
Structured Pruning for Deep Neural Networks 

with Adaptive Pruning Rate Derivation Based on 

Connection Sensitivity and Loss Function 
 

Yasufumi Sakai 
Fujitsu Research, Fujitsu Limited, Kawasaki, Japan 

Email: sakaiyasufumi@fujitsu.com 

 

Yu Eto and Yuta Teranishi 
QNET Group, Fujitsu Limited, Fukuoka, Japan 

Email: {eto.yu, teranishi.yuta}@fujitsu.com 

 

 

 
Abstract—Structured pruning for deep neural networks has 

been proposed for network model compression. Because 

earlier structured pruning methods assign pruning rate 

manually, finding appropriate pruning rate to suppress the 

degradation of pruned model accuracy is difficult. In this 

paper, we propose a structured pruning method by deriving 

pruning rate for each layer adaptively based on gradient and 

loss function. The proposed method first calculates a 

threshold of L1-norm of the pruned weight for each layer 

using loss function and gradient per layer. The threshold 

guarantees no degradation of the loss function by pruning 

when the L1-norm of pruned weight is less than that 

threshold. Then, by comparing the L1-norm of the pruned 

weight and the calculated threshold while changing the 

pruning rate, we derive the pruning rate for each layer, which 

does not degrade the loss function. By applying the derived 

pruning rate per layer, the accuracy degradation of the 

pruned model is suppressed. We evaluate the proposed 

method on CIFAR-10 task with VGG-16 and ResNet in 

iterative pruning method. For example, our proposed method 

reduces model parameters of ResNet-56 by 66.3% with 

93.71% accuracy.  

 

Index Terms—neural networks, structured pruning, 

automatic pruning rate search 

 

I. INTRODUCTION 

Deep Neural Networks (DNNs) have shown remarkable 

performance on various tasks such as classification task [1] 

and semantic segmentation [2]. However, along with 

improved network performance, DNN models have 

become deeper and more complex. This trend has limited 

DNNs deployment on resource-constrained devices such 

as embedded systems and mobile phones. 

Network pruning methods have been proposed to reduce 

the DNN model size and computational complexity. 

Earlier work [3] removes the elements of small value 

weight included in the weight tensor below a threshold 

determined by a given pruning rate. Because these 

methods introduce sparse connections, the method is 

called unstructured pruning. Structured pruning, which 

prunes with higher granularity like channels and neurons 

than unstructured pruning, has been studied to reduce 

computation costs. The presented work [4] removes 

channels based on the value rank of L1-norm of each filter. 

Other work [5] derives automatically that channels should 

be pruned using group LASSO, and prunes filters so that 

the error of feature maps connected to the output of the 

pruning target filters is minimized. [6] has proposed a 

method using gradient for a pruning metric to consider 

pruning effects for each layer on whole model accuracy. 

These existing methods prune weight tensor based on the 

pruning importance like the weight value and a given 

pruning rate. However, when the wrong pruning rate is set, 

the accuracy of the pruned model is degraded considerably. 

In practical cases, many practical applications use various 

neural networks. Therefore, manual determination of a 

pruning rate that can suppress pruning-related accuracy 

degradation for all cases is inefficient. 

In this paper, we propose a structured pruning method 

for deriving the pruning rate for each layer adaptively 

based on gradient and loss function. Fig. 1 shows an 

overview of our proposed method. The proposed method 

first calculates a threshold of L1-norm of pruned weight, 

i.e. pruning error, for each layer using a loss function and 

the gradient per layer. The threshold guarantees no 

degradation of the loss function by pruning when the 

pruning error is less than that threshold. By comparing 

both the calculated pruning error and the threshold while 

changing pruning rate, we derive the pruning rate which 

does not degrade loss function for each layer. By applying 

the derived pruning rate per layer, the accuracy 

degradation of the pruned model is suppressed. We 

evaluate the proposed method on CIFAR-10 [7] with 

VGG-16 including batch normalization layer [8] and 

ResNet [9] in iterative pruning method. The proposed 

method reduces the model parameters of VGG-16 by 

94.4% with 93.43% accuracy. Moreover, our pruned 

ResNet-32, ResNet-56, and ResNet-100 with 66.9%, 

66.3%, and 84.4% reduction of parameters respectively 

show the accuracy of 92.93%, 93.71%, and 93.60%.  
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Figure 1.  Overview of proposed structured pruning. The proposed 

method first calculates a threshold of L1-norm of pruned weight, i.e. 
pruning error, per layer. The threshold guarantees no degradation of the 

loss function by pruning, when the pruning error is less than the 

threshold. By comparing that calculated pruning error and the threshold 
while changing the pruning rate, the pruning rate per layer which does 

not degrade the loss function is derived. 

Our contributions for structured network pruning are the 

following. 

• We propose a structured pruning method deriving 

the pruning rate per layer adaptively to compress 

the network by removing whole model channels 

and neurons.  

• We demonstrate that our proposed method can 

reduce model parameters and number of Floating 

Point Operations (FLOPs) on CIFAR-10 with 

VGG-16, ResNet-32, ResNet-56, and ResNet-110 

with no marked accuracy degradation. 

II. RELATED WORKS 

A. Importance for Pruning 

Structured pruning generally calculates the importance 

in unit of higher granularity like channels. Then, the 

channels with low importance below a threshold which is 

determined by pruning rate are pruned. The weight value 

is used widely for importance [3], [4]. Feature maps error 

[5] and scaling factor of batch normalization layer [10] are 

also often used for importance. However, these importance 

do not consider the network accuracy effects. Although [6] 

uses sensitivity of the loss function like gradient for 

importance, using sensitivity for pruning shows lower 

performance than that obtained by using weight value [11]. 

B. Local Pruning and Global Pruning 

Two methods are available for setting the importance 

and pruning rate. Local pruning sets the rank of importance 

and the pruning rate per layer [3]. Because the 

combinations of pruning rates are extremely numerous in 

local pruning, finding a combination that suppresses 

accuracy degradation is difficult. Another method, global 

pruning, sets only one pruning rate for the whole model 

and calculates the rank of importance for the whole model 

[12]. Therefore, the pruning rate per layer is generally 

different in global pruning. 

Algorithm 1: Proposed pruning method 

Input:   Pre-trained model 

Pruning rate candidates: Ratecand = [20%, 10%, 0%] 

Loss margin control parameter Lm 

Accuracy control parameter Accctrl 

Output: Derived pruning rate 

1: Calculate Accb using the pre-trained model. 

2: Calculate loss function and gradient by pre-trained model. 

3: Target model ← pre-trained model 

4: Initialize upper bound Ub and upper bound limit Ub,limit 

5: while All pruning rates for each layer are 0%. do 

6:   Calculate threshold Th,k by Eq. (6) 

7:   if L2-norm of Th,k,all  > Ub then   # Limit Th,k 

8:     Scale all Th,k so that L2-norm Th,k,all equals Ub. 

9:   end if 

10:   Derive pruning rate per layer by Algorithm 2. 

11:   Prune Target model with derived pruning rate. 

12:   Fine-tune pruned Target model. 

13:   Calculate Accp by fine-tuned model. 

14:   if Accp + Accctrl ≥ Accb then 

15:     Target model ← fine-tuned model 

16:     Calculate loss function and gradient by the Target model. 

17:     Ub = min(2 × Ub , Ub,limit) 

18:   else 

19:     Ub = 0.5 ×Ub 

20:   end if 

21: end while 

22: return Derived pruning rate 

C. Pruning Scheduling 

To suppress accuracy degradation due to pruning, the 

pruned model is generally fine-tuned. One-shot pruning 

method prunes the model by a high pruning rate only once; 

it fine-tunes the pruned model [13]. Iterative pruning 

method iteratively executes the procedure of pruning the 

model with a low pruning rate and fine-tuning [4], [14]. 

Earlier work [12] reports that the accuracy degradation of 

a pruned model using iterative pruning is less than that of 

one-shot pruning. 

Our proposed method derives the pruning rate for each 

layer like local pruning, whereas the final pruning rate per 

layer differs similarly to global pruning. That is true 

because the proposed method derives the pruning rate for 

each layer adaptively depending on the gradient of each 

layer. The proposed method uses the gradient for deriving 

the pruning rate to consider the effects of pruning for loss 

function. To suppress the accuracy degradation by pruning, 

the proposed method uses weight value for pruning 

importance with the iterative pruning method. 

III. METHODOLOGY 

The procedure used for our proposed pruning method is 

shown in Algorithm 1. The proposed method prunes the 

pre-trained model. First, proposed method derives the 

pruning rate and prunes the model with the derived pruning 

rate. After fine-tuning the pruned model, the proposed 

method is decided whether or not to adopt the derived 

pruning rate, by comparing the accuracy of the fine-tuned 

model and the pre-trained model. The procedure of 

pruning rate derivation, model pruning, fine-tuning, and 
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accuracy comparison is iteratively executed until the 

pruning rate of all layers are chosen to 0%. 

Algorithm 2: Pruning rate derivation 

Input:   Pruning target tensor W 

Threshold Th 

Pruning rate candidates: Ratecand = [20%, 10%, 0%] 

Output: Derived pruning rate 

1: i = 0 

2: Ratetmp= Ratecand[i] # Set maximum pruning rate of Ratecand. 

3: Calculate the pruning error ∆W with Ratetmp. 

4: while i ≤ number of Ratecand do 

5:   if ∆W ≤ Th then 

6:     break 

7:   else 

8:     i = i + 1 

9:     Ratetmp = Ratecand[i] # Set pruning rate as one lower  

than last iteration. 

10:     Calculate pruning error ∆W with Ratetmp. 

11:   end if 

12: end while 

13: return Ratetmp 

A. Pruning Rate Derivation 

The ideal pruning rate prevents accuracy degradation 

due to pruning. If the ideal pruning rate is obtained, then it 

is expected that a loss function of the model pruned by the 

ideal pruning rate is also not degraded. We set the 

following constraint from this ideal situation. The loss 

function derived from the pruned model is less than or 

equal to the loss function derived from the model before 

pruning. When only one element including the pruning 

target tensor is removed, the constraint above is presented 

in (1). 

 

𝐿(𝑤1 + ∆𝑤1, 𝑤2, ⋯ , 𝑤𝑛) ≤ 𝐿𝑏                  (1) 

 

where 𝑤𝑖  is the i-th element of a pruning target tensor. i 

=1,2,…,n are indexes of the elements. n is the number of 

elements of that tensor. ∆𝑤𝑖 = −𝑤𝑖 is the pruning error, i.e. 

the difference between weight value before and after 

pruning of the i-th element. L(𝑤1 + ∆𝑤1, 𝑤2, ⋯ , 𝑤𝑛) is a 

loss function of the pruned model and Lb is a loss function 

of the model before pruning. To apply first-order Taylor 

expansion to the loss function of the pruned model, we can 

derive (2). 

 

𝐿(𝑤1 + ∆𝑤1, 𝑤2, ⋯ , 𝑤𝑛) 

≈ 𝐿(𝑊) + 𝜕𝐿(𝑊)/𝜕𝑤1 ⋅ ∆𝑤1 

 ≤ 𝐿(𝑊) + |𝜕𝐿(𝑊)/𝜕𝑤1| ⋅ |∆𝑤1| ≤ 𝐿𝑏     (2) 

 

In this expression, W = [𝑤1, 𝑤2, ⋯ , 𝑤𝑛]T. Because the 

value of L(W) is the same as that of Lb, (2) can not be 

satisfied. To satisfy (2), we relax the constraint by 

introducing a margin of loss function. The loss function 

derived from the pruned model is less than or equal to the 

loss function derived from the model before pruning “with 

a margin”. We modify (2) according to the relaxed 

constraint. 

 

𝐿(𝑊) + |𝜕𝐿(𝑊)/𝜕𝑤1| ⋅ |∆𝑤1| ≤ 𝐿𝑏 + 𝐿𝑏 ⋅ 𝐿𝑚    (3) 

 

where Lb⋅Lm is a margin of the loss function introduced by 

the relaxed constraint and Lm is a control parameter of the 

loss function margin. Although Lm is the hyperparameter, 

since the pruning rate derived by proposed method is 

finally determined by accuracy comparison, the final 

derived pruning rate is robust against Lm. We see the 

robustness against Lm in experiments (Sec. 4). 

Transforming (3) derives the upper bound of the pruning 

error ∆𝑤1, which satisfies the constraint. 

 

|∆𝑤1| ≤
𝐿𝑏 + 𝐿𝑏 ⋅ 𝐿𝑚 − 𝐿(𝑊)

|𝜕𝐿(𝑊)/𝜕𝑤1|
              (4) 

 

Using (4), we can decide that 𝑤1 can be pruned or not 

in terms of degradation of loss function. We expand (4) to 

(5) for larger granularity pruning such as channel pruning. 

 

 ∆𝑊 =  
1

𝑛
⋅ ∑|∆𝑤𝑖|

𝑛

𝑖=1

 

≤
𝐿𝑏 + 𝐿𝑏 ⋅ 𝐿𝑚 − 𝐿(𝑊)

𝑛
⋅ ∑

1

|𝜕𝐿(𝑊)/𝜕𝑤𝑖|

𝑛

𝑖=1

= 𝑇ℎ   (5) 

 

The left side of (5), ΔW, is the L1-norm of pruned 

weights normalized by the number of elements, i.e. ΔW is 

a pruning error calculated with high granularity. When 

pruning a tensor, as the number of pruned weights is 

determined by the pruning rate, the value of L1-norm with 

pruned weights depends on the pruning rate. The right side 

of (5), which is upper bound of pruning error, i.e. threshold 

Th, is independent of the pruning rate. Moreover, since 

gradients are derived independently per layer, threshold Th 

is also derived independently per layer. Therefore, using 

(5), a pruning rate that suppresses the loss function 

degradation can be found independently for each layer by 

setting up a pruning rate candidate Ratecand and by finding 

a pruning rate from that candidate such that pruning error 

ΔW is less than or equal to threshold Th. 

Iterative pruning is one method for suppressing 

accuracy degradation due to pruning. The proposed 

method iteratively executes model pruning with the 

derived pruning rate by (5) and the pruned model fine-

tuning. Equation (6) shows the threshold at k-times during 

iterative pruning: Th,k. 
 

𝑇ℎ,𝑘 =
𝐿𝑏 + 𝐿𝑏 ⋅ 𝐿𝑚 − 𝐿(𝑊𝑘)

𝑛
⋅ ∑

1

|𝜕𝐿(𝑊𝑘)/𝜕𝑤𝑖|

𝑛

𝑖=1

 (6) 

 

where Wk is the weight tensor of the pruned model after 

searching for pruning rate k times. When k=0, because the 

pruning rate have not been sought yet, W0 is same as the 

weight tensor of the model before pruning. In the proposed 

pruning rate derivation method shown in Algorithm 2, the 

pruning rate for structured pruning can be derived by 

calculating the pruning error and threshold at filter and 

neuron granularity. Furthermore, the proposed method can 

derive the pruning rate for unstructured pruning by 

calculation at element granularity. 
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Figure 2.  Pruning for shortcut connection. 

Because the threshold Th,k includes approximation error 

derived from Taylor expansion, the possibility exists that 

the pruning rate derived by (6) is incorrect. To reduce 

approximation error effects, we introduce the trust region 

method, which is an optimization method using the 

parameter including error. When using the trust region 

method, to avoid incorrect optimization by the error, the 

upper bound, called trust radius, limit the value of the 

parameter including error. In our proposed method, 

thresholds for all layers are limited by Ub shown in (7). 

 

‖𝑇ℎ,𝑘,𝑎𝑙𝑙‖
2

≤ 𝑈𝑏                              (7) 

 

here, Th,k,all  = [Th,k,1, Th,k,2,…, Th,k,m] is a vector of the 

threshold. m represents the number of the pruning target 

tensor. Th,k,i (i=1,2,…,m) is the threshold for each pruning 

target tensor. 

B. Model Pruning and Fine-Tuning 

After deriving the pruning rate, the pruning target model 

is pruned by the derived pruning rate. The pruning 

importance is L1-norm of weight value. Weights with low 

importance below a threshold determined by a given 

pruning rate are removed. In fine-tuning, the pruned model 

reuses the weights of the latest fine-tuned model. In the 

case of first search, the pruned model reuses the weights of 

the pre-trained model. 

C. Accuracy Comparison 

To suppress the accuracy degradation of the pruned 

model and achieve the desired accuracy, the pruned model 

is fine-tuned until the accuracy of pruned model Accp plus 

the accuracy control parameter Accctrl exceeds the 

accuracy of pre-trained model Accb. When Accp+Accctrl 

exceeds Accb, the derived pruning rates are adopted. When 

Accp+Accctrl does not exceed Accb, the derived pruning 

rates are discarded. 

When executing the trust region method iteratively, the 

upper bound, which limits the value of parameter including 

error, is updated every iteration depending on the 

optimization result because the upper bound affects the 

convergence of optimization. In the proposed method, the 

upper bound Ub is increased when Accp+Accctrl exceeds 

Accb, whereas Ub is decreased when Accp+Accctrl does not 

exceed Accb. 

D. Pruning Search Ternimation Condition 

The proposed method iteratively executes pruning rate 

derivation, model pruning, fine-tuning, and accuracy 

comparison until the pruning rates of all layers are chosen 

as 0%. 

E. Setting for the Upper Bound of Threshold 

When the initial value of upper bound Ub is small, the 

threshold becomes set to a small value at the first search. 

Thus, the possibility exists that the pruning rate of all 

layers becomes 0%. The pruning rate search might be 

terminated at the first search. To avoid termination at the 

first search, the initial value of Ub is set as L2-norm of the 

pruning error of all layers with the maximum pruning rate 

of pruning rate candidates Ratecand. Because the degree of 

freedom for pruning rate selection in all layers is 

guaranteed when Ub is set to that value of L2-norm, from 

equation (7). 

The proposed method updates the upper bound Ub to a 

larger value depending on the accuracy comparison result. 

However, when the Ub value is extremely large, 

convergence of the optimization takes a long time. We set 

a initial value of Ub to the upper limit of upper bound Ub,limit. 

F. Pruning for Shortcut Connection 

A shortcut connection with concatenate block is often 

used for DNN such as ResNet. The number of multiple 

input feature maps must be equal for a concatenate block. 

To align the number of input feature maps, we prune only 

those filters with the same index pruned on all layers, as 

presented in Fig. 2. 

IV. EXPERIMENTS 

We evaluated the proposed pruning method on CIFAR-

10 with VGG-16 including batch normalization layer, 

ResNet-32, ResNet-56, and ResNet-110. We used pre-

trained model by Kim’s model [15] for VGG-16 and by 

Idelbayev’s model [16] for ResNet. The pruning rate 

candidates Ratecand were 10% and 0%. The evaluated 

models were retrained by momentum SGD with L2 weight 

decay. A mini-batch size was 128. The momentum 

coefficient was 0.9. The coefficient of weight decay was 

10-4. The retraining duration was 300 epochs. The initial 

learning rate was 0.1. The learning rate was multiplied by 

0.1 at epoch 100, 150, and 200. We implemented the 

proposed method on Pytorch. Our code is available in 

https://github.com/FujitsuLaboratories/CAC/tree/main/ca

c/pruning. 

A. Performance for Hyperparameters 

Fig. 3(a) shows the relation between pruned model 

performance and loss margin control parameter Lm with 

VGG-16. When Lm is zero, the compression ratio becomes 

0%. The initial threshold for each layer also becomes zero. 

Therefore, all searched pruning rates at the first search 

become 0%. When Lm is greater than zero, because the 

choice of Lm does not much affect the compression ratio, 

which indicates the robustness of the Lm choice. We used 

Lm = 0.1 for the following experiments. 
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Figure 3.  Performance of pruned model on CIFAR-10 with VGG-16: 

(a) performance on Lm (Accctrl = 0.5%) and (b) performance on Accctrl 
(Lm = 0.1). (c) Pruning rate per layer during pruning rate search and (d) 

validation accuracy and compression ratio for parameters and FLOPs 

during pruning rate search. In (c) and (d), Lm =0.1, Accctrl=0.5%, 
respectively. 

Fig. 3(b) shows the relation between pruned model 

performance and accuracy control parameter Accctrl with 

VGG-16. Because the pruned model accuracies exceed the 

value of the pre-trained model accuracy subtracted by 

Accctrl for all values of Accctrl, the proposed method can 

control the pruned model accuracy by Accctrl. The result, 

which is that the compression ratio increases as the 

accuracy is reduced, is consistent with intuition and earlier 

reports [12], [14]. 

B. Performance during Pruning Rate Search 

Fig. 3(c) shows the pruning rate per layer during the 

pruning rate search with VGG-16. We set Accctrl as 0.5%. 

In the proposed method, because the pruning rate for each 

layer is derived adaptively using the threshold and pruning 

error calculated independently per layer, the final pruning 

rate for each layer is set to different value similarly to 

global pruning.  

The compression ratio during pruning rate search, as 

shown in Fig. 3(d), is increased immediately during initial 

iterations. Then the compression ratio converges gradually 

until 0% is set as the pruning rate for each layer. It seems 

that the compression ratio increases immediately at the 

beginning of a search and then slows is the model has 

many redundant parts at the beginning of the search, but 

only few redundant parts in the latter part of the search. 

The pruned model accuracy is maintained as determined 

by Accctrl during the pruning rate search. Therefore, when 

we set the target model size by terminating the search 

when the pruned model size reaches the target, we can get 

the pruned model, which guaranteed the accuracy and 

model size in a short time. 

C. Performance Comparisons 

Table I presents comparisons with earlier works. 

Results showed that our method achieves the best 

compression rate of parameters and FLOPs under the 

similar pruned model accuracy for all evaluated models. 

Moreover, our pruned ResNet-56 and ResNet-110 achieve 

the remarkable level of pruned model accuracy of 94.03% 

and 94.60% under a similar compression ratio of 

parameters to those used for earlier studies. 

TABLE I. COMPARISON OF THE PRUNED NETWORKS WITH DIFFERENT 

METHODS ON CIFAR-10. ‘BASELINE ACC.’ AND ‘PRUNED ACC.’ 

DENOTE THE VALIDATION ACCURACY OF THE PRE-TRAINED AND 

PRUNED NETWORKS. ‘PARAMS. COMPRESS.’ AND ‘FLOPS COMPRESS.’ 

ARE COMPRESSION RATIO OF PARAMETERS AND FLOPS OF NETWORKS. 

 

V. CONCLUSION 

In this paper, we proposed a structured pruning method 

with adaptive pruning rate derivation. To suppress 

accuracy degradation by pruning, the pruning rate for each 

layer is derived based on the gradient per layer and whole 

the model loss function. By applying the proposed pruning 

method to VGG-16, ResNet-32, ResNet-56, and ResNet-

110, parameters and FLOPs of the pruned models can be 

reduced considerably with no marked accuracy 

degradation. In our future work, we will apply the 

proposed method to other tasks and models such as 

ImageNet task [17], transformer [18], and BERT [19]. 
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