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Abstract—The power and correctness of smart contracts 

have been the focus of much research.  We propose a new 

approach for developing smart contracts that uses multi-

modal modeling to represent the application logic for the 

trade domain. We use discrete events modeling for 

concurrency combined with FSM modeling to use 

concurrent FSMs to not only simplify the design process for 

the modeler, but also to scale the application running on a 

blockchain and facilitate identifying parts of a smart 

program that are suitable for off-chain processing on a 

sidechain that also provides privacy. In addition, we achieve 

separation of concerns between (a) application logic and (b) 

its transformation into a smart contract and deployment on 

a blockchain with processing of selected patterns on private 

sidechains. We transform the model into a smart contract 

automatically, such that patterns, selected by the modeler, 

are deployed on a sidechain. The interface for the mainchain 

to sidechain interaction is also prepared and deployed 

automatically.   

 

Index Terms—blockchain, smart contract, off-chain 

computation, FSM modeling, hierarchical state machine, 

discrete events modeling, multi-modal modeling 

 

I. INTRODUCTION 

Relatively recently, blockchains have received much 

attention from researchers and practitioners addressing 

various issues, such as scalability, privacy, and 

development of smart contracts that are correct.  

Eberhardt and Tai [1] categorized methods, for reducing 

the blockchain size, based on what is moved off-chain 

into: (i) off-chain storage, (ii) off-chain computation, and 

(iii) a hybrid approach, in which both storage and 

computation are off-chained.  

Privacy in blockchains is another issue that smart 

contracts need to address, especially if a smart contract 

deals with coordinating activities amongst users of 

different organizations, or departments of the same 

organization, as some of the actions that need to be 

performed by some of the actors may have to be 

confidential. Public blockchains, such as in Bitcoin or 

Ethereum do not provide privacy at all as they rely on the 

anonymity of account owners. Anyone can get an account 
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while the system does not ask for any personal 

information to identify the owner. Private blockchains, 

such as Hyperledger, provide for identity of users and, 

furthermore, provide for privacy using special 

mechanisms, such as channels, for situations when 

selected groups of users need to share information that 

needs to be kept secret from the other users. Such sharing, 

however, requires initial setup and use of channels that 

involve complexity and hence is a potential source of 

errors introduced by developers. 

The use of Finite State Machines (FSMs), or their 

variations, in software development appears in many 

domains and applications, including blockchain 

technology with its executable smart contracts. Example 

patterns targeted for smart contracts presented using FSM 

models are described in [2], including the patterns fail 

early and fail loud, state machine, upgradable registry, 

transition counter, and other patterns.  Further examples 

of patterns include the challenge-response and chess-end-

game patterns in [3] and a blind-bidding pattern in [2] 

and patterns used for mitigating various security issues, 

such as a locking pattern to prevent re-entrance and 

access-control pattern in programming of smart contracts 

[2], [4]. Additional examples of patterns include the 

challenge-response and chess-end-game patterns in [3] 

and a blind-bidding pattern in [2].   

Philipp, Prause, and Gerlitz [5] describe the usefulness 

of smart contracts running on blockchains in for maritime 

supply chains. They describe how blockchain and smart 

contracts can facilitate collaboration across organizations 

and facilitate interoperability of their underlying business 

processes.  

Development of a smart contract in a native language, 

such as Solidity or Go, is not easy as it is not only a 

general-purpose programming language, but it also has 

constraints arising due to the underlying blockchain 

infrastructure and thus complicating the design. Thus, it 

is not surprising that research focused also on verification 

of smart contract correctness [6] and on development of 

smart contracts in some other language at a higher-level 

of abstraction than that of a general-purpose language. 

For instance, many approaches utilize FSM modeling as a 

starting point. 
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Xiaomin et al. [6] describe how formal verification 

methods are applied on smart contracts modeled as FSM. 

They start with an FSM description of several simple 

cases and apply on each formal model checking to ensure 

that the smart contract is correct.  

Dolev and Wang [7] describe a complex scheme for 

hiding information using various transformations to 

produce private smart contracts that are quantum-safe. A 

state transition of the FSM is represented by a blind 

polynomial with shared coefficients as binary secret 

shares. They also use mixing multiplication between a 

preprocessed permutation matrix and an input vector in 

the form of secret sharing and additional operations. 

Their method is complex and is positioned as a defence 

against attacks utilizing quantum computing. 

Additionally, how supported HSMs and concurrent FSMs 

would be supported is not discussed.   

Suvorov and Ulyantsev [8] explored the use of FSM 

synthesis by specification. Specification is represented as 

a combination of temporal formulae and a set of test 

scenarios. The authors first represent a smart contract 

with a set of formulas in linear temporal logic (LTL) and 

use this specification together with test scenarios to 

synthesize an FSM model for that contract. However, the 

approach is limited in practice as modellers of business 

processes and software developers are not likely to be 

familiar with LTL.  

Mavridou and Laszka [2], [4] address the security 

issues of smart contracts. They start with using FSM 

modeling and then transforming the FSM model into 

methods of smart contracts while also addressing the 

security issues. However, their approach does not support 

modeling with HSMs and concurrent FSMs, which limits 

their applicability.  

Choudhury et al. [9] developed a framework for 

incorporating constraints, which are encoded in a 

knowledge representation, into a smart contract. They 

design domain specific ontologies to represent the system 

and application constraints. A smart contract is 

represented as an abstract syntax tree (AST) into which 

rules, derived from the ontology, are inserted.   

Cariou et al. [10] advocate the use of UML state charts 

in software development followed by their translation 

into Java executable code to obtain good separation of 

concerns between the processing logic specification, as 

represented by statecharts, and its translation into Java 

code. Our approach is similar, but instead of Java 

platform we target blockchain infrastructure for 

deployment.  

We note that approaches taken in development of 

smart contracts have concentrated on some formal 

representation to facilitate modeling and eventual 

transformation into the methods of a smart contract. Most 

approaches use FSM modeling as a starting point. LTLs 

and abstract syntax trees have also been used as starting 

point. However, FSMs, LTLs and abstract syntax trees 

are cumbersome to use by business modellers. 

Furthermore, they may result in a state explosion if 

concurrent activities arise – it is for that reason that we 

use DE-FSM multi-modal modeling.  

A. Objectives 

We are interested in efficient support of the design and 

deployment of smart contracts in the context of trade, in 

which independent actors collaborate on long-term 

activities only through messaging. The trade application 

is to be created as smart contracts to be deployed and 

executed on a blockchain. In this context, we explore the 

following issues: 

• Explore how a trade application may be modeled 

using Hierarchical State Machines (HSM) 1  and 

then be transformed into a smart contract.  

• Investigate if activities, which are to be performed 

by one actor, but are independent of the other 

actors, can be supported and if they can be 

supported in a private manner. 

• Investigate if an FSM model, representing 

collaboration of actors, is deployable 

automatically on a blockchain.  

• Explore if our approach may be used to support 

the separation of concerns between the 

responsibilities for the application logic design 

and its deployment. 

B. Our Approach 

In this paper, we present a new approach that 

developers and architects may use when developing a 

smart contract for an application in the context of trade.  

As in [2], [4], we also represent the application’s logic 

with FSM modeling, but we do it in the context of multi-

modal modeling [11] to enable the modeller to use 

concurrent FSMs for modeling of activities of a single 

actor, or a subset of actors, that is independent of 

activities of the other actors. Concurrent FSMs are 

created using multi-modal modeling in which Discrete 

Events (DE) modeling is used for concurrency and is 

combined with FSMs to model the logic of processing 

DE events.  

Once the model is developed, we use an algorithm to 

examine the FSM state graph in order to find patterns that 

our approach represents as subgraphs of the state graph, 

subgraphs that we refer to as independent (or simple) 

subgraphs. Independent subgraphs represent activities of 

only a single actor (or a subset of actors), activities that 

are independent of activities of the other actors. We then 

provide the designer with information, on the overhead 

cost vs benefits due to off-chain processing, to support 

her decision on which independent-subgraph patterns 

should be processed off-chain. Our software then 

transforms the model into a smart contract that is 

deployed on a blockchain, while the selected patterns are 

deployed and executed on a sidechain with the software 

bridge, which facilitates the interaction between the 

mainchain and sidechain, being provided automatically. 

C. Outline 

In Section II, we review background. In Section III, we 

describe modeling of trade applications. The section 

 
1 We use the term FSM modeling to refer to both FSM modeling and 

HSM modeling, which occurs when an FSM has a hierarchical state. An 

HSM is defined formally in Section II. 
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describes how the modeler is provided with the ability to 

model activities of an actor that are independent from 

activities of other actors. Section IV describes how the 

model is analyzed to find patterns of activities that 

depend on a single actor, or a subset of actors, that are 

suitable for processing off-chain. It also describes how 

the model is transformed into a smart contract with 

sidechain processing of patterns selected by the designer. 

The last section provides a summary and concluding 

remarks.   

II. BACKGROUND 

We first review briefly FSMs modeling and its 

extension, Hierarchical State Machine (HSM) modeling, 

in which a state may represent an FSM. We then review 

transformation of FSM models into a smart contract.  

A. FSMs and HSMs 

FSMs or their variants have played frequent roles in 

the design and implementation of software. We chose 

FSM modeling to represent application’s logic, as it is at 

a high-level of abstraction and removes the many details 

that a program needs to deal with when the smart contract 

is written using its native language, such as Ethereum’s 

Solidity.  

As smart contracts execution on blockchains includes 

state data/variables that are stored on the blockchain, they 

are suitable for modeling of smart contracts using FSMs.  

An FSM F can be described as F = (S, s0, T, I, O), where 

S is a set of states, s0 is the initial state, T is the set of 

transitions, I is a set of inputs to transitions, and O is a set 

of outputs generated by transitions.  

In the late 80’s, FSMs were extended with the concept 

of hierarchy, leading to HSMs that can contain states that 

are themselves other FSMs. Any HSM has a 

corresponding equivalent FSM that can be achieved by 

“flattening” the hierarchy in HSM: Each state, s ∊ S, that 

represents an HSM, is replaced by its mapping. HSMs 

recognize the same language as their corresponding 

flattened FSMs. This is particularly useful for repeated 

patterns that represent a particular activity that may need 

to be repeated in many states of an FSM. HSM improves 

representation of models by removing repetitive patterns 

and facilitates representation of multiple concurrent 

FSMs. HSMs increase succinctness in representing FSMs, 

but they do not increase their expressiveness. 

States and their transitions have been traditionally 

described using a state transition graph, or a state graph 

for short, in which nodes are the states in S and directed 

edges represent transitions.  We note that the state graph 

is connected and that apart from the start and final nodes, 

each node has at least one incoming and at least one 

outgoing edge (otherwise the FSM is not considered to be 

well-formed).  

B. Transforming HSM Models to Smart Contract 

Methods 

Mavridou and Laszka [2], [4] address the security 

issues of smart contracts by first modeling the smart 

contract requirements using an FSM and then 

transforming the FSM model into methods of smart 

contracts, following which they augment each method 

with software to address the known security issues with 

code that cannot be modified by software developers.   

Our approach is similar to that of [2], [4] in that we 

also use FSM modeling to represent the smart contract 

requirements first and then we transform the FSM model 

into methods of a smart contract. However, in FSM 

modeling, we differ as we: (1) Provide the designer with 

multi-level HSMs to support modeling of concurrent 

FSMs to avoid state explosions; (2) transform the HSM 

model into methods of a smart contract; and (3) provide 

the designer with the ability to automatically compile and 

deploy the smart contract on the main blockchain with the 

selected patterns being deployed on a sidechain(s).  

III. MULTI-MODAL FSM MODELING FOR TRADE 

APPLICATIONS 

FSM modeling has been used frequently for many 

applications of different types with several examples 

listed already in previous sections. Here we describe how 

multi-modal HSMs are used to model trade applications 

using concurrent FSM models to avoid state explosion 

and pave way for transformation into a smart contract 

deployed on a blockchain.  We first describe the context 

in terms of trade-application properties. We then describe 

how FSMs may be used to represent activities of an actor 

that are independent of other actors’ activities using 

concurrent FSMs. In the next section, we show how to 

transform an HSM model into a set of methods of a smart 

contract that is deployed on a blockchain.   

A. Trade Applications and Example Use Case 

Trade is a broad area that includes applications dealing 

with buying and selling activities amongst business 

partners, activities that include, ordering, price 

negotiation, insurance, customs document, shipping, etc. 

We focus on collaborative activities of business partners, 

activities that need to take place amongst many actors 

that communicate and interact only through messaging. 

As an illustrative example, we are going to use trade of a 

buyer and a seller with an escrow deposit [12] that we 

shall describe later.  

B. Multi-modal Modeling with Discrete Events and 

HSM Modeling 

First, we briefly review how nested HSM can be 

combined with concurrency models to use multi-modal 

modeling. We then describe how we apply multi-modal 

modeling to trade applications. 

1) Nested multi-modal HSMs 

Using HSMs, FSMs can be combined hierarchically 

because a single state, at one level in a lower hierarchy, 

can be considered to be in several states concurrently as 

represented by an FSM(s) in a lower level of the 

hierarchy. FSMs may also be combined leading to 

concurrent FSMs. FSM1, with states S1 and S2, can be 

composed with an FSM2 having states S3 and S4, 

resulting in an FSM with states S1S3, S1S4, S2S3, and S2S4 

that are combinations of states of the two FSMs. Girault 
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et al. [11] describe how HSM modeling may be 

combined with concurrency semantics of different 

concurrency models, such as communicating sequential 

processes [13] and Discrete Events (DEs) [14]. The paper 

[11] describes how an HSM model can represent a 

module of a system under a concurrency model that is 

applicable only if the system is in that state. A subsystem 

in some concurrency model may be nested within a 

hierarchical state of a higher-level FSM and thus leading 

to a multi-modal modeling, in which different 

(hierarchical) states may be combined with different 

concurrency models that are best suitable for modelling 

activities of an FSM represented by an HSM for that 

particular state.   

2) Discrete events model for concurrency combined 

with FSM for event processing 

Our approach targets trade applications in which 

organizations participate by exchange of messages, and 

thus we concentrate on modeling concurrency with DE 

modeling, in which sending a message is represented by 

two distinct events of sending and receiving a message 

with the latter occurring after the former. Furthermore, as 

previously mentioned, we exploit the concept of multi-

modal modeling to allow the designer to model 

concurrent, but independent activities, by concurrent 

FSMs at the lower level of hierarchy, in order to avoid 

the state explosion that arises in such situations.  

Our model uses DE modeling for representation of 

events that may occur concurrently. We model time using 

a logical clock, such as Lamport’s clock [15]. Actors 

communicate amongst each other and with the system 

using messages (share nothing architecture), wherein the 

acts of sending and receiving a message are two distinct 

events, such that the event of sending a message must 

occur before the event of receiving the same message. 

Using a system-wide logical clock, each event is assigned 

a timestamp of the current time and the event is stored in 

a queue of events, Q0, ordered by the events’ timestamps 

with the oldest message being first. Each message also 

includes the identities of both the sender and the receiver, 

together with the message type details.  

 Events are retrieved from the queue and each one is 

processed using the FSM model F0. The message content 

is first parsed, and after its examination, it is used to form 

inputs that are passed to the FSM for reaction. The HSM 

reacts to inputs and, depending on the current state and 

input, output is produced, a state transition is executed, 

and output is passed to the DE model. Activities to be 

performed in a state of an HMS depend on the application, 

but may include actions, such as taking a document with 

its hashcode and an actor’s signature and creating an 

object that contains attributes that include the document, 

its hash-code, and the actor’s signature signifying that the 

actor signed the document. 

3) HSM modeling for collaboration and concurrent 

FSMs 

Events are removed from the head of the queue, Q0, 

and processed one at a time. For each event, its 

parameters are parsed and analyzed and are used to 

produce input that is applied to the FSM F0 for processing 

(as shown in Fig. 1(a) which shows a partial FSM F0 with 

its DE events queue, Q0). Collaboration of participating 

actors is modeled using the FSM F0 in a straightforward 

manner: Input is processed, state transition is determined 

and made, and output is produced. The transition’s output 

is passed to the DE model and thus finishing the HSM F0 

reaction. The output produced is processed by DE and the 

above steps are repeated to process the next event 

removed from the event queue Q0.  

 
(a) Partial FSM F0 and queue Q0 

 

 
(b) An example of a state explosion 

Figure 1. Partial FSM F0 model and its DE queue Q0 and of a state 
explosion example. 

However, when an actor needs to perform certain 

activities that are independent from actions of other 

actors, we allow the FSM modeler to represent the 

independent activities without worrying about possible 

inputs from other actors by using concurrent HSMs and 

thus avoiding a state explosion that would occur 

otherwise. We illustrate first with an example and then 

describe the modeling process.  

a) State explosion when representing activities 

independent of other actors 

Consider a case of two actors, A and B, who 

collaborate on preparing a document for which actors 

require the following approvals: Actor A needs to obtain 

approvals from her departments A1 and A2, in any order. 

Actor B needs approvals from her/his departments, B1 

and B2, also in any order. As inputs are produced by both 

actors, however, to represent the approvals by 

departments leads to a small illustrative state explosion as 

shown in Fig. 1. Approvals of the actor A’s departments 

A1 and A2 are represented by inputs a1 and a2, while 

approvals of the actor B’s departments, B1 and B2, are 

represented by inputs b1 and b2, respectively. In the state 

diagram of Fig. 1(b), each of the states, A1, A2, B1, and B2, 
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represents receiving an approval from the department 

with the same respective name. States representing 

approvals by the actor’s A departments have self-

transitions for the case when input causing the FSM firing 

(reaction) is produced by the actor B as it has no effect on 

approvals by the actor A. Similar statements apply to 

states representing approvals by the actor B’s 

departments. 

b) Using concurrent HSMs to model independent 

actor activities 

A multi-modal FSMs may be used to avoid the state 

explosion by using one HSM at the higher level of 

hierarchy to keep track of the current state of processing 

of two concurrent HSMs at the lower level [14], each one 

representing the approval process by an actor’s 

department. Fig. 2(a) shows the elaboration of the state 

H1 that is a combination of the DE concurrency model, 

with an ordered queue Q1 of timestamped events, and an 

FSM1 used to model an individual event retrieved from 

the queue Q1. FSM F1 itself contains further hierarchical 

states HA and HB, with their respective FSMs FA and 

FSMB. If input x is from the actor A, i.e., if x ∈ {a1, a2}, 

then it is processed by FMS FA, while if the input is from 

the actor B, i.e., x ∈ {b1, b2}, then it is processed by FSM 

FB. FSM FA is shown in Fig. 2(b) and is easy to 

understand. Once both approvals, signified by inputs a1 

and a2, are received in any order, an output signal d is 

produced that is input to FMS F1 to inform it that 

approvals by the actor A’s departments are completed.  

FSMB is similar for monitoring completion of approvals 

by departments of the actor B.   

Semantics for a hierarchical FSM is straightforward if 

there is no circular dependency between outputs of the 

child FSM and input of the parent FSM [14]. There is a 

master FSM that applies to all states, including 

hierarchical ones. However, if a state is a hierarchical 

state with an FSM, then the inner FSM is referred to as a 

child FSM. The child FSM reacts first and any output it 

produces may become a part of the output of the main 

FSM.  After the child FSM produces output, only then 

does the main FSM react and produce its output. If a 

child FSM is also hierarchical, then the same semantics 

apply recursively. Its child FSM reacts first, followed by 

the reaction of the parent FSM, while the output produced 

by its child FSM becomes a part of the output of its 

parent’s reaction.  

Output of internal FSMs may generate events that 

require timestamps. However, in nested FSM modeling, 

circular dependencies, in which output from one child’s 

FSM affects input to another child FSM of the same 

parent, may exist and they may lead to a situation in 

which the parent FSM does not complete its transition. 

The resolution is to model each of the child models by a 

separate DE model, each with its own clock for 

timestamping events they produce. The child’s clock 

must be such that it is guaranteed that all events of the 

child’s event queue will be processed (i.e., the queue will 

become empty) before the next event of the parent model 

may arise. 

 

 
2(a) DE model Q1 and FSM1 

 

 
2(b) DE model with queue QA and FSM FA 

Figure 2. DE model with queue Q1 and its FSM F1 and DE model with 
queue QA and FSM FA. 

However, as we do not have any circular dependencies, 

the modeling block of a child FSM is assumed to be a 

zero-delay block [14] and hence we may queue all events 

in one queue, Q0, of the parent. 

IV. FROM DE-HSM MODELING TO SMART CONTRACT 

WITH SIDECHAIN(S) 

In this section we describe how a DE model combined 

with an HSM model is transformed into a smart contract 

with sidechain processing of patterns that represent 

independent activities of an actor, that is activities of an 

actor that are not affected by any input from other actors. 

We first describe briefly how the user specifies the HSM 

model. Following this, we describe how activities are 

identified as candidates for processing off-chain. We 

describe how we provide the designer with the control to: 

• Specify the events that can arise through actions of 

individual actors. 

• Identify patterns that are suitable for processing 

off-chain. 

• Assist the user in the decision making whether a 

pattern should be processed off-chain. 

• Transform the model into a smart contract. 

• Deploy the smart contract with sidechain 

processing of patterns selected by the designer.  
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Figure 3. FSM graph for buyer-seller contract with escrow deposit. 

As an illustrative example, we are going to use trade of 

a buyer and a seller with an escrow deposit [12] as is 

shown in Fig. 3. After the product is posted for sale, the 

buyer and seller negotiate price. Once an agreement is 

reached on the price, a contract is prepared and signed 

that stipulates escrow deposit and the matter of delivery. 

Once the buyer makes a deposit to an escrow account, 

then shipment, which includes crossing borders and 

hence involving customs, may occur that involves 

delivery to a port, going through customs, storing on a 

ship, then processed at the destination customs, unload 

from ship to port, buyer pickup, execution of payment 

terms, and finally return of the escrow deposit. Fig. 3 

shows the state graph of the FSM model. It also shows 

independent subgraphs that were identified, subgraphs S1 

to S6 as will be described in the next section.  

We review briefly how we perform the above steps 

while providing references to further details. It should be 

noted that we developed a partial software system as a 

pilot to explore the feasibility of implementation. Our 

implementation can be found and tested at 

https:/quinpool.com:9000. Please, keep in mind that the 

system is implemented on a regular laptop and hence the 

response time may be slow. The screenshots below have 

been obtained from running the pilot software. 

A. Modeling Using DE for Concurrency and FSMs for 

Event Modeling 

We provide the designer with a UI for specifying 

events for each of the actors. For each event we ask the 

designer for parameters of the event and which of the 

parameters are used to produce inputs and outputs. 

Whenever the event occurs as a result of an actor activity, 

the event is timestamped with the current time and the 

event, together with its parameters, is queued in the Q0 

queue of the DE model. Once processing starts, events 

are removed, one at a time, from the queue Q0 and are 

processed. The events’ parameters are used to form input 

that is submitted for reaction to HSM F0. 

It should be noted that in our pilot implementation, we 

simplify the FSM specification in that the designer is 

asked to input the event’s parameters directly in terms of 

the input to the FSM F0. When specifying the events, the 

user is offered to identify events that are a part of 

processing that depends on one actor only, or a subset of 

actors, in which case we model the independent activities 

using the multi-modal model, consisting of DE modeling 

for concurrency and FSM modeling for processing of an 

event as was described in the previous section. Fig. 4 

shows a snapshot of the pilot software when specifying 

information leading to F0 definition.  
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B. Identifying Patterns Suitable for Off-chain 

Processing  

Although we allow the designer to identify patterns 

that depend on activities of an actor, we do not rely on 

them.  We developed an algorithm, described in [16], that 

takes an FSM definition as input and finds each pattern 

that depends only on activities of one actor. Such patterns 

are represented as subsets of an FSM state graph, subsets 

that have certain properties that are used to identify them. 

Such subsets are referred to as independent subgraphs. 

Furthermore, we also show that such patterns are suitable 

for processing off-chain because of the subgraph 

independence property: Once processing of a pattern 

starts off-chain, its processing continues off-chain until 

there is an exit from the pattern by the final transition 

from the pattern’s exit state. We use the algorithm on the 

FSM F0 specification to find such patterns represented as 

independent subgraphs. We show the found independent 

patterns to the designer for her decision on whether a 

pattern should be deployed for processing on a sidechain 

as per the next subsection. Fig. 5 shows a snapshot after 

the algorithm is used to find such patterns.  

 
Figure 4. FSM F0 specification. 

 
Figure 5. Found patterns as independent subgraphs. 
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C. Deciding to Process a Pattern Off-chain 

As discussed in the introduction already, all off-chain 

storage approaches store an object off-chain but also store 

the object’s hash code on the blockchain so that it can be 

used to ascertain the object’s immutability any time that 

object is retrieved. We also assume that all storage of 

objects off-chain uses this mechanism. Processing off-

chain, however, has not received as much attention. There 

are three issues that need to be addressed for off-chain 

processing: Availability; Immutability; and Trust. We 

address each of the three issues below. Additionally, off-

chain processing incurs overhead cost for interaction 

between on and off-chain processing. Consequently, off-

chain processing should only be used when benefits 

outweigh the overhead cost. We also address this issue. 

1) Availability 

As a system availability is determined by the 

availability of its components, if computation is 

performed off-chain, its availability will affect the overall 

system availability. Hence, off-chain computation also 

needs to support availability. Fortunately, providing a 

desired availability via replication is a well-established 

and researched problem with good solutions.  

2) Immutability 

As already described, we use the standard approach 

utilized for off-chain storage: The object is stored off-

chain while the object’s hashcode is stored on the 

mainchain and is used to ensure that the object retrieved 

from off-chain storage has not been amended. 

3) Trust 

This is the most difficult issue. Trust is gained by 

blockchains and their smart contracts because all parties 

can examine the smart contract code and changes to the 

state variables (in permissioned blockchains, as long as 

access rights are available). As parts of the smart contract 

are moved off-chain, that may decrease trust on the part 

of the blockchain participants as questions may be raised 

regarding the off-chain processing and its implication on 

trust. The main approach to mitigating this risk is to use 

attestation of results produced by off-chain computation 

[17]: After the off-chain processing is completed, the 

results of off-chain processing are provided to actors for 

attestation that they are correct. The actors confirm that 

they attest the results by their digital signatures. For trade 

use cases, attestation, in most cases, is attestation that all 

actors agree on the content of an object. Our software 

adopts the same approach: At the end of the off-chain 

computation, affected partners are called and are asked to 

sign the results of the off-chain computation as correct. 

As such attestation is application dependent, we only 

create a blueprint method – we prepare interface and its 

invocation, but internals of the method are left to the 

developer to complete. Affected participants are those 

that are participating in the parent modeling block. If the 

parent block is the system, then all actors of the 

application need to participate in the attestation. 

4) Overhead costs of processing off-chain versus 

benefits 

When a part of a smart contract, a pattern, is executed 

off-chain, overhead cost is introduced due to the 

communication (interaction) between on and off-chain 

processing – a pattern should be processed off-chain only 

if benefits outweigh overhead costs. Our approach is 

relatively simple. As we shall describe in the next section, 

when a smart contract interacts with sidechain processing, 

costs arise due to three types of processing: one due to the 

smart contract methods deployed and executed on the 

main chain, one on the sidechain, and one due to the 

interaction between the main blockchain and the 

sidechain. Also note that we automatically produce the 

smart contract for the main chain, sidechain, and 

interaction. Consequently, when the model is transformed 

into a smart contract, we automatically prepare two 

versions of the system:  

1) In one version, selected patterns chosen by the 

designer are deployed on a sidechain. 

2) In the second version, the smart contract is 

executed only and fully on the main chain.  
Therefore, we compare the cost of executing the 

contract on (i) the mainchain only vs the cost of 

executing it on (ii) the mainchain with selected patterns 

executed on a sidechain. We derive the costs by 

repeatedly executing each smart contract method once 

and then showing the average. We also allow the designer 

to input the frequency of execution of each smart contract 

method and use it in calculating the average (as different 

smart contract methods are likely to be executed with 

different expected frequency). 

Fig. 6 shows a snapshot of our software showing a 

repeated execution of the smart contract methods while 

showing the average cost of execution of a smart contract 

method, over all smart contract methods, when the main 

contract is executed on the Ethereum public blockchain 

with the off-chain methods being executed on a Quorum 

private sidechain [18]. Shown is the actual cost in 

Ethereum’s GWei units. We thus provide the designer 

with information on the cost trade-off between the 

execution on the mainchain only and executing on the 

mainchain with sidechain processing of selected patterns. 

The figure shows that, in our case, the cost in is halved 

when sidechain processing is used, which is proportional 

to the cost of executing instructions that were moved to 

off the main chain.  

D. Transforming the Model into a Smart Contract with 

Sidechain Processing 

Once the modeling is completed, the designer can 

transform the model into a smart contract and deploy it 

on a blockchain. In addition, if the designer has selected 

patterns to be processed off-chain, such patterns are 

prepared for deployment and execution on a sidechain. 

Events input as a part of modeling are transformed into 

inputs that are then submitted to the model’s 

implementation. Patterns that were marked by the 

designer to be processed off-chain, however, require 

special attention. 
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Figure 6. Executing application: Cost of main-chain only vs cost of main-chain with sidechains. 

 

Figure 7. Smart contract compilation. 

Due to the properties of independent subgraphs, once 

there is a transition into the entry state of the independent 

subgraph, computation is entirely within the subgraph 

until there is a transition out of the subgraph. That means 

that once the entry state is reached, any further 

computation is performed off-chain until there is 

transition out of the subgraph, at which point any further 

method invocations will be executed on the mainchain. 

This independent subgraph property is used to 

automatically prepare an interface between on-chain and 

off-chain computation. 

Each smart contract method communicates with the 

external application via input and output parameters. 

However, a smart-contract method also reads and writes 

to the blockchain. Thus, off-chain execution of smart 

contract methods may also require reading from and 

writing to the blockchain. For instance, each smart 

contract method needs to know the state of execution and 

record, on the blockchain, the state transition upon exit 

from the method, i.e., each method needs to read and 

write blockchain data. However, off-chain execution does 

not have direct access to the blockchain. Consequently, 
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when transitioning to off-chain execution of a smart 

contract method, in addition to the parameters passed to 

the method, we also need to find, retrieve, and deliver to 

the off-chain processing any blockchain data that the 

methods read. Similarly, upon execution returning back 

to the mainchain, any writes to the blockchain that was 

performed by the off-chain execution of the pattern need 

to be collected and handed-off, together with transition 

outputs, for recording on the blockchain. Finally, upon 

completion of a method executed off-chain, before the 

blockchain is updated with the new state and data values 

written by the off-chain method, the results of off-chain 

execution must be reviewed and approved/attested by 

each of the participants affected by the off-chain 

computation. As a consequence of the above, we provide 

interfaces for the following three phases: 

Pattern start: Upon the first invocation of an off-chain 

pattern method, our software tool prepares appropriate 

data structures to support on-chain / off-chain interaction. 

Most important is a cache for blockchain data accessed 

by the pattern executed off-chain. Off-chain code uses a 

local cache for reading and writing blockchain data – its 

data structure needs to be prepared. On a cache miss, data 

is retrieved from the main blockchain and then stored in 

the off-chain cache using a getter method prepared just 

for that purpose to retrieve the data from the main chain.  

Pattern middle: After the first invocation, interaction 

between the off-chain and on-chain communication is 

concerned with provision and return of appropriate 

parameters and data for methods executed off-chain. Also, 

on a cache miss to the off-chain cache, data needs to be 

retrieved from the main chain using a getter method in 

order to service the cache fault.  

Pattern end: Upon completion of the last method that 

is executed off-chain, which occurs upon a transition 

from the off-chain pattern, in addition to the returned 

parameters, the computation results produced by the off-

chain computation that was saved in a cache are collected 

and are provided to the attestation procedure. 

Furthermore, once the results are approved by attestation, 

they are recorded on the main chain.  

 

Figure 8. Deployment of S6. 

Fig. 7 is a snapshot showing compilation of the smart 

contract, while Fig. 8 shows deployment of the pattern S6, 

selected by the designer for off-chain computation on a 

sidechain. As already discussed in a previous subsection, 

Fig. 6 shows the results of a repeated execution of the 

smart contract methods and averaging the cost per smart 

contract method. Snapshots shown in the figures were 

obtained from the execution of the pilot software. 

V. CONCLUSION 

We synthesize previous research results on modeling 

applications using FSMs and apply them to the design of 

trade applications with smart contracts being the target 

infrastructure supporting solution(s). We use multi-modal 

concurrent FSMs [12] to represent independent activities 

of actors and thus avoid a state explosion that would 

result otherwise. In addition, modeling with FSMs 

enables reasoning about the application properties, such 

as liveliness and deadlocks. Furthermore, once an 

application is modeled, we enable independent activities 

of an actor, or a subset of actors, to be packaged as a 

separate smart contract that is deployed and executed on a 

sidechain.  

Our modeling approach and automatic transformation 

of the model into a smart contract and its deployment on 

the blockchain, combined with the deployment of the 

selected methods on a sidechain, allows us to garner 

several benefits: 

1) Scalability is supported in that processing is off-

loaded to a sidechain. 

2) When a sidechain provides for privacy, we 

achieve privacy for processing of the selected 

patterns on a sidechain. As we process off-chain 

patterns representing actions of only one actor, or 

a subset of actors, such activities are private.  

3) Separation of concerns of logic correctness and 

programming and deployment of smart contracts 

is achieved. The designer need not be concerned at 

the same time with the logic correctness and issues 

arising due to writing a program in a language 

available for the development of a smart contract 

for a particular blockchain.  

Although we use DE-FSM modeling to mitigate some 

of the issues of FSM modeling, for wide applicability, 

modeling of an application should start using models at a 

higher-level of abstraction - standard models with which 

modellers and business analysts are familiar already. We 

advocate using an approach in which the application logic 

is expressed at a high level of abstraction suitable for the 

specific application domain and then transform the high-

level abstraction into modules that are deployable on 

blockchain execution platforms.  
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