. Architecture of the loss prediction module. 

Fig. 7 shows the CNN architecture of the learning loss 

module when attached to another CNN. The loss module 

considers three feature maps from the main CNN as input. 

Each input is reduced to a fixed dimensional feature vector 

using a Global Average Pooling (GAP) layer and a Fully 

Connected layer (FC) before the ReLU activation function. 

Finally, all layers are concatenated and passed through 

another fully connected layer, which results in a scalar 

value for loss prediction. 

During the selection for the informative data process, 

the AL system first takes a predefined number of data J 

from the unannotated database. Then, it passes the data 

through the CNNAL and learning loss module. Because we 

do not have the ground truth of the data (they are 

unannotated), we cannot calculate the real loss of those 

data. However, the learning loss module can output the 

loss prediction considering it is trained to do so. Then, K 

data with the highest loss prediction is selected and sent to 

the oracle for annotation. This method is simple and task 

agnostic, which is highly suitable for ODT. 

The loss prediction module algorithm can be 

summarized as follows: We have CNNAL 𝜃𝑡𝑎𝑟𝑔𝑒𝑡  and loss 

prediction module 𝜃𝑙𝑜𝑠𝑠 . The model outputs �̂� =
 𝜃𝑡𝑎𝑟𝑔𝑒𝑡(𝑥), where x is the data point propagated across the 

model. Simultaneously, features of x extracted from 

several hidden layers of 𝜃𝑡𝑎𝑟𝑔𝑒𝑡, h is passed to 𝜃𝑙𝑜𝑠𝑠 and 

the loss of that particular image can be predicted as 𝑙 =
 𝜃𝑙𝑜𝑠𝑠(ℎ) . With the target annotation y of x, the loss of 

𝜃𝑡𝑎𝑟𝑔𝑒𝑡  is calculated as 𝑙 =  𝐿𝑡𝑎𝑟𝑔𝑒𝑡(�̂�, 𝑦). l is then used to 

calculate the loss of 𝜃𝑙𝑜𝑠𝑠 as 𝐿𝑙𝑜𝑠𝑠(𝑙, 𝑙). Therefore, the final 

loss function is defined as 𝐿𝑡𝑎𝑟𝑔𝑒𝑡(�̂�, 𝑦) +  𝜆・𝐿𝑙𝑜𝑠𝑠(𝑙, 𝑙). 

𝐿𝑙𝑜𝑠𝑠(𝑙, 𝑙) is calculated from, the difference between the 

pairs of loss predictions, given as: 

𝐿𝑙𝑜𝑠𝑠(𝑙𝑝, 𝑙𝑝) = 𝑚𝑎𝑥(0, −𝟙(𝑙𝑖 , 𝑙𝑗)・(𝑙𝑖 − 𝑙𝑗) + 𝜁) 

s.t.      𝟙(𝑙𝑖 , 𝑙𝑗)  = {
+1,   𝑖𝑓 𝑙𝑖  > 𝑙𝑗

−1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                      (1) 

where 𝜁 is a pre-defined positive margin and p is the pair 

of loss predictions. With the number of batches B, the final 

loss function is determined as: 

1

𝐵
∑ 𝐿𝑡𝑎𝑟𝑔𝑒𝑡

(𝑥,𝑦)∈𝐵

(�̂�, 𝑦) + 𝜆
2

𝐵
・ ∑ 𝐿𝑙𝑜𝑠𝑠(𝑙𝑝, 𝑙𝑝)

(𝑥𝑝,𝑦𝑝)∈𝐵

 

�̂� = 𝜃𝑡𝑎𝑟𝑔𝑒𝑡(𝑥) 

s.t.      𝑙𝑝 = 𝜃𝑙𝑜𝑠𝑠(ℎ𝑝) 

𝑙𝑝 = 𝐿target(�̂�𝑝, 𝑦𝑝)                        (2) 

We highly recommend the readers to read the paper [29] 

for a detailed insight on the algorithm. 

B. Semi-Automated Active Learning 

Here, we discuss the semi-automated active learning 

system. First, we built our own MT algorithm using 

CNNMTs (in this case YoloV3) and optical flow. We then  

plugged the MTs into a typical AL system. In addition, we 

changed the conventional query strategy framework of the 

AL to the learning loss module to easily deal with the ODT. 

SAAL works the same as in usual AL, except that the 

oracle works alongside MTs during data annotations. 
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IV. IMPLEMENTATION 

In this section, we discuss the dataset used to evaluate 

the proposed SAAL system. Furthermore, we discuss the 

implementation of our target model (to be trained or 

CNNAL). Lastly, we discuss the implementation of the 

proposed SAAL system. 

A. Dataset 

We used the Berkeley Deep Drive (BDD) dataset [30] 

by the University of California-Berkeley for the 

implementation. BDD is a huge dataset comprising 

100,000 driving videos of places such as New York, San 

Francisco Bay Area, and Berkeley, each being 40 s in 

length. The dataset provides ground truth annotations for 

certain tasks, such as lane marking, semantic instance 

segmentation, and object detection. 

 

Figure 8. Example of image data from the BDD dataset. 

Furthermore, this dataset provides images extracted 

from 100,000 videos. The images were extracted at the 

10th second of each video, and the corresponding ground 

truth annotations of the images were also provided, which 

is why we chose this dataset for our experiments. Fig. 8 

shows examples of images and annotations of this dataset. 

We used MTs to extract annotations at the 10th second of 

the videos, whereas the provided ground truth annotations 

were used to add up missed annotations by MTs to 

simulate the act of oracle adding the annotations. Because 

our data comprised driving videos, we assumed that our 

experiment would involve object detection for an 

autonomous driving vehicle. 

For experimental purposes, we only used part of the data 

based on object class cars, persons, and traffic lights, 

which are objects essential to autonomous driving vehicles. 

Fig. 9 shows the height and width distributions of the 

subset dataset used. By constraining our dataset, we were 

able to focus on developing the SAAL to understand its 

results and performance. 

 

Figure 9. Object classes size distribution of the subset of BDD dataset. 

B. Target Model 

We created a custom model CNNAL by combining 

MobileNetV2 [31], a mobile CNN architecture where the 

inference time is the primary concern, with the head of 

YoloV3 [15]. However, because MobileNetV2 is an 

architecture for ICT, the head of YoloV3, responsible for 

the ODT, was considered. In other words, MobileNetV2 

was used as a backbone network considering YoloV3 is a 

network in itself comprising two parts: the image 

classification task backbone and the object detection head. 

In this study, MobileNetV2 is an already pre-trained model 

using the ImageNet dataset [10], whereas the head of 

YoloV3 was randomly initiated prior to training. 

 

Figure 10. Proposed custom MobileNetV2 + YoloV3. 

Considering the nature of our dataset indicates the usage 

for autonomous vehicle object detection, given that it will 

operate with constrained computing resources during 

inference time, we might also use an architecture that deals 

with constrained resources. Fig. 10 shows the 

implemented model. The CBL in the figure is an 

abbreviation for “Conv2D BN Leaky,” a basic component 

in YoloV3 comprising a convolutional (Conv2D) layer, a 

Batch Normalization (BN) layer, and an activation 
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function (in this case, ReLU6 [32]). We will refer to the 

MobileNetV2 [31] and YoloV3 [15] papers for details of 

the models themselves. 

 

Figure 11. MobileNetV2 connected to the learning loss module. 

Features h from MobilenetV2 were extracted and 

propagated through the learning loss module during 

training. As shown in Fig. 11, the features h are from the 

inverted residual layers 6 and 13, and the final output of 

MobileNetV2, which is the same place where the head of 

YoloV3 is connected. We extracted features from 

MobileNetV2 instead of YoloV3 because MobileNetV2 is 

responsible for image feature extraction, which is required 

by the learning loss model. This is different from the 

YoloV3 head considering the YoloV3 head is responsible 

for the localization of objects, and hence, will not be 

helpful to the learning loss module. This approach is 

similar to that of the original study [29]. 

C. Semi-Automated Active Learning Setup 

Fig. 12 shows the implementation of the proposed 

SAAL system, which can be contrasted with the normal 

AL shown in Fig. 2. Considering the learning loss module, 

following the implementation in [29], all fully connected 

layers except the last one were set to output 128-

dimensional features. Considering the last fully connected 

layer must output the loss prediction, it is set to output a 1-

dimensional feature. The general workflow of the SAAL 

is as follows: First, we assume that we have already 

collected N number of unannotated data from a source, 

denoted as database Υ. Although the data can be anything 

from videos to audio, but in this case, it was images. The 

database is then be referred to as 𝑌𝑁
0, where 0 refers to the 

initial stage of the database. As a prerequisite, the oracle 

needs to annotate some of the data from the database. The 

annotated number of data is K, which is considered as the 

initial data used to train CNNAL. By referring to our 

annotated training data as T, we acquire 𝑇𝐾
0  of the 

annotated training data and 𝑌𝑁−𝐾
0  database of the 

unannotated data at our disposal. The first data is annotated 

manually because the CNN model should first be trained 

with the subset of our dataset to understand its nature 

before selecting the informative data during data querying. 

CNNAL was trained using the transfer learning method 

[33] considering MobileNetV2 is a pre-trained network. 

The entire training was divided into three stages, where all 

of them received images of size 416×416 as the input. With 

a batch size of 64, the mini-batch size was set to 32 and K 

was set to 960. In the first stage, our model was trained 

with 𝑇𝐾
0 data for 30,000 batches with stochastic gradient 

descent as the optimization algorithm, where the learning 

rate, momentum, and weight decay were set to 0.001, 0.9, 

and 0.0005, respectively. In this stage, we only trained the 

head layer of our CNN, which is responsible for detecting 

objects in the image. We tracked the performance of the 

model and saved the weight that resulted in the highest 

mAP reading during validation. 

 

Figure 12. Proposed SAAL system. 

In the second stage, the model was continuously trained 

using the saved weight from the first stage. While it was 

trained similarly as in the first stage, all of the layers were 

unfrozen and with a batch number of 50,000. The weight 

that resulted in the highest mAP reading during validation 

was also saved. These two stages familiarize the CNN with 

the new data that will be fed. 

Finally, the final crucial third stage of SAAL includes 

the training process similarly to that in [29]. We assumed 

one AL cycle is completed every 300 epochs during 

training. Once an AL cycle is completed, we add another 

K data selected by the loss prediction module from the 

subset of data J. Therefore, every time the AL cycle is 

completed, our annotated training data will be 

𝑇2𝐾
1 , 𝑇3𝐾

2 , 𝑇4𝐾
3  and so on. Furthermore, we trained the model 

with a batch size of 64 and mini-batch size of 32. After 240 

epochs, the learning rate was reduced from 0.001 to 0.0001. 

Additionally, the loss prediction module was frozen to 

ensure it is not trained until the next AL cycle. In this 

experiment, we used 𝐽 = 𝐾 ∗ 10  and 𝐾 = 960  images, 

and trained them for 50,000 batches, which resulted in four 

AL cycles. As for the learning loss module 

hyperparameters, margins ζ and λ were set to 1.0, similar 

to that in [29] during evaluation of the learning loss 

module with ODT. As for the MTs, we extracted images 

at the 10th second of the videos and tracked 10 frames 

backward with the optical flow to suppress false positives. 

This framework is mainly built using PyTorch [34] and 

LightNet [35] libraries. 

The difference between the SAAL and AL becomes 

clear during image annotation. The proposed framework 

SAAL first feeds the corresponding video of the image into 

the MTs. By using the video, MTs conduct annotation to 

the image as mentioned in the MT algorithm section. 

Furthermore, the oracle adds annotations as needed. 

Although we mentioned that the oracle will perform the 

annotations, we simulate the process by considering the 

ground truth annotations provided with the dataset. 
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V.   RESULTS AND DISCUSSION 

To the best of our knowledge, no other methods directly 

help the oracle to annotate images. Therefore, we only 

compared the results of the proposed SAAL system with 

the previous method of normal AL. 

Fig. 13 and Fig. 14 show the Average Precision (AP) 

and Mean Average Precision (mAP) results of the three 

experiments, respectively. The mAP reading is the mean 

of the AP reading from the three object classes. While 

experiment 1 shows the result of pure AL, where 100% of 

the data was annotated by the oracle, experiment 2 shows 

the result of the proposed SAAL, where human 

intervention was included to add needed annotations that 

went undetected by MTs. Experiment 3, which shows the 

result of SAAL but with data annotations only provided by 

the MTs without human intervention (a fully automated 

SAAL), was conducted to ensure the completeness of the 

evaluation. 

 

Figure 13. Average precision of each experiment. 

 

Figure 14. Mean average precision of each experiment. 

Experiments 1 and 2 showed promising results. Both 

mAP values increased in every AL cycle and were 

comparable to each other. As shown in Fig. 15, we 

compared the number of works that the oracle needed to 

manually add annotations to the images in both 

experiments for every AL cycle. Results showed that the 

number of works the oracle needed with SAAL was lower 

compared to normal AL owing to MTs ability to perform 

annotations automatically. Furthermore, we found out that 

the total annotations needed to be performed by the oracle 

in SAAL and AL were 33,848 and 41,202, respectively. 

Therefore, compared to AL, the proposed SAAL system 

was able to reduce oracle work by 17.85%. Full-scale data 

acquisition and annotation from video sources can be 

tedious, and the effect of lowering oracle work can be very 

beneficial. However, we believe that MTs can be further 

improved by stacking more algorithms. For example, 

multiple CNNs can be used for CNN parts of MTs. 

Another conventional image processing method can also 

be implemented alongside optical flow to ensure false 

positives can be suppressed without mistakenly deleting 

true positives. Based on one usage, it could take some time 

to implement better MTs. 

 

Figure 15. Number of annotations by the oracle. 

Conversely, in Experiment 3, every new AL cycle did 

not result in an increase in mAP reading, as shown in Fig. 

13 and Fig. 14. Further inspection showed that the problem 

was attributed to the low number of annotations produced 

by the MTs. Although all experiments were constantly 

being added with K=960 images after each AL cycle, the 

annotations associated with the images in Experiment 3 

were much lower than those in Experiments 1 and 2. For 

example, compared to Experiment 1, Experiment 3 used 

27,371 lesser annotations in total, which explains the 

failure of Experiment 3 to produce good results. We can 

understand that human intervention is still needed in the 

SAAL system; however, it can be lowered by improving 

the MT performance. 

Considering the relatively low mAP reading in three of 

the experiments, results indicated that this can be attributed 

to the nature of the dataset, which are videos taken from 

the video camera on vehicles. Naturally, cars are 

abundantly projected in the video, which results in an 

imbalanced distribution of object classes. Traffic lights 

and people will have a much lower number of instances 

and be very small, as shown in Fig. 9. Other object classes 

in the BDD dataset, but not included in this study, also has 

the same problem where the number of annotations is too 

low or the size is too small, which is challenging for 

datasets that are addressed separately. 
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One might argue that the complexity introduced by MTs 

is worth a ~18% reduction in workloads. We believe this 

is justified, considering the larger the total number of 

datasets is, the larger the number of works that can be 

reduced. For example, if there are 100,000 annotations that 

need to be done, the work can be reduced to approximately 

82,000. In addition, MTs are dynamic, which means that 

their performance can be improved over time. Because the 

CNN model can be retrained with new data over time, they 

can exhibit improved performance with time and can 

manage to help the oracle significantly. 

VI. LIMITATIONS AND FUTURE WORKS 

However, SAAL has several limitations. The plugged-

in MTs are dependent on the CNN used. By using a pre-

trained CNN, common objects such as cars and human 

beings can be easily detected, followed by reducing the 

number of false positives. However, this method will not 

work when rare object classes are involved, considering a 

CNN pre-trained for rare object classes may not exist. This 

problem can be fixed by manually annotating object 

classes in interest followed by manually training a CNN 

for that particular object class until an acceptable accuracy 

is obtained. The CNN can then be improved over time 

using annotations extracted during SAAL. 

Although MTs can suppress false positives, they can 

also delete true positives, resulting in an increased number 

of false negatives. MTs should reduce the oracle's work by 

presenting the oracle with already annotated images during 

annotation, and not just blank un-annotated images. 

Therefore, images should be presented in a form where the 

false positives are suppressed as much as possible. The 

deletion of true positives by mistakes is unavoidable, 

where the oracle needs to carry out his/her job and annotate 

all the false negatives. This can be improved by optimizing 

the MT algorithm for the specific task and the dataset. 

Additionally, building MTs and optimizing their 

performance is challenging and requires trial and error 

efforts, such as obtaining the best combination of 

conventional image processing methods and adjusting 

their parameters. However, if the MTs and SAAL are built 

in a modular fashion in a framework that can be scaled, it 

could benefit in the long run. MTs can be improved 

regularly based on feedback from the oracle or based on 

new project requirements. Therefore, we are currently 

researching a methodology to develop MTs. 

Lastly, the proposed MTs and SAAL can be improved. 

Once our CNNAL is sufficiently trained, it can be used as a 

CNNMT. Then, instead of the loss prediction module, 

MTs can be directly used for query strategy. This can be 

achieved by comparing the detection at frame t by CNNMTs 

with frame t-n, where the false positives have been 

suppressed with optical flow. Furthermore, we can 

quantize the informativeness of frame t by comparing the 

number of false positives present in frame t. The more the 

number of false positives is, the more informative the 

frame would be. This can be explored in a separate study. 

Although this research focuses on the usage of MTs and 

SAAL with the road scene video dataset, it can easily be 

used to evaluate other types of datasets involving videos. 
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