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Abstract—Text to Speech (TTS) synthesis is a process of 

translating natural language text into speech. Pieces of 

recorded speech generate synthesized speech and a database 

is maintained for storing this synthesized speech. A speech 

synthesizer’s output is determined through its resemblance 

to the person utter and its capacity to be implied. In recent 

years between the two main subsections: machine learning 

and deep learning of Artificial Intelligence (AI), deep 

learning has achieved huge success in the domain of text to 

speech synthesis. In this literature, a taxonomy is introduced 

which represents some of the deep learning-based 

architectures and models popularly used in speech synthesis. 

Different datasets that are used in TTS have also been 

discussed. Further, for evaluating the quality of the 

synthesized speech some of the widely used evaluation 

matrices are described. Finally, the paper concludes with the 

challenges and future directions of the text-to-speech 

synthesis system. 

 

Index Terms—Text to Speech (TTS), deep learning, acoustic 

features, parametric synthesis, concatenative synthesis, text 

analysis 

 

I. INTRODUCTION 

Text is one of the most basic forms of computer 

interaction with humans. Most of the time, we expect this 

interaction to feel as natural and as smooth as the 

interaction we experience with other humans. For 

providing this naturalness, text-to-speech conversion can 

be more effective. Speech Synthesis, formally known as 

Text-to-Speech (TTS), allows any computing system to 

convert a written text to a voice message via a microphone 

or telephone [1]. A speech synthesizer is an information 

processing system. 
The advancement in the quality of speech synthesizers 

increases gradually with the expanding applications of 

speech synthesis. For example, to support blind persons in 

reading and efficient communication, different aids are the 

most necessary and useful application field in speech 

synthesis. Synthesized speech can also be used for 

particular functions like spelling and pronunciation 

teaching for various languages. Nowadays, most 

smartphones are capable of listening to questions from 

end-users and answering back through an intelligent 

personal assistant—Cortana (Microsoft), Siri (iPhone), or 

Google Assistant (Android) [2]. Speech synthesis has been 

the mainstream in research on Artificial Intelligence (AI). 

The main goal of a TTS system is to automatically produce 

speech output from new, arbitrary sentences. Texts are 

converted to speech in two main steps. The first step is text 

analysis, in which a text-input string is transformed into a 

symbolic or phonetic representation used to build acoustic 

and prosodic models. The second step is to create the 

speech waveforms. The techniques used for speech 

synthesis can be partitioned into two broad categories: (1) 

Traditional machine learning-based techniques and (2) 

Deep machine learning-based techniques. In traditional 

machine learning, two specific methods are used for TTS: 

concatenative speech synthesis [3] and parametric speech 

synthesis [4], [5]. Speech synthesis has been the 

mainstream in research on Artificial Concatenative 

synthesis is performed based on the concatenation of 

segments of the recorded voice. It is distinguished by 

selecting, storing, and smoothly concatenating human 

voices (phonemes, syllables, or longer units) [3]. There are 

different schemes for concatenative synthesis [6] like 

Epoch Synchronous Non-Overlap and Add (ESNOLA) [7], 

Pitch Synchronous Overlap and Add (PSOLA) [8], Time 

Domain Pitch Synchronous Overlap and Add (TDPSOLA) 

[9], [10], EMBROLA [11]. The parametric synthesis 

approach can also be regarded as a kind of concatenative 

synthesis [12]. The main dissimilarities lie in the units that 

are saved in the database and the signals restoration 

procedure. The most popularly used terms in this field 

have been demonstrated in Fig. 1. We have classified TTS 

based on architecture and models. The models used for 

TTS can be further divided into two categories: 

autoregressive (AR) and non-autoregressive (NAR). The 

autoregressive-based models along with the architectures 

have been discussed in Section III and the non-

autoregressive models are also discussed in the last part of 

Section III in the form of a table. Fig. 2 represents the 
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overall taxonomy of the deep learning-based architectures 

and the models used for TTS. 

 

Figure 1. Word cloud with the most used terms in the field of speech 

synthesis. 

In the last decade, a few review papers have been 

published on speech synthesis with Deep Machine 

Learning. But all of these articles have focused on deep 

learning-based techniques for some specific languages. 

We have studied several survey papers. Although these 

papers have presented a good literature survey, they have 

either discussed only deep learning-based speech synthesis 

methods and technologies [6], [12]-[14] or surveys based 

on a specific model or language. For example, R. A. Khan 

et al. [3] presented a review on concatenative-based speech 

synthesis. While Kayte et al. [6] focused on Hidden 

Markov Model (HMM) based speech synthesis [15]. Kayte 

et al. [14] also discussed Marathi’s Speech Synthesis. A 

large number of works with deep learning-based speech 

synthesis have been published. The article mainly focuses 

on deep learning-based speech synthesis architectures 

including their advantages and disadvantages, models. The 

main contributions of the survey paper include: 

• The paper presents an overall taxonomy and 

analyzes the architectures, and models including 

different types of learning techniques for speech 

synthesis. 

• The paper finds out the evaluation matrices for 

measuring the performance of the architectures. 

• The paper summarizes the datasets used for TTS. 

• Finally, the paper highlights the limitation of the 

existing architecture along with the future research 

directions for TTS. 

The rest of the paper is organized as: Section II provides a 

complete description of the survey methodology, Section 

III presents supervised learning-based speech synthesis, 

Section V represents a full description of the datasets, and 

Section VI depicts the most popularly used evaluation 

metrics. Finally, Section VII reveals the discussion and 

future research direction. the architectures along with the 

models that have been used for speech synthesis, Section 

IV provides unsupervised and semi-supervised learning 

based speech synthesis. 

 

Figure 2. Overall taxonomy of TTS system. 

II. SURVEY METHODOLOGY 

A systematic Literature Review (SLR) selects 

experimental data by using a defined plan or protocol [16]-

[18] that offers readers a comprehensive knowledge of the 

literature in different research areas [19]-[21]. An SLR 

also provides a complete idea about the gaps in specific 

research topic and directs the future research direction for 

that topic. The recent study in SLR was performed in three 

main stages: 1) Planning for the review, 2) Performing the 

review, and 3) Reporting the review [22]. 

A. Planning the Survey 

First, the significance of doing this survey was pointed 

out. Then, suitable inclusion and exclusion criteria were 

selected for searching the most relevant papers, articles, 

and studies. Our survey mainly focused on the databases: 

ACM, IEEE, Springer, and Elsevier. Finally, research 

questions related to this survey were described. 
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B. Search Strategy and Syntax 

Some major databases: Google Scholar, Springer Link, 

ACM digital library, IEEE Xplore, and ScienceDirect 

were used for searching the related articles. For searching 

the papers several keywords were used related to “Deep 

learning” AND “Speech synthesis” OR “Text to speech 

synthesis”. Fig. 3 illustrates the graphical representation of 

the percentage of our reviewed papers.  

 

Figure 3. Year wise view of literature. 

C. Inclusion and Exclusion Criteria 

The criteria for selecting an article were as follows: (a) 

The studies published anytime on or before 2022; (b) The 

journal articles including conference papers; (c) Full-text 

availability in digital databases; (d) The articles that 

proposed model or framework; and (e) The research 

written in English. In addition, the following exclusion 

criteria were used: (a) duplicate articles found in multiple 

academic databases; (b) papers based on quality evaluation 

criteria; and (c) review, book chapters, magazine articles, 

theses, interview-based articles, and monographs. 

III.  DEEP LEARNING-BASED SPEECH SYNTHESIS 

In this section, we have discussed the previous work on 

speech synthesis. Throughout this literature, we found out 

a total of eight basic architectures for TTS system: 

Restricted Boltzmann Machine (RBM), Deep Belief 

Network (DBN), Deep Mixture Density Network 

(DMDN), Convolutional Neural Network (CNN), 

Recurrent Neural Network (RNN), Long Short Term 

Memory (LSTM), Deep Neural Network (DNN), and 

Generative Adversarial Network (GAN) are popularly 

used for TTS. 

From this review, we have found some meaningful 

insight: the majority of the articles have implemented their 

work based on AR and NAR models. Where 91% of the 

papers used AR model with different types of architectures 

such as RBM, DBN, DMBN, DNN, CNN, RNN, LSTM, 

and GAN and 9% of the papers are based on NAR model. 

All of these architectures with AR models solved the three 

prime factors: vocoders, acoustic modeling accuracy, and 

over-smoothing that hinder the quality of synthetic speech 

[23]. The acoustic modeling accuracy and the over-

smoothing problem has been solved partially by LSTM 

[23]. Moreover, CNN and RNN both are used for TTS 

systems but considering the training time, CNN takes less 

time than RNN [24]-[26]. However, recently NAR shows 

better performance than AR with different architectures 

[27]-[33]. 

A. Restricted Boltzmann Machine (RBM) 

An RBM is an undirected bipartite model which is used 

for modeling speech recognition [34]-[36] and 

spectrogram coding [16]. This RBM is used as a strategy 

for pre-training a deep autoencoder or a DNN and is 

represented in Fig. 4. 

 

Figure 4.  Architecture of a restricted Boltzmann machine. 

Z. H. Ling et al. [37] proposed an RBM-based spectral 

envelope modeling method (SPE-RBM) for statistical 

parametric speech synthesis. For representing the 

distribution of the spectral envelopes, they adopt RBM at 

each HMM state rather than using single Gaussian 

distributions. Their aim was to describe the high 

dimensional spectral envelopes more strongly and reduce 

the problem caused by over-smoothing. Their 

experimental results show that SPE-RBM can significantly 

upgrade the conventional HMM-based speech synthesis 

[38] system’s naturalness using Mel-cepstral 

(MCEPGaussian). 

B. Deep Belief Networks (DBNs) 

DBNs are a class of DNNs that use probabilities and 

unsupervised learning to produce outputs. The network is 

like a stack of RBMs, unlike RBMs, nodes in a deep belief 

do not communicate laterally within their layer. Fig. 5 

represents the architecture of a DBN. 

 

Figure 5. Architecture of deep belief network 

Z. H. Ling et al. [35] extended their previous work [37] 

by extending RBM to DBN. They proposed a DBNHMM 

system for improving the naturalness of synthesized 

speech and reducing the over-smoothing effect instead of 

using traditional HMM-based speech synthesis systems. 

Another model was proposed by S. Kang et al. [39] to 

fully make use of the generative nature of DBN. They tried 

to represent the speech parameters together with the 

spectrum and F0 concurrently and produce these 

parameters from DBN for synthesized speech. Their 

experimental results confirm that the spectrum created 

from DBN has significantly less distortion, and the general 

quality is far better than that of context independent HMM. 
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R. Fernandez et al. [40] proposed a combined model 

that mixes up the Gaussian process and DBN to predict 

prosodic contour, F0 aims from textual features by using 

nonparametric, exemplar-based regression in a speech 

synthesis system. In their work, they examined non-linear 

features extracted via DBNs [41]. They compared their 

proposal with the ideal clustering-tree methods 

implemented in parametric synthesis for predicting the 

prosodic target.  

Y. J. Hu et al. [42] developed an HMM-based 

parametric speech synthesis method using DBN. A DBN 

was used to estimate the spectral envelopes at the training 

phase and then these spectral envelopes were transformed 

into binary codes. As per experimental results, their 

proposed method provides better naturalness than 

conventional methods using melcepstra. Table I represents 

the DBN-based models, advantages, and disadvantages.  

C. Deep Mixture Density Networks (DMDNs)  

Combine DNN and a mixture of distributions. Deep 

Mixture Density Networks (DMDNs) can be used for 

speech generation, artificial hand writing generation and 

are applicable to a broad variety of business-relevant tasks. 

Fig. 6 represents the architecture of a DMDN. 

 

Figure 6. Overview of a deep MDN (DMDN) [43]. The red circles 

represent the input, the blue circles represent hidden units, and the green 
circles represent the output units. 

H. Zen et al. [43] has extended DNN based Statistical 

Parametric Speech Synthesis (SPSS) by inaugurating 

MDNs. One of the fundamental problems in SPSS using 

DNNs is fewer variances and unimodal nature. To solve 

these problems, the authors used a mixture density output 

layer. The authors proved that by using a mixture density 

output layer, they predicted the acoustic features with 

better accuracy, and the naturalness has also been 

improved in the synthesized speech.   

D. Deep Neural Network (DNN) 

A Deep Neural Network (DNN)is an Artificial Neural 

Network (ANN) with several layers between the input and 

output levels. Neurons, synapses, weights, biases, and 

functions are all included in neural networks, which come 

in a range of shapes and sizes. Fig. 7 represents a DNN 

based architecture for the TTS system. 

A novel neural network-based approach has been 

explored by S. H. Chen et al. to synthesize prosodic and 

spectral knowledge for Mandarin text-to-speech [44]. 

Firstly, a text is analyzed and engaged in pulling out some 

relevant contextual characteristics. Secondly, utilizing 

these contextual characteristics, many MLPs are involved 

in synthesizing prosodic and spectral parameters. All of 

these prosodic parameters synthesizing MLPs are trained 

by the Back-propagation (BP) algorithm. They found that 

this method worked reasonably well, contrasting these 

synthesized parameters with the real ones.  

T. Falas et al. [45] employed a neural network-based 

multilayer feed-forward architecture for the 

transformation of the Greek text to speech. It is 

hierarchically organized into three-unit layers: an input 

layer, an output layer, and an intermediate or “hidden” 

layer. From input to output, information flows across the 

network. To choose the most suitable neural network to be 

used, they tried different feed-forward neural network 

architectures. They discovered that a neural network with 

60 to 80 hidden neurons seems to be the best configuration 

for both training and testing, with the maximum 

classification efficiency.   

 

Figure 7. Illustration of Deep Neural Network (DNN) in speech 
synthesis system. 

I. Rebai et al. proposed a TTS synthesis system for the 

Arabic language based on a statistical parametric approach 

[46]. They presented two subsystems. The first is the 

diacritization method that predicts the vowelization of the 

input text, and the second is the system of speech synthesis 

to generate a highquality speech based on statistical 

parameter synthesis. Both of these systems used a 

multilayer perceptron neural network with a fully 

connected backpropagation algorithm. The reason behind 

using this method is they can do a nonlinear mapping. 

T. Raitio et al. [47] studied a DNN based voice source 

modeling method in speech synthesis with varying vocal 

effort. The proposed voice source model is compared with 

a robust and high-quality excitation modeling approach 

based on manually selected mean glottal flow pulses for 

each stage of vocal effort and a spectral matching filter to 

fit the desired styles’s voice source spectrum correctly. 

Subjective analyses show that the proposed DNN-based 

approach is comparable to the baseline approach but 

avoids manual pulse selection and is faster computational 

than a device using a spectral matching filter. 

Conventional SPSS depends on decision trees to cluster 

related contexts together, resulting in hidden HMM tied to 

context-dependent parameters. Decision tree clustering, 

however, has a significant disadvantage: it uses rigid 

division and subdivides the model space established on 

one characteristic at a time, fragmenting the data and 

failing to exploit associations between linguistic 

background features. So, H. Lu et al. took an attempt to 
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use DNNs to substitute decision tree parameter clustering, 

motivated by the ability to take full advantage of the 

continuously tested functionality that their new VSM-

based front end provides [48]. The HMM benchmarking 

systems still exceed the DNNs from the results obtained. 

An investigation had been done on how to use the neural 

network in SPSS [49]. A process generation of SPSS based 

on generative models may be split into several components 

and DNNs representing those components. In this paper, 

the consequence of DNNs is investigated for each 

component by comparing DNNs with generative models. 

Experimental findings found that using a DNN as an 

acoustic model is successful and the generation of 

parameters together with a DNN increases the naturalness 

of the synthesized voice. 

H. T. Luong et al. [50] considered the inclusion of 

standard text-based inputs of DNN-based acoustic models 

with auxiliary input features-collectively indicated as input 

codes-like speaker codes as well as other identified 

features such as gender and age encoding. 

A. H. Ali et al. [51] proposed a deep neural network for 

Arabic speech synthesis. In this study, the authors used two 

models such as Tacotron 2 [52]-[54] and Tacotron because 

of their significant advantages and high efficiency. For 

speech synthesis, Tacotron uses the Grifflim method, 

while Tacotron 2 uses the WaveNet model. According to 

the collected experimental data, Tacotron 2 achieves a 

MOS of 4.38, while Tacotron 1 produces a MOS of 4.01. 

The obtained results showed that Tacotron 2 outperformed 

the concatenative system. 

S. Takamichi [55]. used Fast Fourier Transform (FFT) 
spectra, to find the influence of Modulation Spectrum (MS) 

based preprocessing for DNN based speech synthesis. 

Preprocessing speech from training data is an efficient way 

to improve acoustic model training accuracy. The authors 

suggested an MS-based preprocessing method for DNN-

based speech synthesis utilizing vocoder parameters titled 

“speech parameter trajectory smoothing” and verified that 

the method increases training accuracy by reducing 

components that are difficult to describe with the acoustic 

model. 

L. Chen et al. [56] presented a method for synthesizing

the Dungan language and compared their proposed method 

with conventional HMM-based Dungan speech synthesis. 

The synthesis was done by training a collection of DNN 

based acoustic models. The language was then synthesized 

by mapping the language features of the Dungan language 

with the acoustic features. As per experimental results, 

their proposed method provides a high naturalness and 

better synthesis effect for the Dungan language. 

S Suzie et al. [57] proposed expressive DNN-based TTS 

with Limited Training Data. They used three methods for 

expressive speech synthesis: style codes, architecture with 

shared hidden layers and model retraining. Three 

architectures for producing expressive voice using deep 

neural networks are shown, each of which can reach a 

reasonable quality of synthesized speech with only 5 

minutes of training data. Table II represents DNN based 

models, advantages and disadvantages. 

E. Convolutional Neural Network (CNN)

CNN is a category of DNN. It is a neural network of

many layers designed to examine visual inputs and carry 

out different tasks like classification, segmentation, and 

object detection for autonomous vehicles. It is also 

commonly used for computer vision/image recognition. 

CNN’s architecture consists of three different layers such 

as convolution layers, pooling layers, and fully connected 

layers. An Overview of Convolutional Neural Network is 

shown in Fig. 8. 

Figure 8. Overview of convolutional neural network. The DCTTS 
model consists of two networks: (1) Text2Mel, which synthesizes a Mel 

spectrogram from an input text, and (2) Spectrogram Super-resolution 

Network (SSRN), which converts a coarse Mel spectrogram to the full 
STFT spectrogram. 

H. Tachibana et al. [25] presented a novel Text-to-

Speech (TTS) technique based on deep CNNs without any 

recurrent units. In this paper, they proposed a Deep CNN-

based TTS system rather than RNN-based systems [58], 

[59] because RNN usually needs a lot of time for training.

The CNN-based TTS system aims to relieve the economic

costs of training. They demonstrated in this paper that

Deep Convolutional TTS systems can only be trained in

one night (15 hours) while the synthesized speech’s sound

quality was almost appropriate.

H. Choi et al. [60] investigated multi-speaker emotional

speech synthesis systems for Convolutional Neural 

Networks (CNN), according to the speaker modeling 

method and emotion modeling method. The Convolutional 

Neural Network (CNN) based speech synthesis system 

learns the mapping between linguistic and acoustic space 

by taking linguistic features as input and acoustic features 

(Mel spectrograms) as output. Compared to previous 

approaches in terms of naturalness, speaker similarity, and 

emotion similarity, the obtained experimental results 

showed that the multi-speaker emotional speech synthesis 

approach using trainable speaker embedding and emotion 

representation from Mel spectrogram exhibits greater 

performance. Table III represents CNN based models, 

advantages and disadvantages. 

F. Recurrent Neural Network (RNN)

An RNN consists of three layers such as input layer,

hidden layer, and output layer. A general diagram of the 

RNN is shown in Fig. 9. At each step, output builds upon 

Journal of Advances in Information Technology Vol. 13, No. 5, October 2022

© 2022 J. Adv. Inf. Technol. 402



 

not only the current computations but also the previous 

computations. All of the inputs and outputs are 

independent of one another in standard neural networks, 

however in some circumstances, such as when predicting 

the next word of a phrase, the prior words are necessary, 

and so the previous words must be remembered. The 

hidden layer which remembers certain information about a 

sequence is the most essential element of RNN. 

 

Figure 9. RNN based TTS architecture. 

Authors in [61] proposed two different speech 

enhancement approaches based on RNN. In one approach, 

they used the features properly engaged in training TTS 

acoustic models, i.e., Mel cepstral (MCEP) coefficients. In 

the other technique, they trained an RNN using only the 

MCEP coefficients, adopting traditional speech 

enhancement methods. The purpose of the authors is to 

improve TTS voice quality. In this study, the proposed 

RNN is to create enhanced vocoder parameters to train an 

acoustic model [62]. They found that the second approach 

results in higher Mel cepstral distortion, and the synthetic 

voices trained with data-enhanced using RNN were rated 

higher and similar to voices trained with clean speech. 

Adversarially trained variational recurrent neural network 

(AdVRNN) based methods for designing and creating 

speech parameter sequences have been proposed in [63]. 

One of the key issues with speech synthesis is the issue of 

over smoothing. The authors applied an adversarial 

approach in this paper to solve the problem of over-

smoothing. It has an increased dynamic range for 

synthesized speech data. 

In paper [64], to produce the Mel spectrogram from the 

document, the authors used an RNN-based Seq2Seq model. 

The total loss on the model was measured as the sum of 

three component losses such as Mean-Squared-Error 

(MSE) [65], Linear Spectrogram MSE, and Binary Cross-

Entropy Loss. The authors aim to improve model training 

speed and reduce model parameters. A recurrent network-

based F0 model for TTS has been proposed in [66]. The 

proposed F0 model was trained to produce smooth F0 

contours with relatively better perceived quality using a 

dropout strategy. Table IV represents RNN based models, 

advantages, and disadvantages. 

G. Long-Short Term Memory (LSTM) 

LSTM network is a form of an RNN capable of relying 

on sequence prediction issues to learn order. The 

backpropagation process can handle the remarkable 

sequence of time steps and the constant error flow. It is 

primarily about classifying, processing, and creating 

forecasts based on data from time series. A general 

diagram of the LSTM is shown in Fig. 10. Each memory 

cell has four units: input gate, forget gate, output gate, and 

self-recurrent unit. 

 

Figure 10. Overview of LSTM based neural network architecture [67]. 

Y. Fan et al. [67] proposed RNN for TTS Synthesis 

based on Bidirectional LSTM. This research uses objective 

and subjective methods to determine the test data’s 

efficiency of three TTS systems, such as the Hybrid 

BLSTM-RNN, DNN, and HMM. They found that because 

of its ability to capture in-depth information in a sentence, 

the speech synthesized by the Hybrid system is 

significantly favored to the best HMM and DNN systems. 

A flexible emphatic prosody generation model based on 

deep Bidirectional LSTM for controllable word-level 

emphasis realization has been presented by S. Shechtman 

et al. [68]. They trained a BiRNN-LSTM model for 

emphatic sentence prosody prediction. Their findings 

demonstrated that synthesized speech based on this model 

was evaluated as empathic while maintaining the 

original’s quality and naturalness. C. Batista et al. [69] 

proposed an LSTM-based system for predicting the input 

parameters of the Klatt formant based speech synthesizer 

for utterance copy. Their system was compared the 

WinSnoori baseline software that is generated by the 

DECtalk TTS system and natural target ones. As per 

experimental results, our method outperforms the baseline 

for synthetic voices based on the parameters of PESQ, 

SNR, RMSE, and LSD. Table V represents LSTM based 

models, advantages and disadvantages. 

H. Generative Adversarial Networks (GANs) 

GAN is an algorithmic structure using two neural 

networks, dividing one against another (thus the 

“adversarial”) to produce the new, simulated data that can 

move on to real data. They are commonly applied in 

generating pictures, video, and voices. 

GANs have recently started appearing in TTS 

applications [70]. Fig. 11 represents a GAN based 

architecture for the TTS system.  

Statistical Parametric Speech Synthesis (SPSS) with 

GANs under a multitask learning framework has been 

proposed by S. Yang et al. [71]. The authors aim to 

improve the output of synthesized speech in SPSS based 
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on GANs. To address the perceptual deficiency problem in 

the acoustic model, they suggested GANs. 

 

Figure 11. Overview of GAN in speech synthesis system. 

Y. Saito et al. [72] proposed a method for SPSS 

incorporating GANs. They introduced a GAN composed 

of two neural networks: a discriminator for separating 

natural and produced samples and a generator for 

deceiving the discrimination. Acoustic models of speech 

synthesis are used to distinguish between natural and 

synthetic speech. Since the goal of the GANs is to 

minimize the divergence between the natural and produced 

speech parameters, in addition to reducing the loss of 

generation, the acoustic models are trained to close the 

parameter distribution of the generated voice parameters 

to that of natural speech. They also detected that the 

proposed algorithm incorporating the Wasserstein GAN 

mostly enhanced the synthetic speech quality compared to 

different GANs. 

T. Kaneko et al. suggested a GAN-based post filter to 

minimize the distinction between natural speech and 

synthesized speech [73]. The consistency degradation 

involves three key factors: the precision of acoustic models, 

vocoding, and over smoothing. In this article, they 

concentrate on the issue of over-smoothing. The author’s 

goal is to recreate from the synthesized one a “spectral 

texture” like the natural one. The results objective 

evaluation showed that the detailed spectral structure, 

including modulation spectra, can be reproduced by the 

proposed model and subjective evaluation showed that the 

quality of speech created is much closer to natural speech. 

Recent advances in deep learning have led to the 

achievement of near-human naturalness through TTS 

systems. One of the big progress in TTS is the inauguration 

of waveform generation methods, such as WaveNet [74], 

[75] that have been embraced to use as “neural vocoder” 

[76]. 

A novel multi-scale GAN structure to generate pitch-

synchronous waveforms is proposed by L. Juvela et al. 

[77]. The proposed generator works multi-time-scale 

progressive upsampling of characteristics maps and 

outputs waveforms, while the discriminator assures the 

waveforms last accurate at each time scale. They worked 

for producing glottal excitation (GlotGan) and speech 

waveforms (WaveGAN) pitch synchronously. For an 

SPSS system, the proposed model is tested as a neural 

vocoder, and the listening test results proved that 

GlotGAN could acquire comparable performance to a 

WaveNet vocoder. 

B. Bollepalli et al. have done the first investigation to 

design the glottal waveform as an excitation waveform in 

SPSS using GANs [23]. They compared the synthetic 

speech generated by using both DNNs and GANs glottal 

waveforms. The results proved that, without using an 

additive noise part, the newly proposed GANs acquire 

synthesis efficiency compared to commonly used DNNs. 

Y. Saito et al. [78] proposed two training algorithms 

using Short-Term Fourier Transform (STFT) spectra to 

integrate GANs into vocoder-free speech synthesis. To 

minimize the mean square error between natural and 

induced STFT spectral amplitudes at the original 

resolution and the variations in the distribution of their 

low-resolution distributions, acoustic models are trained in 

the proposed algorithm using a low-resolution GAN. This 

algorithm can be extended to one using multi-resolution 

GANs, which also minimizes the variations in the 

distribution of the natural and generated STFT spectra at 

the original resolution. Experimental results showed that 

the algorithm using the original GAN resolution and the 

proposed multi-resolution GAN algorithm decreased 

synthetic expression efficiency. Still, the suggested low-

resolution GAN algorithm successfully improved it. To 

minimize the inconsistencies between natural and induced 

acoustic characteristics, a new framework integrating 

either a conditional GAN or its variant, Wasserstein GAN 

with Gradient Penalty (WGANGP), into multi-speaker 

speech synthesis using the WaveNet vocoder is proposed 

by Y. Zhao et al. [64]. As an acoustic model, the GAN 

generator works, and its outputs are used as WaveNet’s 

local condition parameters. They also expand the GAN 

frameworks apply the Discrete-Mixture-of Logistics 

(DML) loss of a well-trained WaveNet as part of objective 

functions besides, mean squared errors and adversarial 

losses. Experimental findings revealed that acoustic 

models trained with WGAN-GP system using back-

propagated DML loss achieve maximum consistency and 

speaker similitude subjective evaluation scores. Table VI 

represents GAN-based models, advantages, and 

disadvantages. 

IV. UNSUPERVISED AND SEMI-SUPERVISED 

LEARNING BASED SPEECH SYNTHESIS 

Nowadays, TTS and ASR are two widespread tasks in 

speech processing. Y. Ren et al. [79] by using a few paired 

speech and text data and extra unpaired data, suggested the 

nearly unsupervised approach for both TTS and ASR. The 

system proposed consists of three elements for TTS and 

ASR, such as Denoising Auto-Encoder (DAE), Dual 

Transformation (DT), and Bidirectional Sequence 

Modeling (BSM). They found that by adding more paired 

data for PER on ASR and MOS on TTS gradually, the 

proposed approach would achieve higher accuracy. O. 

Watts et al. [80], the authors represent Text to Speech 

(TTS) systems that rely on universal resources (such as the 

Unicode character database) and unsupervised learning 

from unannotated data to ease system development. They 

develop their strategies in a way that avoids the need for 

language-specific expert knowledge. The paper explains 

how the techniques are applied to the 14 languages of the 
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Tundra corpus of ‘found’ audiobook data. Initial 

segmentation of the audiobooks into utterances chunks 

was performed using the lightly supervised GMM based 

VAD. Given concatenating waveforms, producing speech 

from a model has several potential advantages. An 

adaptation of the model is the most exciting. It has been 

shown that supervised voice adaptation can yield synthetic 

voices of high quality with an order of magnitude less data 

than needed to train a speaker-dependent model or to 

construct a simple unit-selection system. These supervised 

methods allow the target speaker to be marked with 

adaptation data. S. King et al. [81], the authors present a 

process that can be adapted without supervision, using 

only speech from the target speaker without any labeling. 

The authors aimed to compare unsupervised adaptation to 

supervised adaptation. It is already established that 

supervised adaptation can produce equivalent or better 

output than HMMbased synthesis, depending on the 

speaker. They wanted to find out how much degradation 

the unsupervised adaptation would produce. Y. A. Chung 

et al. [82] suggested semi-supervised learning to improve 

data efficiency in end-to-end speech synthesis. The authors’ 

objective is to enhance Tacotron’s data efficiency. 

Experimental results indicate that semi supervised 

Tacotron [83] achieves less MCD than the baseline, 

showing benefits beyond improved data quality. Table VII 

presents the unsupervised and semi supervised learning 

techniques and their advantages. 

V. DATASET DESCRIPTION 

The popular datasets used for speech synthesis are: i) 

the Japanese dataset, ii) the LJ Speech dataset, iii) the 

Chinese dataset, and iv) the Professional British English 

voice talents dataset. Among these datasets, the Japanese 

dataset is mostly used and presented in Table IX. The LJ 

speech and the Chinese dataset are equally used and the 

number comparatively less than the Japanese dataset. The 

detailed description of these two datasets are shown in 

Table X and Table XI respectively. The Professional 

British English dataset is least used and Table XII 

represents this dataset. Besides these four datasets, some 

datasets like ARCTIC corpus, Voice Bank corpus, 

LibriSpeech corpus, etc. [34], [39], [40], [51], [44]-[47], 

[61], [63], [64], [66], [67], [81], [82], [84]-[86] have also 

been used. 

TABLE I. DBN BASED MODELS, ADVANTAGES AND DISADVANTAGES 

Architecture Model Reference Advantages Disadvantages 

DBN HMM Z. -H. Ling et al. 

[35], Y. J. Hu et al. 

[42] 

1. Quick and efficient because greedy 

learning algorithms are used to train 

DBN. 
2. Help to optimize the weights at each 

layer. 

1. Training efficiency is very low. 
2.DBNs have a problem of 

catastrophic forgetting. 
3. DBN is blind to logic and reasoning 

due to lack of knowledge 

representation within itself. 

Gaussian Process 
Regression model 

R. Fernandez et al. 

[40] 

Combination of mixed 

Gaussian Bernoulli 

RBMs, mixed 

Categorical- Bernoulli 

RBMs,and Bernoulli 

RBMs 

S. Kang et al. [39] 

TABLE II. DNN BASED MODELS, ADVANTAGES AND DISADVANTAGES 

Architecture Model Reference Advantages Disadvantages 

DNN Linear predictive 

model 

S.H. Chen et al. [44] 1. Simple, fast, and easy to program. 

2.No need to have prior knowledge 

about the network. 
3. Only the number of inputs is tuned 

and not another parameter. 

4. Models high-dimensional acoustic 
parameters, Replace decision tree in 

HMM. 

1. Possibly be sensitive to noisy 

data and irregularity. 

2. The performance is highly 
dependent on the input data. 

3. Needs excessive time for 

training. 
4. Decision trees model complex 

context dependencies. 

N/A T. Falas et al. [45] 

MFCC neural 

network 

I. Rebai et al. [46] 

Voice source model T. Raitio et al. [47] 

Vector space model H. Lu et al. [48] 

HMM K. Hashimoto [49],  

L. Chen et al. [56] 

Acoustic model H. T. Luong et al. [50],  

S. Takamichi [55] 

Tacotron model A. H. Ali et al. [51] 

style-dependent 

shared hidden layer 

model 

(SDSM) 

S. Suzie et al. [57] 
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TABLE III. CNN BASED MODELS, ADVANTAGES AND DISADVANTAGES 

Architecture Model Reference Advantages Disadvantages 

CNN Acoustic 

model 

H. Choi et al. [60] 1. Easily extract relevant information at 

a low cost. 

2. Robust to noise. 

1. Cannot predict future behavior. 

2. Due to its overfitting problem, the 

computational cost is high. 
DCTTS H. Tachibana et al. 

[25] 

TABLE IV. RNN BASED MODELS, ADVANTAGES AND DISADVANTAGES 

Architecture Model Reference Advantages Disadvantages 

RNN Acoustic 

model 

C. Valentini-Botinhao 
et al. [61], J. Y. Lee et 
al. 

[63] 

1. Can predict future behavior. 

2. Can efficiently work where the 
length of the inputs does not matter. 

3. Help to optimize model size. 

1. Computation is slow, caused by its 
recurrent behavior. 

2. Hard to train caused by its vanishing 
or exploding gradient problems. 
3. Cannot process the long sequence of 

time steps. 

Seq2Seq 

model 

X. Wang et al. [66] 

F0 model X. Wang et al. [66] 

TABLE V. LSTM BASED MODELS, ADVANTAGES, AND DISADVANTAGES 

Architecture Model Reference Advantages Disadvantages 

LSTM HMM Y. Fan et al. [67] 1.Vanishing gradient problems can be 

overcome and easier to train. 
2.Can process the long sequence of time steps. 

3.Prevent back propagated errors from 

vanishing or exploding problems. 

1. Limited memory bandwidth. 

Deep RNN (DRNN) 

model 

S. Shechtman et al. 

[68]. 

TABLE VI. GAN BASED MODELS, ADVANTAGES, AND DISADVANTAGES 

Architecture Model Reference Advantages Disadvantages 

GAN Acoustic model S. Yang et al. [71], Y. 

Saito et al. [72], Y. Saito et 

al. [78], Y. Zhao et al. [64] 

1. GANs don’t need labeled data; 
they can train using unlabeled data 
while they know the data’s internal 
representations. 
2. Can generate data that is similar 

to real data. 
3. GANs can learn messy and 
complicated distributions of data. 
4. The discriminator network is a 

classifier and can be used to classify 

objects. 

1. Hard to train, unstable. 

2. Mode Collapse issue. The 

learning process of GANs that 

lack a pattern, the generator will 
start to degenerate and the same 

sample points will still be 
generated and the learning 

cannot be continued. 

N/A T. Kaneko et al. [73] 

Glottal excitation model L. Juvela et al. [77] 

Glottal waveform model B. Bollepalli et al. [23] 

Wavenet 

model 

Y. Zhao et al. [64] 

TABLE VII. UNSUPERVISED AND SEMI-SUPERVISED LEARNING TECHNIQUES AND THEIR ADVANTAGES 

Reference Learning Advantages 

Y. Ren et al. [79], O. Watts et al. [80], S. King 

et al. [81] 
Unsupervised 1. Easier to get unlabeled data, less complex. 

2. Less complex. 

Y. A. Chung et al. [82] Semi-supervised 1. Uses both unlabeled and a very small amount of labeled data. 

2. Less expensive. 

3. To overcome supervised learning problems. 

4. Use cheap and abundant unlabeled data. 

TABLE VIII. A SUMMARY OF SOME PAPERS BASED ON NON-AUTOREGRESSIVE MODELS FOR TTS SYSTEM 

References Methodology Dataset Accuracy Limitations 

[27] ParaNet, a non-autoregressive seq2seq 

model that converts text to spectrogram. 

 English speech ParaNet performs 46.7 times 

faster than the lightweight 

autoregressive Deep voice 3 at 
synthesis. Also, the speech quality 

improves significantly. 

The proposed model, ParaNet 

is less robust for parallel 

neural vocoder. 

[28] Nana-HDR, a new non-attentive non-

autoregressive model with hybrid 
Transformer-based Densefuse encoder 

and RNN-based decoder for TTS. 

Two Mandarin 

corpora. 

Provides better naturalness and 

robustness than two well 
performing models: Tacotron and 

Fastspeech. 

N/A 

[29] VARA-TTS, a non-autoregressive 
(non-AR) end-to-end text-tospeech 

(TTS) model using a very deep 

Variational Autoencoder (VDVAE) 
with Residual Attention mechanism. 

LJ Speech corpus 
and Mandarin 

Chinese data 

VARA-TTS performs better than 
bidirectional-inference variational 

autoencoder (BVAE-TTS) with 

almost same inference speed. 
Also, it is16x faster than Tacotron 

2 with slightly poor performance 

in naturalness. 

The model cannot generate 
intelligible waveform though it 

can clearly align text and 

waveform. 
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[30] A hierarchical model to improve the 
performance of Transformer-based 

non-autoregressive text to-speech 

(TNA-TTS) model. 

 Korean female 
speech 

The proposed model provides 
better performance than the 

baseline TNA-TTS. 

Instead of using fixed window 
size, learnable window size 

can optimize the structure for 

the encoder and decoder. 

[31] propose a multi-scale time-frequency 

spectrogram discriminator to help Non-

Autoregressive TTS(NAR-TTS) 
generate high-fidelity Mel-

spectrograms. 

English speech 

dataset, LJSpeech 

Achieves significant improvement 

in the naturalness and fidelity. 

N/A 

[32] A hierarchical prosody 

modeling framework that combines the 
word and phoneme-level prosody 

features. 

LJSpeech dataset Outperforms other prosody 

modeling framework in terms of 
naturalness and 

 audio quality. 

Phoneme level predicts less 

accurate prosody than word 
level and the quality degrades 

due to coarse granularity. 

[33] A hybrid TTS which combines the  
Transformer encoder and RNN based 

decoder architecture. 

A corpus of a 
female, Mandarin 

Chinese, native 

speaker 

The new hybrid system 
outperforms the previous hybrid 

system [87] (67% vs 11%). 

Only one language has been 
used for the experiment.  

TABLE IX. DETAILED DESCRIPTION OF JAPANESE SPEECH DATASET USED FOR TTS 

Data source Sentences Male/ female speaker Training data Testing data Sampling rate References 

ATR Japanese 

speech database 
503 Phonetically 

balanced sentences 
Single male speaker 450 53 16 kHz Y. Saito et al. [72] 

Japanese speech 

data 
7,000 utterances Professional female 

narrator 
6500 500 22.05 kHz T. Kaneko et al. [73] 

Japanese female 

speaker 
4007 sentences Female 3808 899 16 kHz Y. Saito et al. [78] 

Japanese speech 

database 
503 utterances N/A 450 53 48 kHz K. Hashimoto et al. 

[49] 

Japanese Voice 

Bank corpus 
N/A Both male and female 11,170 

utterances 
100 utterances 48 kHz H. T. Luong, et al. 

[50] 

TABLE X. DETAILED DESCRIPTION OF LJ SPEECH DATASET USED FOR TTS 

Data source  Sentences Male/ female 

speaker 
Training data Testing data Sampling rate References 

LJ speech  20 sentences from 

Harvard Sentences 

List 1 and 2. 

N/A ADAM 

optimizer 
N/A 22050 Hz H. Tachibana et 

al. [25] 

Open source 

LJ speech 
 N/A Single female 

English speaker 
300 epochs N/A N/A X. Wang et al. [66] 

LJ speech  13,100 English 

audio clips and the 

corresponding 

transcripts 

N/A 12500 samples 300+300 samples N/A Y. Ren et al. [79] 

TABLE XI. DETAILED DESCRIPTION OF CHINESE DATASET USED FOR TTS 

Data source Sentences Male/ female speaker Training data Testing data Sampling rate References 

Chinese speech 

corpus 
10,000 utterances Single female speaker 80% 10% 16kHz S. Yang et al. [71] 

1-hour Chinese 

speech database 

produced by a 

professional female 

speaker 

1,000 (720 

samples) 
Single Female Speaker 520 samples 200 samples 16 kHz Z. H. Ling et al. [37] 

1-hour Chinese 

speech database 

produced by a 

professional female 

speaker 

1,000 Single Female Speaker 800 samples 200 samples 16 KHz Z. H. Ling et al. [35] 

TABLE XII. DETAILED DESCRIPTION OF BRITISH ENGLISH DATASET USED FOR TTS 

Data source Sentences Male/ female speaker Training data Testing data Sampling rate References 

Professional 

British English 

voice talents 

2542 utterances from 
male and 4314 
utterances from female 

Both male and female Rest for training 100 utterances from 

both speakers 
16kHz L. Juvela et al. [77] 

Professional 

British English 

voice talent 

4314 utterances Single female speaker Rest for training 100 utterances for 

testing 
16kHz B Bollepalli et al. 

[23] 

British English 

Speaker 

1000 utterances Male speaker 860 samples 140 samples N/A H. Lu et al. [48] 
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VI. EVALUATION METRICS 

For speech synthesis, several evaluation metrics such as 

Mean Opinion Scores (MOS), F0 Root-Mean-Square 

Error (RMSE), Voiced/unvoiced (V/UV), Mel cepstral 

(MCEP) are popularly used and Table XIII provides a 

detailed description of these evaluation metrics. Among 

these MOS has been used in maximum papers for objective 

evaluation. In the domain of speech synthesis, speech 

quality is the most popular way to compare the 

performance of any algorithm, architecture, or model. 

MOS calculates the average score of quality and for this 

reason, MOS has emerged as the most common and 

popular figure for synthesized speech quality. 

VII.  DISCUSSION AND FUTURE RESEARCH DIRECTION 

SPSS and concatenative synthesis are two primary 

models in TTS technology. Compared with the 

concatenative speech synthesis method, SPSS systems 

have many strengths. They are much more flexible to 

transform the synthesized speech into different speech 

characteristics, emotions, and speaking ways. Three prime 

factors that hinder the quality of synthetic speech are the 

quality of vocoders, acoustic modeling accuracy, and over-

smoothing. In SPSS systems, RBMs have been 

conveniently used for modeling voice signals. For SPSS, 

the Gaussian mixture model performs less accurately in 

modeling spectral envelopes’ distribution over RBM.RBM 

replaces single Gaussian distributions by representing the 

spectral envelope distribution at each HMM state. This 

procedure significantly upgrades the conventional HMM-

based speech synthesis system’s naturalness using Mel-

cepstra and reduces the over-smoothing problem at 

synthesis time. After that, DBN has been implemented for 

presenting the distribution of the spectral envelope at each 

HMM state and at the same time to include the dynamic 

features of spectral envelopes into RBM modeling. The 

experimental results and evaluation process shows that 

both DBN-HMM and RBM-HMM create better spectral 

envelope parameter sequences over traditional Gaussian-

HMM with better generalization power DBN-HMM and 

RBM-HMM perform most likely due to the use of 

Gaussian distribution. Numerous deep learning-based 

approaches have been suggested in recent years for 

converting text to speech synthesis, however. Several 

techniques are mainly used in interpreting text-to-speech, 

such as CNN and RNN. The critical comparison between 

CNN and RNN occurs in the training period. Deep 

Convolutional TTS is only adequately trained at night (15 

hours), while the quality of speech was almost appropriate. 

On the other hand, RNN usually takes a lot of time to train 

the model for several days or weeks, as it is suitable for a 

powerful machine and less suitable for GPU parallel 

computation. Many texts on speech synthesis methods use 

CNN instead of RNN to resolve this problem. Due to 

elevated parallelizability, CNN-based text to speech 

synthesis methods works much faster than RNN-based 

techniques. In recent times, the methods used for speech 

synthesis that performs better than traditional approaches 

have been improved. 

TABLE XIII. WIDELY USED EVALUATION METRICES AND THEIR PROPERTIES 

Evaluation Matrices Properties References 

MOS MOS is a widely used metric for determining an audio signal’s quality which is 

scored on a scale of 1 (bad) to 5 (excellent). With the increment of MOS score, 

the quality of generated speech increases. For humans, a score between 4.3 to 4.5 

is considered excellent and a score below 3.5 is unacceptable. 

[43], [51], [55], [56], [54], [63], 

[68], [83], [84], [88]. 

MCEP Between the Mels, lower frequencies have a larger distance and higher 

frequencies have a smaller distance, supporting human-like characteristics. 
[37], [43], [46], [71], [50], [61]. 

Voiced/unvoiced 

(V/UV) 

The percentage of unvoiced speech signals that are misclassified as voiced is 

known as voiced error. Similarly, the percentage of voiced speech signals that are 

misclassified as unvoiced is known as unvoiced error. 

[43], [71], [60], [61], [66], [67]. 

RMSE Root-mean-square error (RMSE) is the most commonly used for measuring the 

differences between sample or population values expected by an estimator and 

the observed values. The value of RMSE is always positive and 0 indicates that 

the data is perfectly suited. A lower RMSE is often preferable to a greater one. 

[43], [71], [50], [60], [61], [66], [67], 

[69]. 

 

The AdVRNN now implements the variability of 

natural speech for acoustic modeling in speech synthesis. 

However, the Adversarial Learning Scheme in AdVRNN 

training to solve the problem of over-smoothing AdVRNN 

performs better than traditional speech synthesis based on 

RNN. HMM-based SPSS has become more popular in the 

last few years. But the status of the synthesized speech 

does not reach the naturalness using HMM. So to upgrade 

the naturalness of synthesized speech, DNN has been used. 

The acoustic modeling accuracy and the over-smoothing 

problem has been solved partially by LSTM. But it was 

found that by using GAN, the over-smoothing problem can 

be solved fully. For reproducing the stochastic component 

in the glottal excitations, GAN performs better than DNN. 

Moreover, the DNN-based GANs perform significantly 

better than deep CNN-based GAN. While several 

problems have been solved in recent years, there is still a 

great potential for development. Here, we have included 

some of the future research directions: 

• A Neural TTS with simple architecture [76] can be 

applied to other applications such as emotional/ 

nonlinguistic/ personalized speech synthesis. 

• Some advanced vocoder-based models such as 

Wavenet can be implemented instead of Griffin-

Lim for improved quality of the generated audio 

[79]. 
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• As the MSE loss is still used for stabilizing the 

adversarial process, different architectures using 

Wasserstein GAN [89] and VAEGAN [90] can be 

implemented to directly evaluate the distribution of 

synthesized speech. 

• To analyze the performance of different types of 

GANs such as Conditional GAN (CGAN), Mel 

Spectrogram GAN, Wasserstein GAN [89], 

VAEGAN, speech enhancement GAN (SEGAN), 

iterated SEGAN (ISEGAN), and deep SEGAN 

(DSEGAN) can be compared for further 

improvement of the naturalness of synthetic speech. 

VIII. CONCLUSION 

The research interest in speech synthesis has been 

changing from clarity and intelligibility to expressiveness 

and naturalness. In the beginning period of speech 

synthesis, parametric synthesis and concatenative-based 

methods have been mainly used, which hinders the 

naturalness of synthesized speech. Diversely, deep 

learning-based speech synthesis methods focus on the 

naturalness of speech. In this paper, we have explored deep 

learning-based speech synthesis methods. We have 

inclined a taxonomy of speech synthesis methods, showing 

a generic block diagram of major architectures and models 

popularly used to synthesize speech and highlighting their 

advantages and disadvantages. Different evaluation 

metrics and datasets with their advantages and 

disadvantages have been discussed. A comparison of the 

various experiments was presented. Even if deep learning-

based speech synthesis methods have achieved 

tremendous success in recent years, there is still a big 

opportunity to produce high-quality speech from text. 

With the current advent of lightweight deep neural 

network architectures, speech can be synthesized 

automatically from the text in the near future. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

The research is conducted under the supervision of M. 

F. Mridha and A. K. Saha. The initial draft is written by F. 

Khanam, F. A. Munmun, and N. A. Ritu. The final version 

is written by F. Khanam and F. A. Munmun. 

ACKNOWLEDGMENT 

The authors would like to thank the Institute of Energy, 

Environment, Research, and Development (IEERD, UAP) 

and the University of Asia Pacific for financial support. 

REFERENCES 

[1] H. Sak, T. Gung, and Y. Safkan, “A corpus-based concatenative 

speech synthesis system for Turkish,” Turkish Journal of Electrical 
Engineering Computer Sciences, vol. 14, no. 2, pp. 209-223, 2006. 

[2] G. Lopez, L. Quesada, and L. A. Guerrero, “Alexa vs. siri vs. 

Cortana vs. Google assistant: A comparison of speech-based natural 
user interfaces,” in Proc. International Conference on Applied 

Human Factors and Ergonomics, May 2018, pp. 241-250. 

[3] R. A. Khan and J. S. Chitode, “Concatenative speech synthesis: A 

review,” International Journal of Computer Applications, vol. 136, 

no. 3, p. 0975-8887, 2016. 
[4] Y. Ning, S. He, Z. Wu, C. Xing, and L. J. Zhang, “A review of deep 

learning based speech synthesis,” Appl. Sci., vol. 9, no. 19, 2019. 

[5] H. Zena, K. Tokuda, and A. W.Black, “Statistical parametric speech 
synthesis,” Speech Communication, vol. 51, no. 11, pp. 1039-1064, 

2009. 

[6] S. Kayte, M. Mundada, and J. Gujrathi, “Hidden markov model 
based speech synthesis: A review,” International Journal of 

Computer Applications, vol. 130, no. 3, pp. 35-39, 2015. 

[7] S. K. D. Mandal and A. K. Datta, “Epoch synchronous non-
overlapadd (ESNOLA) method-based concatenative speech 

synthesis system for bangla,” SSW, pp. 351-355, 2007. 

[8] S. Norbert, G. Peeters, S. Lemouton, P. Manoury, and X. Rodet, 
“Synthesizing a choir in real-time using pitch synchronous overlap 

add (PSOLA),” ICMC, 2000. 

[9] S. A. Toma, G. I. Tarsa, E. Oancea, D. P. Munteanu, F. Totir, and 
L. Anton, “A TD-PSOLA based method for speech synthesis and 

compression,” in Proc. 8th International Conference on 

Communications, June 2010, pp. 241-250. 
[10] W. Mattheyses, W. Verhelst, and P. Verhoeve, “Robust pitch 

marking for prosodic modification of speech using TD-PSOLA,” in 

Proc. IEEE Benelux/DSP Valley Signal Processing Symposium, 
SPS-DARTS, June 2006, pp. 43-46. 

[11] A. Gopi, T. Sajini, and V. K. Bhadran, “Implementation of 

malayalam text to speech using concatenative based TTS for 
android platform,” in Proc. International Conference on Control 

Communication and Computing, December 2013. 

[12] A. Shipilo, A. Barabanov, and M. Lipkovich, “Parametric speech 
synthesis and user interface for speech modification,” in Proc. 

International Conference on Speech and Computer, December 

2013, pp. 249-256. 
[13] A. Indumathi and E. Chandra, “Survey on speech synthesis,” Signal 

Processing: An International Journal (SPIJ), vol. 6, no. 5, p. 140, 

2012. 
[14] K. Sangramsing, K. Waghmare, and B. Gawali, “Marathi speech 

synthesis: A review,” International Journal on Recent and 
Innovation Trends in Computing and Communication, vol. 3, no. 6, 

pp. 3708-3711, 2015. 

[15] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. 
Kitamura, “Simultaneous modeling of spectrum, pitch and duration 

in hmm-based speech synthesis,” in Proc. Sixth European 

Conference on Speech Communication and Technology, 1999. 
[16] S. Afrooz and N. J. Navimipour, “Memory designing using 

quantumdot cellular automata: Systematic literature review, 

classification and current trends,” Journal of Circuits, Systems and 
Computers, vol. 26, no. 12, p. 1730004, 2017. 

[17] B. A. Milani and N. J. Navimipour, “A systematic literature review 

of the data replication techniques in the cloud environments,” Big 
Data Research, vol. 10, pp. 1-7, 2017. 

[18] A. Luxton-Reilly, “A systematic review of tools that support peer 

assessment,” Computer Science Education, vol. 19, no. 4, pp. 209-

232, 2009. 

[19] F. Aznoli and N. J. Navimipour, “Deployment strategies in the 

wireless sensor networks: Systematic literature review, 
classification, and current trends,” Wireless Personal 

Communications, vol. 95, no. 2, p. 819-846, 2017. 

[20] F. Aznoli and N. J. Navimipour, “Cloud services recommendation: 
Reviewing the recent advances and suggesting the future research 

directions,” Journal of Network and Computer Applications, vol. 77, 

pp. 73-86, 2017. 
[21] Z. Soltani and N. J. Navimipour, “Customer relationship 

management mechanisms: A systematic review of the state of the 

art literature and recommendations for future research,” Computers 
in Human Behavior, vol. 61, pp. 667-688, 2016. 

[22] R. K. Behera, P. KumarBala, and A. Dhir, “The emerging role of 

cognitive computing in healthcare: A systematic literature review,” 
International Journal of Medical Informatics, vol. 129, pp. 154-166, 

2019. 

[23] B. Bollepalli, L. Juvela, and P. Alku, “Generative adversarial 

networkbased glottal waveform model for statistical parametric 

speech synthesis,” arXiv preprint arXiv:1903.05955, 2019. 

[24] H. Zen and H. Sak, “Implementation of malayalam text to speech 
using concatenative based tts for android platform,” in Proc. IEEE 

Journal of Advances in Information Technology Vol. 13, No. 5, October 2022

© 2022 J. Adv. Inf. Technol. 409



 

 

 

 

  

 

 

 

  
 

 
 

 
 

  

 

 

  

 

 

 

 

 
 

 

 

 

 

 

 

     

 

  

 

 

   

 

 

   

 

 

 
  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

  

 

   

 

 

 

 

 

 

 

 

 

 

Journal of Advances in Information Technology Vol. 13, No. 5, October 2022

© 2022 J. Adv. Inf. Technol. 410

 

International Conference on Acoustics, Speech and Signal 

Processing, April 2015. 

[25] H. Tachibana, K. Uenoyama, and S. Aihara, “Efficiently trainable 
textto-speech system based on deep convolutional networks with 

guided attention,” in Proc. IEEE International Conference on 

Acoustics, Speech and Signal Processing, April 2018, pp. 4784-
4788. 

[26] G. Wang, “Deep text-to-speech system with seq2seq model,” arXiv 

preprint arXiv:1903.05955, 2019. 
[27] K. Peng, W. Ping, Z. Song, and K. Zhao, “Non-autoregressive 

neural text-to-speech,” in Proc. International Conference on 

Machine Learning, 2020, pp. 7586-7598. 
[28] S. Lin, W. Su, L. Meng, F. Xie, X. Li, and L. Lu, “Nana-HDR: A 

non-attentive non-autoregressive hybrid model for TTS,” arXiv 

preprint arXiv:2109.13673, 2021.  
[29] P. Liu, Y. Cao, S. Liu, N. Hu, G. Li, C. Weng, and D. Su, “Vara-

TTS: Non-autoregressive text-to-speech synthesis based on very 

deep vae with residual attention,” arXiv preprint arXiv:2102.06431, 
2021. 

[30] J. S. Bae, T. J. Bak, Y. S. Joo, and H. Y. Cho, “Hierarchical context-

aware transformers for non-autoregressive text to speech,” arXiv 
preprint arXiv:2106.15144, 2021.  

[31] H. Guo, H. Lu, X. Wu, and H. Meng, “A multi-scale time-frequency 

spectrogram discriminator for GAN-based non-autoregressive tts,” 
arXiv preprint arXiv:2203.01080, 2022.  

[32] C. M. Chien and Y. H. Lee, “Hierarchical prosody modeling for 

non-autoregressive speech synthesis,” in Proc. IEEE Spoken 
Language Technology Workshop, 2021, pp. 446-453.  

[33] F. L. Xie, X. H. Li, W. C. Su, L. Lu, and F. K. Soong, “A new high 

quality trajectory tiling based hybrid TTS in real time,” in Proc. 
IEEE International Conference on Acoustics, Speech and Signal 

Processing, 2021, pp. 5704-5708. 

[34] H. Zen, K. Tokudaa, and A. W.Blackc, “Statistical parametric 
speech synthesis,” Speech Communication, vol. 51, no. 11, pp. 

1039-1064, 2009. 

[35] Z. H. Ling, L. Deng, and D. Yu, “Modeling spectral envelopes using 
restricted boltzmann machines and deep belief networks for 

statistical parametric speech synthesis,” IEEE Transactions on 
Audio, Speech, and Language Processing, vol. 21, no. 10, pp. 2129-

2139, 2013. 

[36] H. Ze, A. Senior, and M. Schuster, “Statistical parametric speech 
synthesis using deep neural networks,” in Proc. IEEE International 

Conference on Acoustics, Speech and Signal Processing, May 2013, 

pp. 7962-7966. 
[37] Z. H. Ling, L. Deng, and D. Yu, “Modeling spectral envelopes using 

restricted boltzmann machines for statistical parametric speech 

synthesis,” in Proc. IEEE International Conference on Acoustics, 
Speech and Signal Processing, May 2013, pp. 7825-7829. 

[38] M. Tamurat, T. Masukot, K. Tokudatt, and T. Kobayashil, 

“Adaptation of pitch and spectrum for HMM-based speech 
synthesis using MLLR,” in Proc. IEEE International Conference 

on Acoustics, Speech, and Signal Processing, 2001, pp. 805-808. 

[39] S. Kang, X. Qian, and H. Meng, “Multi-distribution deep belief 

network for speech synthesis,” in Proc. IEEE International 

Conference on Acoustics, Speech and Signal Processing, May 2013, 

pp. 8012-8016. 
[40] R. Fernandez, A. Rendel, B. Ramabhadran, and R. Hoory, “F0 

contour prediction with a deep belief network-gaussian process 

hybrid model,” in Proc. IEEE International Conference on 
Acoustics, Speech and Signal Processing, May 2013, pp. 6885-

6889. 

[41] A. R. Mohamed, G, E. Dahl, and G. Hinton, “Acoustic modeling 
using deep belief networks,” IEEE Transactions on Audio, Speech, 

and Language Processing, vol. 20, no. 1, pp. 14-22, 2011. 

[42] Y. J. Hu and Z. H. Ling, “DBN-based spectral feature 
representation for statistical parametric speech synthesis,” IEEE 

Signal Processing Letters, vol. 23, no. 3, pp. 321-325, 2016. 

[43] H. Zen and A. Senior, “Deep mixture density networks for acoustic 
modeling in statistical parametric speech synthesis,” in Proc. IEEE 

International Conference on Acoustics, Speech and Signal 

Processing, May 2014, pp. 3844-3848. 

[44] S. H. Chen, S. H. Hwang, and C. Y. Tsai, “A first study on neural 

net based generation of prosodic and spectral information for 

mandarin text-to-speech,” in Proc. IEEE International Conference 
on Acoustics, Speech, and Signal Processing, 1992, pp. 45-48. 

[45] T. Falas and A. G. Stafylopatis, “Neural networks in text-to-speech 

systems for the greek language,” In Proc. 10th Mediter-ranean 

Electrotechnical Conference. Information Technology and 
Electrotechnology for the Mediterranean Countries, 2000, pp. 574-

577. 

[46] I. Rebai and Y. BenAyed, “Arabic text to speech synthesis based on 
neural networks for mfcc estimation,” in Proc. World Congress on 

Computer and Information Technology, June 2013, pp. 1-5. 

[47] T. Raitio, A. Suni, L. Juvela, M. Vainio, and P. Alku, “Deep neural 
network based trainable voice source model for synthesis of speech 

with varying vocal effort,” in Proc. Fifteenth Annual Conference of 

the International Speech Communication Association, 2014, pp. 
1969-1973. 

[48] H. Lu, S. King, and O. Watts, “Combining a vector space 

representation of linguistic context with a deep neural network for 
text-to-speech synthesis,” in Proc. Eighth ISCA Workshop on 

Speech Synthesis, 2013, pp. 261-265. 

[49] K. Hashimoto, K. Oura, Y. Nankaku, and K. Tokuda, “The effect 
of neural networks in statistical parametric speech synthesis,” IEEE 

International Conference on Acoustics, Speech and Signal 

Processing, 2015. 
[50] H. T. Luong, S. Takaki, G. E. Henter, and J. Yamagishi, “Adapting 

and controlling dnn-based speech synthesis using input codes,” in 

Proc. IEEE International Conference on Acoustics, Speech and 
Signal Processing, March 2017, pp. 4905-4909. 

[51] A. H. Ali, M. Magdy, M. Alfawzy, M. Ghaly, and H. Abbas, 

“Arabic speech synthesis using deep neural networks,” in Proc. 
International Conference on Communications, Signal Processing, 

and their Applications, 2021, pp. 1-6. 

[52] A. Alastalo, et al., “Finnish end-to-end speech synthesis with 
tacotron 2 and wavenet,” 2021. 

[53] W. Guo-liang, C. Meng-nan, and C. Lei, “An end-to-end Chinese 

speech synthesis scheme based on Tacotron 2,” Journal of East 
China Normal University (Natural Science Edition), no. 4, pp. 111-

119, 2019. 

[54] Y. Li, D. Qin, and J. Zhang, “Speech synthesis method based on 
tacotron2,” in Proc. 13th International Conference on Advanced 

Computational Intelligence, 2021, pp. 94-99. 
[55] S. Takamichi, “Modulation spectrum-based speech parameter 

trajectory smoothing for dnn-based speech synthesis using fft 

spectra,” in Proc. Asia-Pacific Signal and Information Processing 
Association Annual Summit and Conference, 2017, pp. 1308-1311. 

[56] L. Chen, H. Yang, and H. Wang, “Research on dungan speech 

synthesis based on deep neural network,” in Proc. 11th 
International Symposium on Chinese Spoken Language Processing, 

2018, pp. 46-50. 

[57] S. Suzie, T. Nosek, M. Secujski, D. Pekar, and V. Delie, “DNN 
based expressive text-to-speech with limited training data,” in Proc. 

27th Telecommunications Forum, 2019, pp. 1-6. 

[58] S. H. Chen, S. H. Hwang, and Y. R. Wang, “An RNN-based 
prosodic information synthesizer for mandarin text-to-speech,” 

IEEE Transactions on Speech and Audio Processing, vol. 6, no. 3, 

pp. 226-239, 1998. 

[59] S. Achanta, T. Godambe, and S. V. Gangashetty, “An investigation 

of recurrent neural network architectures for statistical parametric 

speech synthesis,” in Proc. Sixteenth Annual Conference of the 
International Speech Communication Association, 2015. 

[60] H. Choi, S. Park, J. Park, and M. Hahn, “Multi-speaker emotional 

acoustic modeling for cnn-based speech synthesis,” in Proc. IEEE 
International Conference on Acoustics, Speech and Signal 

Processing, 2019, pp. 6950-6954. 

[61] C. Valentini-Botinhao, X. Wang, S. Takaki, and J. Yamagishi, 
“Investigating RNN-based speech enhancement methods for noise-

robust textto-speech,” SSW, 2016. 

[62] M. Aso, S. Takamichi, N. Takamune, and H. Saruwatari, “Acoustic 
model-based subword tokenization and prosodic-context extraction 

without language knowledge for text-to-speech synthesis,” Speech 

Communication, vol. 125, pp. 53-60, 2020. 
[63] J. Y. Lee, S. J. Cheon, B. J. Choi, N. S. Kim, and E. Song, “Acoustic 

modeling using adversarially trained variational recurrent neural 

network for speech synthesis,” in Proc. INTERSPEECH, 2018, pp. 

917-921. 

[64] Y. Zhao, S. Takaki, H. T. Luong, J. Yamagishi, D. Saito, and N. 

Minemats, “Wasserstein gan and waveform loss-based acoustic 
model training for multi-speaker text-to-speech synthesis systems 



 

 

 

  
 

 

 

 

 

 

 
 

 

 

 
 

 
  

 

  

 

 

 

  

 

 

 

 

 

 

  

  

 
 

 
 

 
 
 

 

 

   
  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

 
  

  

 

 

  

 

Journal of Advances in Information Technology Vol. 13, No. 5, October 2022

© 2022 J. Adv. Inf. Technol. 411

 

using a wavenet vocoder,” IEEE Access, vol. 6, pp. 60478-60488, 

2018. 

[65] H. Ze, A. Senior, and M. Schuster, “Statistical parametric speech 
synthesis using deep neural networks,” in Proc. IEEE International 

Conference on Acoustics, Speech and Signal Processing, 2013, pp. 

7962-7966. 
[66] X. Wang, S. Takaki, and J. Yamagishi, “An RNN-based quantized 

f0 model with multi-tier feedback links for text-to-speech synthesis.” 

in Proc. INTERSPEECH, 2017, pp. 1059-1063. 
[67] Y. Fan, Y. Qian, F. L. Xie, and F. K. Soong, “TTS synthesis with 

bidirectional lstm based recurrent neural networks,” in Proc. 

Fifteenth Annual Conference of the International Speech 
Communication Association, 2014. 

[68] S. Shechtman and M. Mordechay, “Emphatic speech prosody 

prediction with deep lstm networks,” in Proc. IEEE International 
Conference on Acoustics, Speech and Signal Processing, 2018, pp. 

5119-5123. 

[69] C. Batista, R. Cunha, P. Batista, A. Klautau, and N. Neto, 
“Utterance copy in formant-based speech synthesizers using lstm 

neural networks,” in Proc. 8th Brazilian Conference on Intelligent 

Systems, 2019, pp. 90-95. 
[70] H. Zen, “Generative model-based text-to-speech synthesis,” in Proc. 

IEEE 7th Global Conference on Consumer Electronics, 2018, pp. 

327-328. 
[71] S. Yang, L. Xie, X. Chen, X. Lou, X. Zhu, D. Huang, and H. Li, 

“Statistical parametric speech synthesis using generative 

adversarial networks under a multi-task learning framework,” in 
Proc. IEEE Automatic Speech Recognition and Understanding 

Workshop, December 2017, pp. 685-691. 

[72] Y. Saito, S. Takamichi, and H. Saruwatari, “Statistical parametric 
speech synthesis incorporating generative adversarial networks,” 

IEEE/ACM Transactions on Audio, Speech, and Language 

Processing, vol. 26, no. 1, p. 84-96, 2017. 
[73] T. Kaneko, H. Kameoka, N. Hojo, Y. Ijima, K. Hiramatsu, and K. 

Kashino, “Generative adversarial network-based postfilter for 

statistical parametric speech synthesis,” in Proc. IEEE 
International Conference on Acoustics, Speech and Signal 

Processing, June 2017, pp. 4910-4914. 
[74] A. V. D. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. 

Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, 

“Wavenet: A generative model for raw audio,” arXiv preprint 
arXiv:1609.03499, 2016. 

[75] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. 

Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan, et al., “Natural TTS 
synthesis by conditioning wavenet on mel spectrogram predictions,” 

in Proc. IEEE International Conference on Acoustics, Speech and 

Signal Processing, 2018, pp. 4779-4783. 
[76] A. Tamamori, T. Hayashi, K. Kobayashi, K. Takeda, and T. Toda, 

“Speaker-Dependent wavenet vocoder,” Interspeech, vol. 2017, pp. 

1118-1122, 2017. 
[77] L. Juvela, B. Bollepalli, J. Yamagishi, and P. Alku, “Waveform 

generation for text-to-speech synthesis using pitch-synchronous 

multiscale generative adversarial networks,” in Proc. IEEE 

International Conference on Acoustics, Speech and Signal 

Processing, May 2019, pp. 6915-6919. 

[78] Y. Saito, S. Takamichi, and H. Saruwatari, “Text-to-Speech 
synthesis using stft spectra based on low-/multi-resolution 

generative adversarial networks,” in Proc. IEEE International 

Conference on Acoustics, Speech and Signal Processing, April 
2018, pp. 5299-5303. 

[79] Y. Ren, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T. Y. Liu, “Almost 

unsupervised text to speech and automatic speech recognition,” in 
Proc. International Conference on Machine Learning, 2019, pp. 

5410-5419. 

[80] O. Watts, A. Stan, R. A. Clark, Y. Mamiya, M. Giurgiu, J. 
Yamagishi, and S. King, “Unsupervised and lightly-supervised 

learning for rapid construction of tts systems in multiple languages 

from ‘found’data: evaluation and analysis,” in Proc. Eighth ISCA 
Workshop on Speech Synthesis, 2013. 

[81] S. King, K. Tokuda, H. Zen, and J. Yamagishi, “Unsupervised 

adaptation for hmm-based speech synthesis,” ISCA, 2008. 

[82] Y. A. Chung, Y. Wang, W. N. Hsu, Y. Zhang, and R. Skerry-Ryan, 

“Semi-supervised training for improving data efficiency in end-to-

end speech synthesis,” in Proc. IEEE International Conference on 
Acoustics, Speech and Signal Processing, 2019, pp. 6940-6944. 

[83] T. Okamoto, T. Toda, Y. Shiga, and H. Kawai, “Tacotron-Based 

acoustic model using phoneme alignment for practical neural text-

to-speech systems,” in Proc. IEEE Automatic Speech Recognition 
and Understanding Workshop, 2019, pp. 214-221. 

[84] S. Li, B. Ouyang, L. Li, and Q. Hong, “Lightspeech: Lightweight 

non-autoregressive multi-speaker text-to-speech,” in Proc. IEEE 
Spoken Language Technology Workshop, 2021, pp. 499-506. 

[85] M. Bi, H. Lu, S. Zhang, M. Lei, and Z. Yan, “Deep feed-forward 

sequential memory networks for speech synthesis,” in Proc. IEEE 
International Conference on Acoustics, Speech and Signal 

Processing, 2018, pp. 4794-4798. 

[86] K. Ito and L. Johnson. (2017). The LJ speech dataset. [Online] 
Available: https://keithito.com/LJ-Speech-Dataset/  

[87] Y. Qian, F. K. Soong, and Z. J. Yan, “A unified trajectory tiling 

approach to high quality speech rendering,” IEEE Transactions on 
Audio, Speech, and Language Processing, vol. 21, no. 2, pp. 280-

290, 2012. 

[88] K. Azizah, M. Adriani, and W. Jatmiko, “Hierarchical transfer 
learning for multilingual, multi-speaker, and style transfer dnn-

based tts on lowresource languages,” IEEE Access, vol. 8, pp. 

179798-179812, 2020. 
[89] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative 

adversarial networks,” in Proc. International Conference on 

Machine Learning, 2017, pp. 214-223. 
[90] M. Rosca, B. Lakshminarayanan, D. Warde-Farley, and S. 

Mohamed, “Variational approaches for auto-encoding generative 

adversarial networks,” arXiv preprint arXiv:1706.04987, 2017. 
 

Copyright © 2022 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 
 

F. Khanam completed her B.Sc. degree in 

Computer Science and Engineering from 
Military Institute of Science and Technology 

(MIST) and M.Sc. in 
Information and Communication Technology at 

Bangladesh University of Engineering and 

Technology (BUET). She is currently working 
as a Lecturer of department of Computer 

Science and Engineering at Bangladesh 

University of Business and Technology 
(BUBT), Dhaka, Bangladesh. Her research interest includes Machine 

Learning, Data Mining, Bioinformatics, Network Security, and Natural 

Language Processing (NLP). 
 

 

Farha Akhter Munmun received her B.Sc. 
degree in Computer Science and Engineering 

from Rajshahi University of Engineering and 

Technology (RUET). She is currently doing 

her M.Sc. in Computer Science and 

Engineering at Bangladesh University of 

Engineering and Technology (BUET). She is 
working as a Lecturer in the Department of 

CSE, BUBT. She has experience working in 

RAXML, PAUP, Python, and Sklearn. Her 
research interest includes Bioinformatics, Network Security, Machine 

Learning, and Natural Language Processing (NLP). 

 
 

Nadia Afrin Ritu completed her both 

Bachelor of Science (B.Sc) and Master of 
Science (M.Sc) in Computer Science and 

Engineering from Jahangirnagar University, 

Savar, Dhaka, Bangladesh. She is currently 
working as a Lecturer of department of 

computer science and engineering at 

Bangladesh University of Business and 

Technology, Dhaka, Bangladesh.  She is very 

much interested in the field of artificial neural 

network, machine learning, data mining and image processing. She 
specially enjoys learning and her job of teaching. 

 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

Journal of Advances in Information Technology Vol. 13, No. 5, October 2022

© 2022 J. Adv. Inf. Technol. 412

 

Dr. Aloke Kumar Saha is Professor of 

Computer Science and Engineering (CSE) 

Department of University of Asia Pacific 
(UAP), Dhaka, Bangladesh. He joined UAP on 

March 1999 as a Lecturer. Before, he was a 

Lecturer at Queens University from June 1997 
to March 1999. He completed B.Sc. (Hons.) in 

Applied Physics & Electronics from the 

University of Dhaka in 1995. He received his 
M.Sc. (Thesis) in Computer Science from 

University of Dhaka in 1997. Dr. Saha received his Ph.D. in Computer 

Science and Engineering from Jahangirnagar University, Savar, Dhaka, 
Bangladesh. He has thirty (30) Journal papers and twenty five (25) 

Conference papers. He usually teaches courses on Digital Logic & 

System Design, Numerical Methods, Data Structures, Discrete 
Mathematics and Computer Graphics. His current research interest 

includes Algorithm, Artificial Intelligence, Machine Learning, Deep 

Learning and Natural Language Processing. For more than 25 (Twenty 
five) years, he is working with the undergraduate and master’s students 

as a supervisor or co-researcher of their project and thesis works. Dr. Saha 

has worked as the head of the CSE department, UAP from 2008 to 2018. 
He was the Chair of organizing committee of International Conference 

on Computer and Information Technology (ICCIT) 2017. He was the 

Contest Director of National Collegiate Programming Contest (NCPC) 
2016. Under his leading UAP host the International Collegiate 

Programming Contest (ICPC) 2106 and 2017. He is Chief of Organizing 

Committee of International Journal of Computer and Information 

Technology (IJCIT), published by department of CSE, UAP. He is 

reviewer of different conferences and journals. 
 

M. F. Mridha (Senior Member, IEEE) 

received the Ph.D. degree in AI/ML from 
Jahangirnagar University, in 2017. He joined 

the Department of Computer Science and 

Engineering, Stamford University Bangladesh, 
in June 2007, as a Lecturer, where he was 

promoted a Senior Lecturer and an Assistant 

Professor, in October 2010 and October 2011, 
respectively. Then, he joined UAP, in May 

2012, as an Assistant Professor. He is currently 

working as an associate professor with the Department of Computer 
Science and Engineering, Bangladesh University of Business and 

Technology. He also worked as a faculty member of the CSE Department, 

University of Asia Pacific, and as a graduate coordinator, from 2012 to 
2019. His research experience, within both academia and industry, has 

resulted in over 80 journal and conference publications. His research 

interests include artificial intelligence (AI), machine learning, deep 
learning, big data analysis, and natural language processing (NLP). For 

more than ten years, he has been with the master’s and undergraduate 

students, as a supervisor of their thesis work. He has served as a program 
committee member of several international conferences and workshops. 

He also served as an associate editor in several journals. 

 


