
Automating Smart Contract Generation on

Blockchains Using Multi-modal Modeling

Christian Gang Liu and Peter Bodorik
Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada

Email: {Chris.Liu, Peter.Bodorik}@dal.ca

Dawn Jutla
Sobey School of Business, Saint Mary’s University, Halifax, Nova Scotia, Canada

Email: Dawn.Jutla@gmail.com

Abstract—The power and correctness of smart contracts

have been the focus of much research. We propose a new

approach for developing smart contracts that uses multi-

modal modeling to represent the application logic for the

trade domain. We use discrete events modeling for

concurrency combined with FSM modeling to use

concurrent FSMs to not only simplify the design process for

the modeler, but also to scale the application running on a

blockchain and facilitate identifying parts of a smart

program that are suitable for off-chain processing on a

sidechain that also provides privacy. In addition, we achieve

separation of concerns between (a) application logic and (b)

its transformation into a smart contract and deployment on

a blockchain with processing of selected patterns on private

sidechains. We transform the model into a smart contract

automatically, such that patterns, selected by the modeler,

are deployed on a sidechain. The interface for the mainchain

to sidechain interaction is also prepared and deployed

automatically.

Index Terms—blockchain, smart contract, off-chain

computation, FSM modeling, hierarchical state machine,

discrete events modeling, multi-modal modeling

I. INTRODUCTION

Relatively recently, blockchains have received much

attention from researchers and practitioners addressing

various issues, such as scalability, privacy, and

development of smart contracts that are correct.

Eberhardt and Tai [1] categorized methods, for reducing

the blockchain size, based on what is moved off-chain

into: (i) off-chain storage, (ii) off-chain computation, and

(iii) a hybrid approach, in which both storage and

computation are off-chained.

Privacy in blockchains is another issue that smart

contracts need to address, especially if a smart contract

deals with coordinating activities amongst users of

different organizations, or departments of the same

organization, as some of the actions that need to be

performed by some of the actors may have to be

confidential. Public blockchains, such as in Bitcoin or

Ethereum do not provide privacy at all as they rely on the

anonymity of account owners. Anyone can get an account

Manuscript received November 9, 2021; revised April 19, 2022.

while the system does not ask for any personal

information to identify the owner. Private blockchains,

such as Hyperledger, provide for identity of users and,

furthermore, provide for privacy using special

mechanisms, such as channels, for situations when

selected groups of users need to share information that

needs to be kept secret from the other users. Such sharing,

however, requires initial setup and use of channels that

involve complexity and hence is a potential source of

errors introduced by developers.

The use of Finite State Machines (FSMs), or their

variations, in software development appears in many

domains and applications, including blockchain

technology with its executable smart contracts. Example

patterns targeted for smart contracts presented using FSM

models are described in [2], including the patterns fail

early and fail loud, state machine, upgradable registry,

transition counter, and other patterns. Further examples

of patterns include the challenge-response and chess-end-

game patterns in [3] and a blind-bidding pattern in [2]

and patterns used for mitigating various security issues,

such as a locking pattern to prevent re-entrance and

access-control pattern in programming of smart contracts

[2], [4]. Additional examples of patterns include the

challenge-response and chess-end-game patterns in [3]

and a blind-bidding pattern in [2].

Philipp, Prause, and Gerlitz [5] describe the usefulness

of smart contracts running on blockchains in for maritime

supply chains. They describe how blockchain and smart

contracts can facilitate collaboration across organizations

and facilitate interoperability of their underlying business

processes.

Development of a smart contract in a native language,

such as Solidity or Go, is not easy as it is not only a

general-purpose programming language, but it also has

constraints arising due to the underlying blockchain

infrastructure and thus complicating the design. Thus, it

is not surprising that research focused also on verification

of smart contract correctness [6] and on development of

smart contracts in some other language at a higher-level

of abstraction than that of a general-purpose language.

For instance, many approaches utilize FSM modeling as a

starting point.

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 213
doi: 10.12720/jait.13.3.213-223

Xiaomin et al. [6] describe how formal verification

methods are applied on smart contracts modeled as FSM.

They start with an FSM description of several simple

cases and apply on each formal model checking to ensure

that the smart contract is correct.

Dolev and Wang [7] describe a complex scheme for

hiding information using various transformations to

produce private smart contracts that are quantum-safe. A

state transition of the FSM is represented by a blind

polynomial with shared coefficients as binary secret

shares. They also use mixing multiplication between a

preprocessed permutation matrix and an input vector in

the form of secret sharing and additional operations.

Their method is complex and is positioned as a defence

against attacks utilizing quantum computing.

Additionally, how supported HSMs and concurrent FSMs

would be supported is not discussed.

Suvorov and Ulyantsev [8] explored the use of FSM

synthesis by specification. Specification is represented as

a combination of temporal formulae and a set of test

scenarios. The authors first represent a smart contract

with a set of formulas in linear temporal logic (LTL) and

use this specification together with test scenarios to

synthesize an FSM model for that contract. However, the

approach is limited in practice as modellers of business

processes and software developers are not likely to be

familiar with LTL.

Mavridou and Laszka [2], [4] address the security

issues of smart contracts. They start with using FSM

modeling and then transforming the FSM model into

methods of smart contracts while also addressing the

security issues. However, their approach does not support

modeling with HSMs and concurrent FSMs, which limits

their applicability.

Choudhury et al. [9] developed a framework for

incorporating constraints, which are encoded in a

knowledge representation, into a smart contract. They

design domain specific ontologies to represent the system

and application constraints. A smart contract is

represented as an abstract syntax tree (AST) into which

rules, derived from the ontology, are inserted.

Cariou et al. [10] advocate the use of UML state charts

in software development followed by their translation

into Java executable code to obtain good separation of

concerns between the processing logic specification, as

represented by statecharts, and its translation into Java

code. Our approach is similar, but instead of Java

platform we target blockchain infrastructure for

deployment.

We note that approaches taken in development of

smart contracts have concentrated on some formal

representation to facilitate modeling and eventual

transformation into the methods of a smart contract. Most

approaches use FSM modeling as a starting point. LTLs

and abstract syntax trees have also been used as starting

point. However, FSMs, LTLs and abstract syntax trees

are cumbersome to use by business modellers.

Furthermore, they may result in a state explosion if

concurrent activities arise – it is for that reason that we

use DE-FSM multi-modal modeling.

A. Objectives

We are interested in efficient support of the design and

deployment of smart contracts in the context of trade, in

which independent actors collaborate on long-term

activities only through messaging. The trade application

is to be created as smart contracts to be deployed and

executed on a blockchain. In this context, we explore the

following issues:

• Explore how a trade application may be modeled

using Hierarchical State Machines (HSM) 1 and

then be transformed into a smart contract.

• Investigate if activities, which are to be performed

by one actor, but are independent of the other

actors, can be supported and if they can be

supported in a private manner.

• Investigate if an FSM model, representing

collaboration of actors, is deployable

automatically on a blockchain.

• Explore if our approach may be used to support

the separation of concerns between the

responsibilities for the application logic design

and its deployment.

B. Our Approach

In this paper, we present a new approach that

developers and architects may use when developing a

smart contract for an application in the context of trade.

As in [2], [4], we also represent the application’s logic

with FSM modeling, but we do it in the context of multi-

modal modeling [11] to enable the modeller to use

concurrent FSMs for modeling of activities of a single

actor, or a subset of actors, that is independent of

activities of the other actors. Concurrent FSMs are

created using multi-modal modeling in which Discrete

Events (DE) modeling is used for concurrency and is

combined with FSMs to model the logic of processing

DE events.

Once the model is developed, we use an algorithm to

examine the FSM state graph in order to find patterns that

our approach represents as subgraphs of the state graph,

subgraphs that we refer to as independent (or simple)

subgraphs. Independent subgraphs represent activities of

only a single actor (or a subset of actors), activities that

are independent of activities of the other actors. We then

provide the designer with information, on the overhead

cost vs benefits due to off-chain processing, to support

her decision on which independent-subgraph patterns

should be processed off-chain. Our software then

transforms the model into a smart contract that is

deployed on a blockchain, while the selected patterns are

deployed and executed on a sidechain with the software

bridge, which facilitates the interaction between the

mainchain and sidechain, being provided automatically.

C. Outline

In Section II, we review background. In Section III, we

describe modeling of trade applications. The section

1 We use the term FSM modeling to refer to both FSM modeling and

HSM modeling, which occurs when an FSM has a hierarchical state. An

HSM is defined formally in Section II.

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 214

describes how the modeler is provided with the ability to

model activities of an actor that are independent from

activities of other actors. Section IV describes how the

model is analyzed to find patterns of activities that

depend on a single actor, or a subset of actors, that are

suitable for processing off-chain. It also describes how

the model is transformed into a smart contract with

sidechain processing of patterns selected by the designer.

The last section provides a summary and concluding

remarks.

II. BACKGROUND

We first review briefly FSMs modeling and its

extension, Hierarchical State Machine (HSM) modeling,

in which a state may represent an FSM. We then review

transformation of FSM models into a smart contract.

A. FSMs and HSMs

FSMs or their variants have played frequent roles in

the design and implementation of software. We chose

FSM modeling to represent application’s logic, as it is at

a high-level of abstraction and removes the many details

that a program needs to deal with when the smart contract

is written using its native language, such as Ethereum’s

Solidity.

As smart contracts execution on blockchains includes

state data/variables that are stored on the blockchain, they

are suitable for modeling of smart contracts using FSMs.

An FSM F can be described as F = (S, s0, T, I, O), where

S is a set of states, s0 is the initial state, T is the set of

transitions, I is a set of inputs to transitions, and O is a set

of outputs generated by transitions.

In the late 80’s, FSMs were extended with the concept

of hierarchy, leading to HSMs that can contain states that

are themselves other FSMs. Any HSM has a

corresponding equivalent FSM that can be achieved by

“flattening” the hierarchy in HSM: Each state, s ∊ S, that

represents an HSM, is replaced by its mapping. HSMs

recognize the same language as their corresponding

flattened FSMs. This is particularly useful for repeated

patterns that represent a particular activity that may need

to be repeated in many states of an FSM. HSM improves

representation of models by removing repetitive patterns

and facilitates representation of multiple concurrent

FSMs. HSMs increase succinctness in representing FSMs,

but they do not increase their expressiveness.

States and their transitions have been traditionally

described using a state transition graph, or a state graph

for short, in which nodes are the states in S and directed

edges represent transitions. We note that the state graph

is connected and that apart from the start and final nodes,

each node has at least one incoming and at least one

outgoing edge (otherwise the FSM is not considered to be

well-formed).

B. Transforming HSM Models to Smart Contract

Methods

Mavridou and Laszka [2], [4] address the security

issues of smart contracts by first modeling the smart

contract requirements using an FSM and then

transforming the FSM model into methods of smart

contracts, following which they augment each method

with software to address the known security issues with

code that cannot be modified by software developers.

Our approach is similar to that of [2], [4] in that we

also use FSM modeling to represent the smart contract

requirements first and then we transform the FSM model

into methods of a smart contract. However, in FSM

modeling, we differ as we: (1) Provide the designer with

multi-level HSMs to support modeling of concurrent

FSMs to avoid state explosions; (2) transform the HSM

model into methods of a smart contract; and (3) provide

the designer with the ability to automatically compile and

deploy the smart contract on the main blockchain with the

selected patterns being deployed on a sidechain(s).

III. MULTI-MODAL FSM MODELING FOR TRADE

APPLICATIONS

FSM modeling has been used frequently for many

applications of different types with several examples

listed already in previous sections. Here we describe how

multi-modal HSMs are used to model trade applications

using concurrent FSM models to avoid state explosion

and pave way for transformation into a smart contract

deployed on a blockchain. We first describe the context

in terms of trade-application properties. We then describe

how FSMs may be used to represent activities of an actor

that are independent of other actors’ activities using

concurrent FSMs. In the next section, we show how to

transform an HSM model into a set of methods of a smart

contract that is deployed on a blockchain.

A. Trade Applications and Example Use Case

Trade is a broad area that includes applications dealing

with buying and selling activities amongst business

partners, activities that include, ordering, price

negotiation, insurance, customs document, shipping, etc.

We focus on collaborative activities of business partners,

activities that need to take place amongst many actors

that communicate and interact only through messaging.

As an illustrative example, we are going to use trade of a

buyer and a seller with an escrow deposit [12] that we

shall describe later.

B. Multi-modal Modeling with Discrete Events and

HSM Modeling

First, we briefly review how nested HSM can be

combined with concurrency models to use multi-modal

modeling. We then describe how we apply multi-modal

modeling to trade applications.

1) Nested multi-modal HSMs

Using HSMs, FSMs can be combined hierarchically

because a single state, at one level in a lower hierarchy,

can be considered to be in several states concurrently as

represented by an FSM(s) in a lower level of the

hierarchy. FSMs may also be combined leading to

concurrent FSMs. FSM1, with states S1 and S2, can be

composed with an FSM2 having states S3 and S4,

resulting in an FSM with states S1S3, S1S4, S2S3, and S2S4

that are combinations of states of the two FSMs. Girault

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 215

et al. [11] describe how HSM modeling may be

combined with concurrency semantics of different

concurrency models, such as communicating sequential

processes [13] and Discrete Events (DEs) [14]. The paper

[11] describes how an HSM model can represent a

module of a system under a concurrency model that is

applicable only if the system is in that state. A subsystem

in some concurrency model may be nested within a

hierarchical state of a higher-level FSM and thus leading

to a multi-modal modeling, in which different

(hierarchical) states may be combined with different

concurrency models that are best suitable for modelling

activities of an FSM represented by an HSM for that

particular state.

2) Discrete events model for concurrency combined

with FSM for event processing

Our approach targets trade applications in which

organizations participate by exchange of messages, and

thus we concentrate on modeling concurrency with DE

modeling, in which sending a message is represented by

two distinct events of sending and receiving a message

with the latter occurring after the former. Furthermore, as

previously mentioned, we exploit the concept of multi-

modal modeling to allow the designer to model

concurrent, but independent activities, by concurrent

FSMs at the lower level of hierarchy, in order to avoid

the state explosion that arises in such situations.

Our model uses DE modeling for representation of

events that may occur concurrently. We model time using

a logical clock, such as Lamport’s clock [15]. Actors

communicate amongst each other and with the system

using messages (share nothing architecture), wherein the

acts of sending and receiving a message are two distinct

events, such that the event of sending a message must

occur before the event of receiving the same message.

Using a system-wide logical clock, each event is assigned

a timestamp of the current time and the event is stored in

a queue of events, Q0, ordered by the events’ timestamps

with the oldest message being first. Each message also

includes the identities of both the sender and the receiver,

together with the message type details.

 Events are retrieved from the queue and each one is

processed using the FSM model F0. The message content

is first parsed, and after its examination, it is used to form

inputs that are passed to the FSM for reaction. The HSM

reacts to inputs and, depending on the current state and

input, output is produced, a state transition is executed,

and output is passed to the DE model. Activities to be

performed in a state of an HMS depend on the application,

but may include actions, such as taking a document with

its hashcode and an actor’s signature and creating an

object that contains attributes that include the document,

its hash-code, and the actor’s signature signifying that the

actor signed the document.

3) HSM modeling for collaboration and concurrent

FSMs

Events are removed from the head of the queue, Q0,

and processed one at a time. For each event, its

parameters are parsed and analyzed and are used to

produce input that is applied to the FSM F0 for processing

(as shown in Fig. 1(a) which shows a partial FSM F0 with

its DE events queue, Q0). Collaboration of participating

actors is modeled using the FSM F0 in a straightforward

manner: Input is processed, state transition is determined

and made, and output is produced. The transition’s output

is passed to the DE model and thus finishing the HSM F0

reaction. The output produced is processed by DE and the

above steps are repeated to process the next event

removed from the event queue Q0.

(a) Partial FSM F0 and queue Q0

(b) An example of a state explosion

Figure 1. Partial FSM F0 model and its DE queue Q0 and of a state
explosion example.

However, when an actor needs to perform certain

activities that are independent from actions of other

actors, we allow the FSM modeler to represent the

independent activities without worrying about possible

inputs from other actors by using concurrent HSMs and

thus avoiding a state explosion that would occur

otherwise. We illustrate first with an example and then

describe the modeling process.

a) State explosion when representing activities

independent of other actors

Consider a case of two actors, A and B, who

collaborate on preparing a document for which actors

require the following approvals: Actor A needs to obtain

approvals from her departments A1 and A2, in any order.

Actor B needs approvals from her/his departments, B1

and B2, also in any order. As inputs are produced by both

actors, however, to represent the approvals by

departments leads to a small illustrative state explosion as

shown in Fig. 1. Approvals of the actor A’s departments

A1 and A2 are represented by inputs a1 and a2, while

approvals of the actor B’s departments, B1 and B2, are

represented by inputs b1 and b2, respectively. In the state

diagram of Fig. 1(b), each of the states, A1, A2, B1, and B2,

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 216

represents receiving an approval from the department

with the same respective name. States representing

approvals by the actor’s A departments have self-

transitions for the case when input causing the FSM firing

(reaction) is produced by the actor B as it has no effect on

approvals by the actor A. Similar statements apply to

states representing approvals by the actor B’s

departments.

b) Using concurrent HSMs to model independent

actor activities

A multi-modal FSMs may be used to avoid the state

explosion by using one HSM at the higher level of

hierarchy to keep track of the current state of processing

of two concurrent HSMs at the lower level [14], each one

representing the approval process by an actor’s

department. Fig. 2(a) shows the elaboration of the state

H1 that is a combination of the DE concurrency model,

with an ordered queue Q1 of timestamped events, and an

FSM1 used to model an individual event retrieved from

the queue Q1. FSM F1 itself contains further hierarchical

states HA and HB, with their respective FSMs FA and

FSMB. If input x is from the actor A, i.e., if x ∈ {a1, a2},

then it is processed by FMS FA, while if the input is from

the actor B, i.e., x ∈ {b1, b2}, then it is processed by FSM

FB. FSM FA is shown in Fig. 2(b) and is easy to

understand. Once both approvals, signified by inputs a1

and a2, are received in any order, an output signal d is

produced that is input to FMS F1 to inform it that

approvals by the actor A’s departments are completed.

FSMB is similar for monitoring completion of approvals

by departments of the actor B.

Semantics for a hierarchical FSM is straightforward if

there is no circular dependency between outputs of the

child FSM and input of the parent FSM [14]. There is a

master FSM that applies to all states, including

hierarchical ones. However, if a state is a hierarchical

state with an FSM, then the inner FSM is referred to as a

child FSM. The child FSM reacts first and any output it

produces may become a part of the output of the main

FSM. After the child FSM produces output, only then

does the main FSM react and produce its output. If a

child FSM is also hierarchical, then the same semantics

apply recursively. Its child FSM reacts first, followed by

the reaction of the parent FSM, while the output produced

by its child FSM becomes a part of the output of its

parent’s reaction.

Output of internal FSMs may generate events that

require timestamps. However, in nested FSM modeling,

circular dependencies, in which output from one child’s

FSM affects input to another child FSM of the same

parent, may exist and they may lead to a situation in

which the parent FSM does not complete its transition.

The resolution is to model each of the child models by a

separate DE model, each with its own clock for

timestamping events they produce. The child’s clock

must be such that it is guaranteed that all events of the

child’s event queue will be processed (i.e., the queue will

become empty) before the next event of the parent model

may arise.

2(a) DE model Q1 and FSM1

2(b) DE model with queue QA and FSM FA

Figure 2. DE model with queue Q1 and its FSM F1 and DE model with
queue QA and FSM FA.

However, as we do not have any circular dependencies,

the modeling block of a child FSM is assumed to be a

zero-delay block [14] and hence we may queue all events

in one queue, Q0, of the parent.

IV. FROM DE-HSM MODELING TO SMART CONTRACT

WITH SIDECHAIN(S)

In this section we describe how a DE model combined

with an HSM model is transformed into a smart contract

with sidechain processing of patterns that represent

independent activities of an actor, that is activities of an

actor that are not affected by any input from other actors.

We first describe briefly how the user specifies the HSM

model. Following this, we describe how activities are

identified as candidates for processing off-chain. We

describe how we provide the designer with the control to:

• Specify the events that can arise through actions of

individual actors.

• Identify patterns that are suitable for processing

off-chain.

• Assist the user in the decision making whether a

pattern should be processed off-chain.

• Transform the model into a smart contract.

• Deploy the smart contract with sidechain

processing of patterns selected by the designer.

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 217

Figure 3. FSM graph for buyer-seller contract with escrow deposit.

As an illustrative example, we are going to use trade of

a buyer and a seller with an escrow deposit [12] as is

shown in Fig. 3. After the product is posted for sale, the

buyer and seller negotiate price. Once an agreement is

reached on the price, a contract is prepared and signed

that stipulates escrow deposit and the matter of delivery.

Once the buyer makes a deposit to an escrow account,

then shipment, which includes crossing borders and

hence involving customs, may occur that involves

delivery to a port, going through customs, storing on a

ship, then processed at the destination customs, unload

from ship to port, buyer pickup, execution of payment

terms, and finally return of the escrow deposit. Fig. 3

shows the state graph of the FSM model. It also shows

independent subgraphs that were identified, subgraphs S1

to S6 as will be described in the next section.

We review briefly how we perform the above steps

while providing references to further details. It should be

noted that we developed a partial software system as a

pilot to explore the feasibility of implementation. Our

implementation can be found and tested at

https:/quinpool.com:9000. Please, keep in mind that the

system is implemented on a regular laptop and hence the

response time may be slow. The screenshots below have

been obtained from running the pilot software.

A. Modeling Using DE for Concurrency and FSMs for

Event Modeling

We provide the designer with a UI for specifying

events for each of the actors. For each event we ask the

designer for parameters of the event and which of the

parameters are used to produce inputs and outputs.

Whenever the event occurs as a result of an actor activity,

the event is timestamped with the current time and the

event, together with its parameters, is queued in the Q0

queue of the DE model. Once processing starts, events

are removed, one at a time, from the queue Q0 and are

processed. The events’ parameters are used to form input

that is submitted for reaction to HSM F0.

It should be noted that in our pilot implementation, we

simplify the FSM specification in that the designer is

asked to input the event’s parameters directly in terms of

the input to the FSM F0. When specifying the events, the

user is offered to identify events that are a part of

processing that depends on one actor only, or a subset of

actors, in which case we model the independent activities

using the multi-modal model, consisting of DE modeling

for concurrency and FSM modeling for processing of an

event as was described in the previous section. Fig. 4

shows a snapshot of the pilot software when specifying

information leading to F0 definition.

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 218

B. Identifying Patterns Suitable for Off-chain

Processing

Although we allow the designer to identify patterns

that depend on activities of an actor, we do not rely on

them. We developed an algorithm, described in [16], that

takes an FSM definition as input and finds each pattern

that depends only on activities of one actor. Such patterns

are represented as subsets of an FSM state graph, subsets

that have certain properties that are used to identify them.

Such subsets are referred to as independent subgraphs.

Furthermore, we also show that such patterns are suitable

for processing off-chain because of the subgraph

independence property: Once processing of a pattern

starts off-chain, its processing continues off-chain until

there is an exit from the pattern by the final transition

from the pattern’s exit state. We use the algorithm on the

FSM F0 specification to find such patterns represented as

independent subgraphs. We show the found independent

patterns to the designer for her decision on whether a

pattern should be deployed for processing on a sidechain

as per the next subsection. Fig. 5 shows a snapshot after

the algorithm is used to find such patterns.

Figure 4. FSM F0 specification.

Figure 5. Found patterns as independent subgraphs.

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 219

C. Deciding to Process a Pattern Off-chain

As discussed in the introduction already, all off-chain

storage approaches store an object off-chain but also store

the object’s hash code on the blockchain so that it can be

used to ascertain the object’s immutability any time that

object is retrieved. We also assume that all storage of

objects off-chain uses this mechanism. Processing off-

chain, however, has not received as much attention. There

are three issues that need to be addressed for off-chain

processing: Availability; Immutability; and Trust. We

address each of the three issues below. Additionally, off-

chain processing incurs overhead cost for interaction

between on and off-chain processing. Consequently, off-

chain processing should only be used when benefits

outweigh the overhead cost. We also address this issue.

1) Availability

As a system availability is determined by the

availability of its components, if computation is

performed off-chain, its availability will affect the overall

system availability. Hence, off-chain computation also

needs to support availability. Fortunately, providing a

desired availability via replication is a well-established

and researched problem with good solutions.

2) Immutability

As already described, we use the standard approach

utilized for off-chain storage: The object is stored off-

chain while the object’s hashcode is stored on the

mainchain and is used to ensure that the object retrieved

from off-chain storage has not been amended.

3) Trust

This is the most difficult issue. Trust is gained by

blockchains and their smart contracts because all parties

can examine the smart contract code and changes to the

state variables (in permissioned blockchains, as long as

access rights are available). As parts of the smart contract

are moved off-chain, that may decrease trust on the part

of the blockchain participants as questions may be raised

regarding the off-chain processing and its implication on

trust. The main approach to mitigating this risk is to use

attestation of results produced by off-chain computation

[17]: After the off-chain processing is completed, the

results of off-chain processing are provided to actors for

attestation that they are correct. The actors confirm that

they attest the results by their digital signatures. For trade

use cases, attestation, in most cases, is attestation that all

actors agree on the content of an object. Our software

adopts the same approach: At the end of the off-chain

computation, affected partners are called and are asked to

sign the results of the off-chain computation as correct.

As such attestation is application dependent, we only

create a blueprint method – we prepare interface and its

invocation, but internals of the method are left to the

developer to complete. Affected participants are those

that are participating in the parent modeling block. If the

parent block is the system, then all actors of the

application need to participate in the attestation.

4) Overhead costs of processing off-chain versus

benefits

When a part of a smart contract, a pattern, is executed

off-chain, overhead cost is introduced due to the

communication (interaction) between on and off-chain

processing – a pattern should be processed off-chain only

if benefits outweigh overhead costs. Our approach is

relatively simple. As we shall describe in the next section,

when a smart contract interacts with sidechain processing,

costs arise due to three types of processing: one due to the

smart contract methods deployed and executed on the

main chain, one on the sidechain, and one due to the

interaction between the main blockchain and the

sidechain. Also note that we automatically produce the

smart contract for the main chain, sidechain, and

interaction. Consequently, when the model is transformed

into a smart contract, we automatically prepare two

versions of the system:

1) In one version, selected patterns chosen by the

designer are deployed on a sidechain.

2) In the second version, the smart contract is

executed only and fully on the main chain.
Therefore, we compare the cost of executing the

contract on (i) the mainchain only vs the cost of

executing it on (ii) the mainchain with selected patterns

executed on a sidechain. We derive the costs by

repeatedly executing each smart contract method once

and then showing the average. We also allow the designer

to input the frequency of execution of each smart contract

method and use it in calculating the average (as different

smart contract methods are likely to be executed with

different expected frequency).

Fig. 6 shows a snapshot of our software showing a

repeated execution of the smart contract methods while

showing the average cost of execution of a smart contract

method, over all smart contract methods, when the main

contract is executed on the Ethereum public blockchain

with the off-chain methods being executed on a Quorum

private sidechain [18]. Shown is the actual cost in

Ethereum’s GWei units. We thus provide the designer

with information on the cost trade-off between the

execution on the mainchain only and executing on the

mainchain with sidechain processing of selected patterns.

The figure shows that, in our case, the cost in is halved

when sidechain processing is used, which is proportional

to the cost of executing instructions that were moved to

off the main chain.

D. Transforming the Model into a Smart Contract with

Sidechain Processing

Once the modeling is completed, the designer can

transform the model into a smart contract and deploy it

on a blockchain. In addition, if the designer has selected

patterns to be processed off-chain, such patterns are

prepared for deployment and execution on a sidechain.

Events input as a part of modeling are transformed into

inputs that are then submitted to the model’s

implementation. Patterns that were marked by the

designer to be processed off-chain, however, require

special attention.

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 220

Figure 6. Executing application: Cost of main-chain only vs cost of main-chain with sidechains.

Figure 7. Smart contract compilation.

Due to the properties of independent subgraphs, once

there is a transition into the entry state of the independent

subgraph, computation is entirely within the subgraph

until there is a transition out of the subgraph. That means

that once the entry state is reached, any further

computation is performed off-chain until there is

transition out of the subgraph, at which point any further

method invocations will be executed on the mainchain.

This independent subgraph property is used to

automatically prepare an interface between on-chain and

off-chain computation.

Each smart contract method communicates with the

external application via input and output parameters.

However, a smart-contract method also reads and writes

to the blockchain. Thus, off-chain execution of smart

contract methods may also require reading from and

writing to the blockchain. For instance, each smart

contract method needs to know the state of execution and

record, on the blockchain, the state transition upon exit

from the method, i.e., each method needs to read and

write blockchain data. However, off-chain execution does

not have direct access to the blockchain. Consequently,

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 221

when transitioning to off-chain execution of a smart

contract method, in addition to the parameters passed to

the method, we also need to find, retrieve, and deliver to

the off-chain processing any blockchain data that the

methods read. Similarly, upon execution returning back

to the mainchain, any writes to the blockchain that was

performed by the off-chain execution of the pattern need

to be collected and handed-off, together with transition

outputs, for recording on the blockchain. Finally, upon

completion of a method executed off-chain, before the

blockchain is updated with the new state and data values

written by the off-chain method, the results of off-chain

execution must be reviewed and approved/attested by

each of the participants affected by the off-chain

computation. As a consequence of the above, we provide

interfaces for the following three phases:

Pattern start: Upon the first invocation of an off-chain

pattern method, our software tool prepares appropriate

data structures to support on-chain / off-chain interaction.

Most important is a cache for blockchain data accessed

by the pattern executed off-chain. Off-chain code uses a

local cache for reading and writing blockchain data – its

data structure needs to be prepared. On a cache miss, data

is retrieved from the main blockchain and then stored in

the off-chain cache using a getter method prepared just

for that purpose to retrieve the data from the main chain.

Pattern middle: After the first invocation, interaction

between the off-chain and on-chain communication is

concerned with provision and return of appropriate

parameters and data for methods executed off-chain. Also,

on a cache miss to the off-chain cache, data needs to be

retrieved from the main chain using a getter method in

order to service the cache fault.

Pattern end: Upon completion of the last method that

is executed off-chain, which occurs upon a transition

from the off-chain pattern, in addition to the returned

parameters, the computation results produced by the off-

chain computation that was saved in a cache are collected

and are provided to the attestation procedure.

Furthermore, once the results are approved by attestation,

they are recorded on the main chain.

Figure 8. Deployment of S6.

Fig. 7 is a snapshot showing compilation of the smart

contract, while Fig. 8 shows deployment of the pattern S6,

selected by the designer for off-chain computation on a

sidechain. As already discussed in a previous subsection,

Fig. 6 shows the results of a repeated execution of the

smart contract methods and averaging the cost per smart

contract method. Snapshots shown in the figures were

obtained from the execution of the pilot software.

V. CONCLUSION

We synthesize previous research results on modeling

applications using FSMs and apply them to the design of

trade applications with smart contracts being the target

infrastructure supporting solution(s). We use multi-modal

concurrent FSMs [12] to represent independent activities

of actors and thus avoid a state explosion that would

result otherwise. In addition, modeling with FSMs

enables reasoning about the application properties, such

as liveliness and deadlocks. Furthermore, once an

application is modeled, we enable independent activities

of an actor, or a subset of actors, to be packaged as a

separate smart contract that is deployed and executed on a

sidechain.

Our modeling approach and automatic transformation

of the model into a smart contract and its deployment on

the blockchain, combined with the deployment of the

selected methods on a sidechain, allows us to garner

several benefits:

1) Scalability is supported in that processing is off-

loaded to a sidechain.

2) When a sidechain provides for privacy, we

achieve privacy for processing of the selected

patterns on a sidechain. As we process off-chain

patterns representing actions of only one actor, or

a subset of actors, such activities are private.

3) Separation of concerns of logic correctness and

programming and deployment of smart contracts

is achieved. The designer need not be concerned at

the same time with the logic correctness and issues

arising due to writing a program in a language

available for the development of a smart contract

for a particular blockchain.

Although we use DE-FSM modeling to mitigate some

of the issues of FSM modeling, for wide applicability,

modeling of an application should start using models at a

higher-level of abstraction - standard models with which

modellers and business analysts are familiar already. We

advocate using an approach in which the application logic

is expressed at a high level of abstraction suitable for the

specific application domain and then transform the high-

level abstraction into modules that are deployable on

blockchain execution platforms.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Christian Gang Liu, Peter Bodorik, and Dawn Jutla

participated in research, analysis, and writing of this

paper.

REFERENCES

[1] J. Eberhardt and H. Jonathan, “Off-chaining models and
approaches to off-chain computations,” in Proc. the 2nd Workshop

on Scalable and Resilient Infrastructures for Distributed Ledgers,

2018, pp. 7-12.
[2] A. Mavridou and A. Laszka, “Tool demonstration: FSolidM for

designing secure Ethereum smart contracts,” in Principles of

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 222

Security and Trust, L. Bauer and R. Kusters, eds., Springer, 2018,

vol. 10804, pp. 270-277.

[3] HeartBank. Smart contract design patterns: A case study with real
solidity code. [Online]. Available:

https://medium.com/heartbankstudio/smart-contract-design-
patterns-8b7ca8b80dfb

[4] A. Mavridou and A. Laszka, “Designing secure Ethereum smart

contracts: A finite state machine based approach,” in Proc.
International Conference on Financial Cryptography and Data

Security, 2018.
[5] R. Philipp, G. Prause, and L. Gerlitz, “Blockchain and smart

contracts for entrepreneurial collaboration in maritime supply

chains,” Transport and Telecommunication, vol. 20, no. 4, pp.
365-378, 2019.

[6] B. Xiaomin, Z. Cheng, Z. Duan, and K. Hu, “Formal modeling
and verification of smart contracts,” in Proc. 7th International

Conference on Software and Computer Applications, 2018, pp.

322-326.
[7] S. Dolev and Z. Wang, “SodsMPC: FSM based anonymous and

private quantum-safe smart contracts,” in Proc. IEEE 19th
International Symposium on Network Computing and Applications,

2020, pp. 1-10.

[8] D. Suvorov and V. Ulyantsev, “Smart contract design meets state
machine synthesis: Case studies,” arXiv:1906.02906v1, 2019.

[9] O. Choudhury, N. Rudolph, I. Sylla, N. Fairoza, and A. Das,
“Auto generation of smart contracts from domain specific

ontologies and semantic rules,” in Proc. IEEE International

Conference on Internet of Things, 2018, pp. 963-970.
[10] E. Cariou, L. Brunschwig, O. L. Goaer, and F. Barbier, “A

software development process based on UML state machines,” in
Proc. International Conference on Advanced Aspects of Software

Engineering, 2020, pp. 1-8.

[11] A. Girault, B. Lee, and E. A. Lee, “Hierarchical finite state

machines with multiple concurrency models,” IEEE Transactions

on Computer-Aided Design, June 6, 1999, pp. 742-760.
[12] A. Asgaonkar and B. Krishnamachar, “Solving the buyer and

seller’s dilemma: A dual-deposit escrow smart contract,” in Proc.

IEEE Int. Conf. on Blockchain and Cryptocurrency, 2019, pp.
262-267.

[13] C. A. R. Hoare, “Communicating sequential processes,”
Communications of the ACM, vol. 21, no. 8, Aug. 1978.

[14] C. Cassandras, Discrete Event Systems, Modeling and

Performance Analysis, Irwin: Homewood IL, 1993.
[15] Wikipedia. (2021). Lamport timestamp. WikipediA: The Free

Encyclopedia. [Online]. Available:
https://en.wikipedia.org/wiki/Lamport_timestamp

[16] P. Bodorik, C. Liu, D. Jutla, “Using FSMs to find patterns for off-

chain computing: finding patterns for off-chain computing with
FSMs,” in Proc. the 3rd International Conference on Blockchain

Technology, Shanghai, China, March 26-28, 2021.

[17] C. Liu, P. Bodorik, and D. Jutla, “A tool for moving

blockchain computations off-chain,” in Proc. 3rd ACM

International Symposium on Blockchain and Secure Critical
Infrastructure, June 3-7, 2021.

[18] Quorum private blockchain. (2021). [Online]. Available:

https://consensys.net/quorum/

Copyright © 2022 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Christian Gang Liu obtained his Master of

Applied Computer Science from Concordia

University in Montreal. He has 15 years of
experience working in IT industry for Ericson,

IBM, and Samsung, where he worked on many
projects, including projects on blockchains. He

is currently a PhD student at Dalhousie

University, Halifax, Canada. His research
focus areas include various aspects of

blockchains, software engineering, and
application modeling.

Peter Bodorik is a Professor at the Faculty of

Computer Science, Dalhousie University,
Canada, where he has held various

administrative positions, such as Director of

Master of Electronic Commerce, Associate
Dean Academic, and Associate Dean Research

(Acting). His past research interests were
focused on managing data in distributed

systems, efficient mechanisms for transaction

management and querying, e-commerce

models and bench marking, and on models and

tools to support privacy on the client and server sides. Currently, he is
interested in blockchain technologies. With Dr. Jutla, they hold a

USPTO patent and applied for several others. He received and

participated in many grants and awards from NSERC, CFI, and industry.

Dawn Jutla received her Master and Ph.D.

degrees in Computer Science in the areas of

distributed shared memory and multi-view
access control, respectively, from the

Technical University of Nova Scotia. Dawn
then spent 20+ years doing multi-disciplinary

R&D and consulting in computer science and

business from the Sobey School of Business
where she currently holds the post of the

Scotiabank Professor of Technology

Entrepreneurship and Innovation. In 2009, she received the World

Technology Award for IT Software in the Individual Category for R&D

contributions to online privacy. She is founder and CEO of Peer Ledger,
a blockchain company.

Journal of Advances in Information Technology Vol. 13, No. 3, June 2022

© 2022 J. Adv. Inf. Technol. 223

https://consensys.net/quorum/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

