
Structured Pruning for Deep Neural Networks

with Adaptive Pruning Rate Derivation Based on

Connection Sensitivity and Loss Function

Yasufumi Sakai
Fujitsu Research, Fujitsu Limited, Kawasaki, Japan

Email: sakaiyasufumi@fujitsu.com

Yu Eto and Yuta Teranishi
QNET Group, Fujitsu Limited, Fukuoka, Japan

Email: {eto.yu, teranishi.yuta}@fujitsu.com

Abstract—Structured pruning for deep neural networks has

been proposed for network model compression. Because

earlier structured pruning methods assign pruning rate

manually, finding appropriate pruning rate to suppress the

degradation of pruned model accuracy is difficult. In this

paper, we propose a structured pruning method by deriving

pruning rate for each layer adaptively based on gradient and

loss function. The proposed method first calculates a

threshold of L1-norm of the pruned weight for each layer

using loss function and gradient per layer. The threshold

guarantees no degradation of the loss function by pruning

when the L1-norm of pruned weight is less than that

threshold. Then, by comparing the L1-norm of the pruned

weight and the calculated threshold while changing the

pruning rate, we derive the pruning rate for each layer, which

does not degrade the loss function. By applying the derived

pruning rate per layer, the accuracy degradation of the

pruned model is suppressed. We evaluate the proposed

method on CIFAR-10 task with VGG-16 and ResNet in

iterative pruning method. For example, our proposed method

reduces model parameters of ResNet-56 by 66.3% with

93.71% accuracy.

Index Terms—neural networks, structured pruning,

automatic pruning rate search

I. INTRODUCTION

Deep Neural Networks (DNNs) have shown remarkable

performance on various tasks such as classification task [1]

and semantic segmentation [2]. However, along with

improved network performance, DNN models have

become deeper and more complex. This trend has limited

DNNs deployment on resource-constrained devices such

as embedded systems and mobile phones.

Network pruning methods have been proposed to reduce

the DNN model size and computational complexity.

Earlier work [3] removes the elements of small value

weight included in the weight tensor below a threshold

determined by a given pruning rate. Because these

methods introduce sparse connections, the method is

called unstructured pruning. Structured pruning, which

prunes with higher granularity like channels and neurons

than unstructured pruning, has been studied to reduce

computation costs. The presented work [4] removes

channels based on the value rank of L1-norm of each filter.

Other work [5] derives automatically that channels should

be pruned using group LASSO, and prunes filters so that

the error of feature maps connected to the output of the

pruning target filters is minimized. [6] has proposed a

method using gradient for a pruning metric to consider

pruning effects for each layer on whole model accuracy.

These existing methods prune weight tensor based on the

pruning importance like the weight value and a given

pruning rate. However, when the wrong pruning rate is set,

the accuracy of the pruned model is degraded considerably.

In practical cases, many practical applications use various

neural networks. Therefore, manual determination of a

pruning rate that can suppress pruning-related accuracy

degradation for all cases is inefficient.

In this paper, we propose a structured pruning method

for deriving the pruning rate for each layer adaptively

based on gradient and loss function. Fig. 1 shows an

overview of our proposed method. The proposed method

first calculates a threshold of L1-norm of pruned weight,

i.e. pruning error, for each layer using a loss function and

the gradient per layer. The threshold guarantees no

degradation of the loss function by pruning when the

pruning error is less than that threshold. By comparing

both the calculated pruning error and the threshold while

changing pruning rate, we derive the pruning rate which

does not degrade loss function for each layer. By applying

the derived pruning rate per layer, the accuracy

degradation of the pruned model is suppressed. We

evaluate the proposed method on CIFAR-10 [7] with

VGG-16 including batch normalization layer [8] and

ResNet [9] in iterative pruning method. The proposed

method reduces the model parameters of VGG-16 by

94.4% with 93.43% accuracy. Moreover, our pruned

ResNet-32, ResNet-56, and ResNet-100 with 66.9%,

66.3%, and 84.4% reduction of parameters respectively

show the accuracy of 92.93%, 93.71%, and 93.60%.

Manuscript received November 8, 2021; revised April 20, 2022.

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 295
doi: 10.12720/jait.13.3.295-300

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 296

Figure 1. Overview of proposed structured pruning. The proposed

method first calculates a threshold of L1-norm of pruned weight, i.e.
pruning error, per layer. The threshold guarantees no degradation of the

loss function by pruning, when the pruning error is less than the

threshold. By comparing that calculated pruning error and the threshold
while changing the pruning rate, the pruning rate per layer which does

not degrade the loss function is derived.

Our contributions for structured network pruning are the

following.

• We propose a structured pruning method deriving

the pruning rate per layer adaptively to compress

the network by removing whole model channels

and neurons.

• We demonstrate that our proposed method can

reduce model parameters and number of Floating

Point Operations (FLOPs) on CIFAR-10 with

VGG-16, ResNet-32, ResNet-56, and ResNet-110

with no marked accuracy degradation.

II. RELATED WORKS

A. Importance for Pruning

Structured pruning generally calculates the importance

in unit of higher granularity like channels. Then, the

channels with low importance below a threshold which is

determined by pruning rate are pruned. The weight value

is used widely for importance [3], [4]. Feature maps error

[5] and scaling factor of batch normalization layer [10] are

also often used for importance. However, these importance

do not consider the network accuracy effects. Although [6]

uses sensitivity of the loss function like gradient for

importance, using sensitivity for pruning shows lower

performance than that obtained by using weight value [11].

B. Local Pruning and Global Pruning

Two methods are available for setting the importance

and pruning rate. Local pruning sets the rank of importance

and the pruning rate per layer [3]. Because the

combinations of pruning rates are extremely numerous in

local pruning, finding a combination that suppresses

accuracy degradation is difficult. Another method, global

pruning, sets only one pruning rate for the whole model

and calculates the rank of importance for the whole model

[12]. Therefore, the pruning rate per layer is generally

different in global pruning.

Algorithm 1: Proposed pruning method

Input: Pre-trained model

Pruning rate candidates: Ratecand = [20%, 10%, 0%]

Loss margin control parameter Lm

Accuracy control parameter Accctrl

Output: Derived pruning rate

1: Calculate Accb using the pre-trained model.

2: Calculate loss function and gradient by pre-trained model.

3: Target model ← pre-trained model

4: Initialize upper bound Ub and upper bound limit Ub,limit

5: while All pruning rates for each layer are 0%. do

6: Calculate threshold Th,k by Eq. (6)

7: if L2-norm of Th,k,all > Ub then # Limit Th,k

8: Scale all Th,k so that L2-norm Th,k,all equals Ub.

9: end if

10: Derive pruning rate per layer by Algorithm 2.

11: Prune Target model with derived pruning rate.

12: Fine-tune pruned Target model.

13: Calculate Accp by fine-tuned model.

14: if Accp + Accctrl ≥ Accb then

15: Target model ← fine-tuned model

16: Calculate loss function and gradient by the Target model.

17: Ub = min(2 × Ub , Ub,limit)

18: else

19: Ub = 0.5 ×Ub

20: end if

21: end while

22: return Derived pruning rate

C. Pruning Scheduling

To suppress accuracy degradation due to pruning, the

pruned model is generally fine-tuned. One-shot pruning

method prunes the model by a high pruning rate only once;

it fine-tunes the pruned model [13]. Iterative pruning

method iteratively executes the procedure of pruning the

model with a low pruning rate and fine-tuning [4], [14].

Earlier work [12] reports that the accuracy degradation of

a pruned model using iterative pruning is less than that of

one-shot pruning.

Our proposed method derives the pruning rate for each

layer like local pruning, whereas the final pruning rate per

layer differs similarly to global pruning. That is true

because the proposed method derives the pruning rate for

each layer adaptively depending on the gradient of each

layer. The proposed method uses the gradient for deriving

the pruning rate to consider the effects of pruning for loss

function. To suppress the accuracy degradation by pruning,

the proposed method uses weight value for pruning

importance with the iterative pruning method.

III. METHODOLOGY

The procedure used for our proposed pruning method is

shown in Algorithm 1. The proposed method prunes the

pre-trained model. First, proposed method derives the

pruning rate and prunes the model with the derived pruning

rate. After fine-tuning the pruned model, the proposed

method is decided whether or not to adopt the derived

pruning rate, by comparing the accuracy of the fine-tuned

model and the pre-trained model. The procedure of

pruning rate derivation, model pruning, fine-tuning, and

Input for

i-th layer

Filters for

i-th layer

Output for

i-th layer

Filters for

i+1-th layer

Derive pruning rate

per layer

50% 25%P
ru

n
in

g
 e

rr
o

r
o

f

i-
th

la
y
e
r’

s
fi

lt
e
rs

Pruning rate

Threshold

for i-th layer

0%

Pruning rate for i-th layer1 is 25%.

50% 25%
Pruning rate

0%

Pruning rate for i+1-th layer is 50%.

Threshold

for i+1-th layer

Upper bound for threshold Upper bound for threshold

P
ru

n
in

g
 e

rr
o

r
o

f

i+
1

-t
h
 l

a
y
e
r’

s
fi

lt
e
rs

Model

before pruning

Model

after pruning

Output for

i+1-th layer

accuracy comparison is iteratively executed until the

pruning rate of all layers are chosen to 0%.

Algorithm 2: Pruning rate derivation

Input: Pruning target tensor W

Threshold Th

Pruning rate candidates: Ratecand = [20%, 10%, 0%]

Output: Derived pruning rate

1: i = 0

2: Ratetmp= Ratecand[i] # Set maximum pruning rate of Ratecand.

3: Calculate the pruning error ∆W with Ratetmp.

4: while i ≤ number of Ratecand do

5: if ∆W ≤ Th then

6: break

7: else

8: i = i + 1

9: Ratetmp = Ratecand[i] # Set pruning rate as one lower

than last iteration.

10: Calculate pruning error ∆W with Ratetmp.

11: end if

12: end while

13: return Ratetmp

A. Pruning Rate Derivation

The ideal pruning rate prevents accuracy degradation

due to pruning. If the ideal pruning rate is obtained, then it

is expected that a loss function of the model pruned by the

ideal pruning rate is also not degraded. We set the

following constraint from this ideal situation. The loss

function derived from the pruned model is less than or

equal to the loss function derived from the model before

pruning. When only one element including the pruning

target tensor is removed, the constraint above is presented

in (1).

𝐿(𝑤1 + ∆𝑤1, 𝑤2, ⋯ , 𝑤𝑛) ≤ 𝐿𝑏 (1)

where 𝑤𝑖 is the i-th element of a pruning target tensor. i

=1,2,…,n are indexes of the elements. n is the number of

elements of that tensor. ∆𝑤𝑖 = −𝑤𝑖 is the pruning error, i.e.

the difference between weight value before and after

pruning of the i-th element. L(𝑤1 + ∆𝑤1, 𝑤2, ⋯ , 𝑤𝑛) is a

loss function of the pruned model and Lb is a loss function

of the model before pruning. To apply first-order Taylor

expansion to the loss function of the pruned model, we can

derive (2).

𝐿(𝑤1 + ∆𝑤1, 𝑤2, ⋯ , 𝑤𝑛)

≈ 𝐿(𝑊) + 𝜕𝐿(𝑊)/𝜕𝑤1 ⋅ ∆𝑤1

 ≤ 𝐿(𝑊) + |𝜕𝐿(𝑊)/𝜕𝑤1| ⋅ |∆𝑤1| ≤ 𝐿𝑏 (2)

In this expression, W = [𝑤1, 𝑤2, ⋯ , 𝑤𝑛]T. Because the

value of L(W) is the same as that of Lb, (2) can not be

satisfied. To satisfy (2), we relax the constraint by

introducing a margin of loss function. The loss function

derived from the pruned model is less than or equal to the

loss function derived from the model before pruning “with

a margin”. We modify (2) according to the relaxed

constraint.

𝐿(𝑊) + |𝜕𝐿(𝑊)/𝜕𝑤1| ⋅ |∆𝑤1| ≤ 𝐿𝑏 + 𝐿𝑏 ⋅ 𝐿𝑚 (3)

where Lb⋅Lm is a margin of the loss function introduced by

the relaxed constraint and Lm is a control parameter of the

loss function margin. Although Lm is the hyperparameter,

since the pruning rate derived by proposed method is

finally determined by accuracy comparison, the final

derived pruning rate is robust against Lm. We see the

robustness against Lm in experiments (Sec. 4).

Transforming (3) derives the upper bound of the pruning

error ∆𝑤1, which satisfies the constraint.

|∆𝑤1| ≤
𝐿𝑏 + 𝐿𝑏 ⋅ 𝐿𝑚 − 𝐿(𝑊)

|𝜕𝐿(𝑊)/𝜕𝑤1|
 (4)

Using (4), we can decide that 𝑤1 can be pruned or not

in terms of degradation of loss function. We expand (4) to

(5) for larger granularity pruning such as channel pruning.

 ∆𝑊 =
1

𝑛
⋅ ∑|∆𝑤𝑖|

𝑛

𝑖=1

≤
𝐿𝑏 + 𝐿𝑏 ⋅ 𝐿𝑚 − 𝐿(𝑊)

𝑛
⋅ ∑

1

|𝜕𝐿(𝑊)/𝜕𝑤𝑖|

𝑛

𝑖=1

= 𝑇ℎ (5)

The left side of (5), ΔW, is the L1-norm of pruned

weights normalized by the number of elements, i.e. ΔW is

a pruning error calculated with high granularity. When

pruning a tensor, as the number of pruned weights is

determined by the pruning rate, the value of L1-norm with

pruned weights depends on the pruning rate. The right side

of (5), which is upper bound of pruning error, i.e. threshold

Th, is independent of the pruning rate. Moreover, since

gradients are derived independently per layer, threshold Th

is also derived independently per layer. Therefore, using

(5), a pruning rate that suppresses the loss function

degradation can be found independently for each layer by

setting up a pruning rate candidate Ratecand and by finding

a pruning rate from that candidate such that pruning error

ΔW is less than or equal to threshold Th.

Iterative pruning is one method for suppressing

accuracy degradation due to pruning. The proposed

method iteratively executes model pruning with the

derived pruning rate by (5) and the pruned model fine-

tuning. Equation (6) shows the threshold at k-times during

iterative pruning: Th,k.

𝑇ℎ,𝑘 =
𝐿𝑏 + 𝐿𝑏 ⋅ 𝐿𝑚 − 𝐿(𝑊𝑘)

𝑛
⋅ ∑

1

|𝜕𝐿(𝑊𝑘)/𝜕𝑤𝑖|

𝑛

𝑖=1

 (6)

where Wk is the weight tensor of the pruned model after

searching for pruning rate k times. When k=0, because the

pruning rate have not been sought yet, W0 is same as the

weight tensor of the model before pruning. In the proposed

pruning rate derivation method shown in Algorithm 2, the

pruning rate for structured pruning can be derived by

calculating the pruning error and threshold at filter and

neuron granularity. Furthermore, the proposed method can

derive the pruning rate for unstructured pruning by

calculation at element granularity.

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 297

Figure 2. Pruning for shortcut connection.

Because the threshold Th,k includes approximation error

derived from Taylor expansion, the possibility exists that

the pruning rate derived by (6) is incorrect. To reduce

approximation error effects, we introduce the trust region

method, which is an optimization method using the

parameter including error. When using the trust region

method, to avoid incorrect optimization by the error, the

upper bound, called trust radius, limit the value of the

parameter including error. In our proposed method,

thresholds for all layers are limited by Ub shown in (7).

‖𝑇ℎ,𝑘,𝑎𝑙𝑙‖
2

≤ 𝑈𝑏 (7)

here, Th,k,all = [Th,k,1, Th,k,2,…, Th,k,m] is a vector of the

threshold. m represents the number of the pruning target

tensor. Th,k,i (i=1,2,…,m) is the threshold for each pruning

target tensor.

B. Model Pruning and Fine-Tuning

After deriving the pruning rate, the pruning target model

is pruned by the derived pruning rate. The pruning

importance is L1-norm of weight value. Weights with low

importance below a threshold determined by a given

pruning rate are removed. In fine-tuning, the pruned model

reuses the weights of the latest fine-tuned model. In the

case of first search, the pruned model reuses the weights of

the pre-trained model.

C. Accuracy Comparison

To suppress the accuracy degradation of the pruned

model and achieve the desired accuracy, the pruned model

is fine-tuned until the accuracy of pruned model Accp plus

the accuracy control parameter Accctrl exceeds the

accuracy of pre-trained model Accb. When Accp+Accctrl

exceeds Accb, the derived pruning rates are adopted. When

Accp+Accctrl does not exceed Accb, the derived pruning

rates are discarded.

When executing the trust region method iteratively, the

upper bound, which limits the value of parameter including

error, is updated every iteration depending on the

optimization result because the upper bound affects the

convergence of optimization. In the proposed method, the

upper bound Ub is increased when Accp+Accctrl exceeds

Accb, whereas Ub is decreased when Accp+Accctrl does not

exceed Accb.

D. Pruning Search Ternimation Condition

The proposed method iteratively executes pruning rate

derivation, model pruning, fine-tuning, and accuracy

comparison until the pruning rates of all layers are chosen

as 0%.

E. Setting for the Upper Bound of Threshold

When the initial value of upper bound Ub is small, the

threshold becomes set to a small value at the first search.

Thus, the possibility exists that the pruning rate of all

layers becomes 0%. The pruning rate search might be

terminated at the first search. To avoid termination at the

first search, the initial value of Ub is set as L2-norm of the

pruning error of all layers with the maximum pruning rate

of pruning rate candidates Ratecand. Because the degree of

freedom for pruning rate selection in all layers is

guaranteed when Ub is set to that value of L2-norm, from

equation (7).

The proposed method updates the upper bound Ub to a

larger value depending on the accuracy comparison result.

However, when the Ub value is extremely large,

convergence of the optimization takes a long time. We set

a initial value of Ub to the upper limit of upper bound Ub,limit.

F. Pruning for Shortcut Connection

A shortcut connection with concatenate block is often

used for DNN such as ResNet. The number of multiple

input feature maps must be equal for a concatenate block.

To align the number of input feature maps, we prune only

those filters with the same index pruned on all layers, as

presented in Fig. 2.

IV. EXPERIMENTS

We evaluated the proposed pruning method on CIFAR-

10 with VGG-16 including batch normalization layer,

ResNet-32, ResNet-56, and ResNet-110. We used pre-

trained model by Kim’s model [15] for VGG-16 and by

Idelbayev’s model [16] for ResNet. The pruning rate

candidates Ratecand were 10% and 0%. The evaluated

models were retrained by momentum SGD with L2 weight

decay. A mini-batch size was 128. The momentum

coefficient was 0.9. The coefficient of weight decay was

10-4. The retraining duration was 300 epochs. The initial

learning rate was 0.1. The learning rate was multiplied by

0.1 at epoch 100, 150, and 200. We implemented the

proposed method on Pytorch. Our code is available in

https://github.com/FujitsuLaboratories/CAC/tree/main/ca

c/pruning.

A. Performance for Hyperparameters

Fig. 3(a) shows the relation between pruned model

performance and loss margin control parameter Lm with

VGG-16. When Lm is zero, the compression ratio becomes

0%. The initial threshold for each layer also becomes zero.

Therefore, all searched pruning rates at the first search

become 0%. When Lm is greater than zero, because the

choice of Lm does not much affect the compression ratio,

which indicates the robustness of the Lm choice. We used

Lm = 0.1 for the following experiments.

+

1

2

3

4

Input data Filters Filters Output data

Layer 1

(2) Prune only filters with the same

index pruned on all layers.

(1) Prune independently per layer

1

2

3

4

Layer 2

Output data

from concat

1

2

3

4

1

2

3

4

1
2

3
4

1
2

3
4

Concatenate

1
2

3
4

Pruned feature map
Pruned filters

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 298

Figure 3. Performance of pruned model on CIFAR-10 with VGG-16:

(a) performance on Lm (Accctrl = 0.5%) and (b) performance on Accctrl
(Lm = 0.1). (c) Pruning rate per layer during pruning rate search and (d)

validation accuracy and compression ratio for parameters and FLOPs

during pruning rate search. In (c) and (d), Lm =0.1, Accctrl=0.5%,
respectively.

Fig. 3(b) shows the relation between pruned model

performance and accuracy control parameter Accctrl with

VGG-16. Because the pruned model accuracies exceed the

value of the pre-trained model accuracy subtracted by

Accctrl for all values of Accctrl, the proposed method can

control the pruned model accuracy by Accctrl. The result,

which is that the compression ratio increases as the

accuracy is reduced, is consistent with intuition and earlier

reports [12], [14].

B. Performance during Pruning Rate Search

Fig. 3(c) shows the pruning rate per layer during the

pruning rate search with VGG-16. We set Accctrl as 0.5%.

In the proposed method, because the pruning rate for each

layer is derived adaptively using the threshold and pruning

error calculated independently per layer, the final pruning

rate for each layer is set to different value similarly to

global pruning.

The compression ratio during pruning rate search, as

shown in Fig. 3(d), is increased immediately during initial

iterations. Then the compression ratio converges gradually

until 0% is set as the pruning rate for each layer. It seems

that the compression ratio increases immediately at the

beginning of a search and then slows is the model has

many redundant parts at the beginning of the search, but

only few redundant parts in the latter part of the search.

The pruned model accuracy is maintained as determined

by Accctrl during the pruning rate search. Therefore, when

we set the target model size by terminating the search

when the pruned model size reaches the target, we can get

the pruned model, which guaranteed the accuracy and

model size in a short time.

C. Performance Comparisons

Table I presents comparisons with earlier works.

Results showed that our method achieves the best

compression rate of parameters and FLOPs under the

similar pruned model accuracy for all evaluated models.

Moreover, our pruned ResNet-56 and ResNet-110 achieve

the remarkable level of pruned model accuracy of 94.03%

and 94.60% under a similar compression ratio of

parameters to those used for earlier studies.

TABLE I. COMPARISON OF THE PRUNED NETWORKS WITH DIFFERENT

METHODS ON CIFAR-10. ‘BASELINE ACC.’ AND ‘PRUNED ACC.’

DENOTE THE VALIDATION ACCURACY OF THE PRE-TRAINED AND

PRUNED NETWORKS. ‘PARAMS. COMPRESS.’ AND ‘FLOPS COMPRESS.’

ARE COMPRESSION RATIO OF PARAMETERS AND FLOPS OF NETWORKS.

V. CONCLUSION

In this paper, we proposed a structured pruning method

with adaptive pruning rate derivation. To suppress

accuracy degradation by pruning, the pruning rate for each

layer is derived based on the gradient per layer and whole

the model loss function. By applying the proposed pruning

method to VGG-16, ResNet-32, ResNet-56, and ResNet-

110, parameters and FLOPs of the pruned models can be

reduced considerably with no marked accuracy

degradation. In our future work, we will apply the

proposed method to other tasks and models such as

ImageNet task [17], transformer [18], and BERT [19].

CONFLICT OF INTEREST

The authors declare no conflicts of interest associated

with this manuscript.

AUTHOR CONTRIBUTIONS

Yasufumi Sakai mainly conducted this research;

Yasufumi Sakai, Yu Eto, and Yuta Teranishi implemented

the proposed algorithm; Yasufumi Sakai carried out the

experiment and wrote the paper; all authors had approved

the final version.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

93

93.1

93.2

93.3

93.4

93.5

93.6

93.7

93.8

93.9

94

0 10 20 30 40 50 60

0

0

1

1

1

93

94

94

95

95

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

conv1

conv2

conv3

conv4

conv5

conv6

conv7

conv8

conv9

conv10

conv11

conv12

conv13

linear

0 20

Number of Searches

93.0 0

C
o
m

p
ressio

n
 ratio

 (%
)

V
al

id
at

io
n

 a
cc

u
ra

cy
 (

%
)

20

40

60

100

93.2

93.4

93.6

93.8

94.0

80

40 60

90

91

92

93

94

95

96

97

98

99

100

0

0

0

0

0

1

1

1

1

1

1

0.0 0.1 0.2 0.3 0.4 0.5
Lm

90

92

94

96

98

100

0

20

40

60

80

100 C
o
m

p
ressio

n
 ratio

 (%
)

V
al

id
at

io
n

 a
cc

u
ra

cy
 (

%
)

－0.5 0.0 0.5
Accctrl

93.0

95.0

0

C
o
m

p
ressio

n
 ratio

 (%
)

V
al

id
at

io
n

 a
cc

u
ra

cy
 (

%
)

25

50

75

100

93.5

94.0

94.5

(b)

Pre-trained model accuracy

Pruned model accuracy

Parameters compression ratio

FLOPs compression ratioPre-trained model accuracy－Accctrl

0 20

Number of Searches

0

P
ru

n
in

g
 r

at
e

(%
)

20

40

60

80

100

40 60

(a)

(d)(c)

COP (2019) [13] 93.56 93.31 92.8 73.5

PaG (2019) [4] 93.25 93.41 86.1 N/A

SNIP (2019) [6] 93.18 92.73 95.0 N/A

NM (2020) [14] 93.70 93.16 63.7 N/A

CCP (2021) [10] 93.80 93.39 94.9 73.7

Ours (Acc ctrl =0.5) 93.78 93.30 96.2 85.7

Ours (Acc ctrl =0.4) 93.78 93.43 94.4 82.9

COP (2019) [13] 92.64 91.97 57.5 53.9

SCOP (2020) [17] 92.66 92.13 56.2 55.8

CCP (2021) [10] 93.26 92.57 34.8 57.6

Ours (Acc ctrl =－0.3) 92.63 92.93 66.9 60.3

Ours (Acc ctrl =－0.4) 92.63 93.05 55.4 53.8

PaG (2019) [4] 93.04 93.12 47.9 N/A

NM (2020) [14] 93.70 93.64 56.3 56.0

CCP (2021) [10] 93.59 93.04 58.8 73.5

Ours (Acc ctrl =－0.3) 93.39 93.71 66.3 65.4

Ours (Acc ctrl =－0.6) 93.39 94.03 63.4 59.1

PaG (2019) [4] 93.53 93.56 53.1 N/A

CCP (2021) [10] 94.11 93.36 64.2 68.0

Ours (Acc ctrl =0.1) 93.68 93.60 84.4 79.5

Ours (Acc ctrl =－0.9) 93.68 94.60 67.6 68.6

FLOPs

compress.

(%)

VGG-16

ResNet-32

ResNet-56

ResNet-110

Model Method
Baseline

acc. (%)

Pruned

acc. (%)

Params.

compress.

(%)

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 299

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,” Advances

in Neural Information Processing Systems, vol. 25, pp. 1097-1105,
2012.

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional

networks for semantic segmentation,” in Proc. the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.

3431-3440.

[3] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and

huffman coding,” arXiv preprint arXiv:1510.00149, 2015.
[4] A. Salama, et al., “Pruning at a glance: Global neural pruning for

model compression,” arXiv preprint arXiv:1912.00200, 2019.

[5] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very

deep neural networks,” in Proc. the IEEE International Conference

on Computer Vision, 2017. pp. 1389-1397.

[6] N. Lee, T. Ajanthan, and P. H. S. Torr, “SNIP: Single-shot network
pruning based on connection sensitivity,” arXiv preprint

arXiv:1810.02340, 2018.

[7] A. Krizhevsky and G. E. Hinton. (2019). Learning multiple layers
of features from tiny images. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.922

0&rep=rep1&type=pdf
[8] H. Li, et al., “Pruning filters for efficient convnets,” arXiv preprint

arXiv:1608.08710, 2016.

[9] K. He, et al., “Deep residual learning for image recognition,” in
Proc. the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 770-778.

[10] Y. Chen, et al., “CCPrune: Collaborative channel pruning for
learning compact convolutional networks,” Neurocomputing, vol.

451, pp. 35-45, 2021.

[11] D. Blalock, et al., “What is the state of neural network pruning?”
arXiv preprint arXiv:2003.03033, 2020.

[12] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding

sparse, trainable neural networks,” arXiv preprint
arXiv:1803.03635, 2018.

[13] W. Wang, et al., “COP: Customized deep model compression via

regularized correlation-based filter-level pruning,” arXiv preprint
arXiv:1906.10337, 2019.

[14] W. Kim, et al., “Neuron merging: Compensating for pruned

neurons,” arXiv preprint arXiv:2010.13160, 2020.
[15] Pruning Filters for Efficient ConvNets. [Online]. Available:

https://github.com/tyui592/Pruning_filters_for_efficient_convnets

[16] Proper ResNet Implementation for CIFAR10/CIFAR100 in Pytorch.
[Online]. Available:

https://github.com/akamaster/pytorch_resnet_cifar10

[17] Y. Tang, et al., “SCOP: Scientific control for reliable neural
network pruning,” arXiv preprint arXiv:2010.10732, 2020.

[18] A. Vaswani, et al., “Attention is all you need,” Advances in Neural

Information Processing Systems, vol. 30, pp. 5998-6008, 2017.
[19] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-

training of deep bidirectional transformers for language

understanding,” arXiv preprint arXiv: 1810.04805, 2018.

Copyright © 2022 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Yasufumi Sakai received the B.E. and M.E.

degrees in electronic engineering from Tohoku
University, Sendai, Japan, in 2005 and 2007

respectively. In 2007, he joined Fujitsu

Laboratories Limited, Kawasaki, Japan, where
he engaged in the research and design of

CMOS analog, RF circuits, and high-speed

CMOS interconnect circuits until 2017. From
2017 to 2018, he was a Visiting Scholar with

the University of California, San Diego, La

Jolla CA, where he researched low-power neuromorphic computer
system. In 2018, he was back to Fujitsu Laboratories, and engaged in

research of efficient training methods for neural networks. In 2021, he

moved to Fujitsu Limited, Kawasaki, Japan, and he has been engaged in
research and development of efficient training and inference methods for

neural networks.

Yu Eto received the B.S. degree from Kyushu

University, Fukuoka, Japan in 2010 and the
M.E. degree from Osaka University, Suita,

Japan in 2014. In 2014, he joined Fujitsu

Kyushu Network Technologies Limited,
Fukuoka Japan, where he has been engaged in

research and development of optical networks,

robotics and machine learning. In 2021, he

transferred to Fujitsu Limited, Fukuoka, Japan.

His current work is data analysis for factories.

Yuta Teranishi

received the B.S. and M.S.

degrees in statistics from Kyushu University,

Fukuoka, Japan, in 2009 and 2011 respectively.

In 2011, he joined Fujitsu Kyushu Network
Technologies Limited, Fukuoka, Japan. Since

then, he has belonged to Fujitsu Laboratories

Limited, Fujitsu Kyushu Network
Technologies Limited, and now to Fujitsu

Limited, Fukuoka, Japan. He has been involved

in various tasks such as research and
development of energy management systems, development of wireless

base stations, and research and development of explainable AI

technologies. Currently, he is engaged in research and development of

pruning of neural networks technologies, and support for the conversion

of factories into smart factories.

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 300

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

