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Abstract—In the modern world, facial identification is an 

extremely important task, in which many applications rely 

on high performing algorithms to detect faces efficiently. 

Whilst commonly used classical methods of SVM and k-NN 

may perform to a good standard, they are often highly 

complex and take substantial computing power to run 

effectively. With the rise of quantum computing boasting 

large speedups without sacrificing large amounts of much 

needed performance, we aim to explore the benefits that 

quantum machine learning techniques can bring when 

specifically targeted towards facial identification 

applications. In the following work, we explore a quantum 

scheme which uses fidelity estimations of feature vectors in 

order to determine the classification result. Here, we are 

able to achieve exponential speedups by utilizing the 

principles of quantum computing without sacrificing large 

proportions of performance in terms of classification 

accuracy. We also propose limitations of the work and 

where some future efforts should be placed in order to 

produce robust quantum algorithms that can perform to the 

same standard as classical methods whilst utilizing the 

speedup performance gains. 

 

Index Terms—facial identification, quantum computing, 

quantum machine learning 

 

I. INTRODUCTION 

In recent years, quantum computing has become a 

growing area of research with the promise of many rich, 

performance enhancing benefits from natural quantum 

behaviours and principles. Within this, one of the fastest 

growing areas is quantum machine learning. With the rise 

of quantum machine learning being propelled towards 

benefits of performance speedups, quantum algorithms 

have already shown speedups of exponential factors over 

many classical algorithms currently used [1]. 

Facial identification is a highly critical task within 

machine learning that has many real-world applications. 

For humans, facial identification from images in a simple 

task, but from a computer vision perspective, the task is 

highly complex. Nevertheless, by applying machine 

learning techniques, facial identification has been able to 

be applied to a wide variety of domains that assist us in 

day to day living. 

Examples of these applications are plentiful across the 

modern world, through biometric analysis, healthcare, 

security and marketing. Because of the high variety in 

applications, it is critical that we are able to innovate our 

approaches to tasks such as facial identification in order 

to overcome drawbacks and challenges we are currently 

faced with. 

Currently, much focus within the NISQ era of quantum 

machine learning has been focused towards classification 

using variational circuits [2]-[8] as a step towards 

creating robust quantum neural networks [9], [10] and 

advanced deep-learning algorithms [11], [12]. Efforts 

have also been conducted towards quantum k-NN 

algorithms that can conduct efficient searches of data 

stored in superpositions using subroutines [13], [14]. 

However, there have not been many works that showcase 

quantum algorithms applied in practice to real-world 

tasks [15]-[17]. Many algorithms proposed have relied on 

synthetic datasets [18], [19] or are purely theoretical [20]-

[24] and we will not be able to validate these systems 

until improvements have been made to current quantum 

hardware. 

In this paper, we aim to explore how we can use 

quantum machine learning techniques to build classifiers 

based on real-world applications, specifically towards 

facial identification. Here, we look to build a classifier 

using foundational quantum subroutines that estimate 

fidelities between two quantum states. This gives an 

initial insight into how quantum algorithms may perform 

at a simple level, as well as gain perspective on where 

efforts may be placed to potentially improve initial results 

and create robust classification systems that have the 

potential to be applied to real-world tasks in the future. 

The organisation of the paper is as follows. Firstly, a 

brief overview of quantum computing is given to provide 

some background knowledge. Then, we describe the 

systems design and methodology used to perform facial 

identification. Afterwards, an analysis of the systems’ 

performance is given in comparison to common classical 

algorithms, in particular a Support Vector Machine (SVM) 

and k-Nearest Neighbour (k-NN). Finally, a conclusion is 
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drawn and possible future directions of work are 

considered. 

II. QUANTUM COMPUTING OVERVIEW 

In classical computing, the basic unit of information is 

the bit. However, in quantum computing, this unit is 

known as the qubit. Qubits represent information in a 2-

dimensional complex vector space, known as Hilbert 

space. This allows us to represent classical information 

very efficiently in feature spaces that are not tractable or 

feasible to do so in classical systems. In order to 

manipulate qubit states, we can use a collection of unitary 

matrices to transform the state of the qubit with respect to 

the matrix used. These matrices are realized in the form 

of quantum gates, where visualizing the quantum circuit 

that operates on an input state allows us to see what 

transformations are occurring throughout. 

A. Quantum Encoding 

In order to perform quantum computations using 

classical information, this information must first be 

transformed into its’ quantum form. Whilst many 

quantum representations of images and classical data 

have been presented [25]-[28], basis encoding and 

amplitude encoding are two common methods of doing 

this. 

Basis encoding: For basis encoding, inputs in the form 

of a binary string are represented using their quantum 

equivalent computational basis states |0⟩  and |1⟩ . For 

example, the binary string 𝜓 = 010 becomes encoded as 

the quantum state 𝜓 = |010⟩ . Using this method of 

encoding, we require 1 qubit per bit of input information. 

Amplitude Encoding: A different approach to qubit 

encoding is through amplitude encoding. Here, a 

normalized input vector is taken and encoded onto the 

associated amplitudes of a quantum state. For example, a 

2-dimensional vector [
0.6

0.8
] can be represented as the 

quantum state 𝜓 = 0.6|0⟩ +  0.8|1⟩. In doing so, 𝑛 qubits 

can represent 2𝑛  units of information. This presents a 

much more efficient representation of classical 

information than when compared to basis encoding. 

III. SYSTEM DESIGN 

 

Figure 1. System overview flowchart. 

The design of the system can be split into three main 

sections, as shown in Fig. 1. Firstly, input data is 

classically pre-processed. Secondly, features are encoded 

onto the quantum circuit and the routine is executed. 

Thirdly, circuit measurement occurs for classical post-

processing and classification. 

A. Data Pre-processing & Feature Encoding 

For the purposes of this work, the AT&T face dataset 

was used. This dataset consists of 400 greyscale images 

of faces, with varying angles and expressions. This 

dataset was consequently split into 300 images for 

training, with the remaining 100 for validation. For the 

purpose of providing an opposing class, a bespoke dataset 

consisting of 400 images of non-face objects was 

included. All input images were initially resized to a size 

of 8×8 and flattened to form a 64-dimensional vector. 

Once the data had been pre-processed, an average face 

vector 𝑥 was formed from the training images to create a 

state to compare against: 

𝑥 =  
1

𝑁
∑ 𝑇𝑖

𝑁

𝑖=0

 

where 𝑁  is the number of training images and 𝑇  is the 

image vector. In order to encode data onto the quantum 

circuit, amplitude encoding is used to create the input 

state vectors. For the input vector of 𝐷 = 64 dimensions, 

this would require log
2

(𝐷) = 6 qubits per input state. The 

input vector, 𝑋, has to be normalized to have a sum-of-

squares equalling one. 

𝑋 =  
𝑥

‖𝑥‖
    →    |𝜓⟩ =  ∑ 𝑋𝑖|𝑖⟩

𝐷

𝑖=0

 

The input image state vectors can now be encoded as 

quantum states |𝜓⟩, being the comparison state and |𝜙⟩, 

being the test state. Once amplitude encoding has been 

performed on both of the input state vectors, the system, 

𝑆, is now in the following state. 

|𝑆⟩ =  |0⟩  ⊗    |𝜓⟩   ⊗   |𝜙⟩ 

B. Circuit Design 

After the input state vectors have been produced, we 

can initialize the quantum circuit before execution. The 

total number of qubits required, 𝑄, is: 

𝑄 = 2 log2(𝐷) + 1 

where 𝐷 is the dimensionality of the input vector, and the 

additional 1 represents the ancilla qubit that holds the 

fidelity measurement. 

Once the input test state and the comparison state are 

encoded, the fidelity between states is calculated. This is 

computed using a subroutine known as a SWAP test. The 

SWAP test estimates inner-products between two 

quantum states, i.e. 𝐹 =  |⟨𝜓|𝜙⟩|2  and is the most 

computationally expensive portion of the system. A 

SWAP test requires an ancilla qubit to contain the result 

and is split into three parts. 

First, a Hadamard operation, H, is applied to the 

ancilla qubit initialized in the |0⟩ state. This places the 

qubit into an equal superposition of the computational 

basis states. 
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𝐻|0⟩  →   
|0⟩ +  |1⟩

√2
 

This is followed with a controlled-swap operation 

acting on the encoded quantum states, with the ancilla as 

the target qubit. The third stage of the SWAP test routine 

is by the application of a second Hadamard operation to 

the ancilla qubit. Fig. 2. shows the circuit diagram used 

for the purposes of this work, where |𝜓⟩ is the train state 

and |𝜙⟩ is the input test state being compared. 

 

Figure 2. Circuit diagram for the quantum facial identification system. 

After the swap test has been applied, the total state of 

the system is as follows. 

|𝑆⟩ =  
1

√2
(|0⟩|𝜓⟩|𝜙⟩ +  |1⟩|𝜓⟩|𝜙⟩) 

C. Post-Processing & Classification 

Once both quantum states have been encoded and a 

SWAP test has been performed, the output must be 

measured and post-processed to produce a classification 

result. Within the system, only the ancilla qubit used 

within the SWAP test is measured, where an expectation 

value with respect to the Z-basis is taken to produce the 

fidelity value of the two encoded states. After the second 

Hadamard operation has been performed, the 

measurement output of the ancilla qubit is as follows. 

𝑃(0) =  
1

2
+  

1

2
|⟨𝜓|𝜙⟩|2

 

where if the two states in comparison are orthogonal to 

each other, |⟨𝜓|𝜙⟩|2 = 0. If the two states in comparison 

are equal, then |⟨𝜓|𝜙⟩|2 = 1 . Once the ancilla qubit is 

measured and this fidelity value has been outputted, we 

determine a classification result by using a simple 

threshold value. If the fidelity is higher than the threshold, 

then the result is a face image. If the fidelity is lower than 

the threshold, the result is a non-face image. 

IV. RESULTS 

A. Quantum Face Identification 

To demonstrate the initial potential of the systems’ 

classification ability, there has to be a substantial 

difference in fidelities of face and non-face images to be 

able to classify successfully. Various scales of input 

vector and qubits were compared to determine their effect 

on the output. For the purposes of this work, the quantum 

system explored was developed using the quantum 

software library PennyLane [29], and simulated using 

IBM’s high-performance quantum simulators [30].  

The results in Table I show the average fidelities of 

face and non-face images in the dataset, using differing 

input vector dimensions and circuit sizes. We stop at 17 

qubits as we feel a much more complex system size is 

beyond the scope of what this work is trying to present. 

TABLE I.  AVERAGE FIDELITIES FOR FACE AND NON-FACE IMAGES PER 

INPUT SIZE 

No. of 

Qubits 

Input Vector 

Dimensions 

Average Face 

Fidelity 

Average Non-

Face Fidelity 

9 16 0.95434 0.87156 

13 64 0.96199 0.82020 

17 256 0.86848 0.78061 

 

Here, we can see that the average fidelities suggest that 

there is a balance between system size and output. 

Perhaps by scaling down the input vectors, we are losing 

too much important detail for effective classification, 

whereas a larger system has too much variability from 

larger numbers of qubits, causing the fidelity to drop. 

To determine the classification performance of the 

system, various threshold levels were compared using the 

test dataset consisting of 100 face and 300 non-face 

images. The thresholds compared started at a value of 0.7 

and were incremented in steps of 0.01 until a final value 

of 1.0 was reached. The results of these tests are 

displayed in Table II and Fig. 3. The results in Table II 

also suggest that it is important to be able to balance the 

size of the system we are using to keep important detail in 

our input vectors whilst not using a too large system size 

that could be causing uncertainties in our output. 

TABLE II.  ACCURACY AND BEST PERFORMING THRESHOLD VALUE 

PER SYSTEM SIZE  

No. of 

Qubits 

System 

Accuracy 
Highest Performing Threshold 

9 0.800 0.971 

13 0.906 0.958 

17 0.800 0.993 

 

 

Figure 3. Graph of classification accuracy per threshold (13 qubit 
system). 
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B. Performance Comparison against Classical 

Algorithms 

To demonstrate the quantum systems’ viability, the 

previous results were compared against a classical 

Support Vector Machine and k-Nearest Neighbor 

algorithms. For the purposes of these experiments using 

classical algorithms, 300 face/non-face images were used 

as the training portion and the remaining 100 images per 

class were used as the testing portion. The SVM tested 

used 115 support vectors and a Gaussian kernel. For the 

k-NN, various values of k ranging from 1 to 20 were also 

compared. Table III shows the performance of the 

classical algorithms tested, compared against the 

proposed quantum method. Fig. 4 also displays results of 

various k values used for the k-NN experiment. 

TABLE III.  ACCURACY COMPARISON BETWEEN PROPOSED SYSTEM 

AND CLASSICAL ALGORITHMS 

Algorithm 
System 

Accuracy 

SVM 0.995 

k-NN 0.945 (k=2) 

Quantum 0.906 

 

 

Figure 4. Classification accuracy comparison using differing k-neighbor 
values. 

Here, we can see that the classical algorithms do 

perform to a higher level of accuracy than the quantum 

method explored in this work. However, the quantum 

system still produces a reasonably high level of 

performance, which could be very feasible to use in many 

applications if improvements to current quantum 

hardware are made in due course. 

C. Complexity Analysis 

Whilst previously the accuracy of these systems has 

been compared, a key aspect driving the development of 

quantum algorithms is the potential speedup benefit of 

exponential proportions over current classical algorithms. 

In order to display a fair comparison of the proposed 

quantum method versus classical algorithms, the 

computational complexity of the compared algorithms 

must also be considered alongside the performance metric 

of accuracy. A complexity analysis comparison can be 

seen in Table IV. 

TABLE IV.  COMPUTATIONAL COMPLEXITY COMPARISON OF 

ALGORITHMS 

Algorithm Complexity 

SVM 𝑂((𝐼2𝐷) + 𝐼3) 

k-NN 𝑂(𝐷𝐼) 

Quantum 𝑂(𝐼 log2(𝐷)) 

 

where 𝐷 is the number of dimensions in each input vector, 

𝑁𝑆𝑉  is the number of support vectors used and 𝐼  is the 

number of images used. Here, it can be seen that the 

quantum method proposed achieves exponential speedups 

in areas over the classical methods explored in this work. 

This is due to the nature of quantum encoding and 

efficient representation of quantum information. 

V. DISCUSSION 

From the results outlined previously, the quantum 

algorithm explored in this work performs at a slightly 

lower level of classification accuracy in comparison to 

popular classical algorithms of an SVM and k-NN. 

However, once we consider the computational 

complexity in a broader scope of comparison, the 

speedup potential of quantum algorithms is realized. 

The results outlined in Section IV suggest that we must 

be careful in how we design quantum algorithms. Finding 

a suitable middle ground may prove beneficial, to provide 

high levels of detail within input vectors for classification, 

whilst keeping the required number of qubits at a scale 

that does not become uncontrollable, and therefore limit 

the output potential of the algorithm. 

As a whole, the results produced by the quantum 

method explored are promising when compared to 

classical methods of SVM and k-NN, but only once the 

complexities of the compared algorithms are considered. 

Over time, as improvements to quantum hardware are 

made, we may see methods such as these become much 

more feasible to use within real-world application settings. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we explored the concept of the use of 

quantum computing for the widely-used machine learning 

application of facial identification. By encoding high-

dimensional feature vectors into quantum states, complex 

feature spaces can be created within Hilbert space. By 

using the SWAP test quantum subroutine, we are able to 

measure the fidelity of two quantum states, which can 

allow us to classify an image as a face or non-face objects 

appropriately. 

Initial tests of the proposed quantum system show 

promising early results that can only hope to improve as 

more advanced quantum technologies and algorithms are 

presented. Whilst there are classical algorithms capable 

of outperforming the quantum system in terms of 

accuracy, we gain exponential speedups over these 
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algorithms for small decreases in accuracy. In the NISQ 

era of quantum computing, the tradeoff of this can be 

considered fair and it is hoped that, in time, the quantum 

hardware available will be able to improve upon these 

benchmarks. 

Whilst the initial results of the algorithm explored in 

this work are promising, they are not without their 

limitations. Further experiments should be conducted to 

study the robustness of the algorithm, in particular to how 

classification performance is affected using image data 

containing a wide variety of perspectives, ratios and 

lighting settings. Whilst the non-face images tested were 

not biased and consisted of a wide variety of objects with 

varying shapes, objects that may appear as similar shapes 

or contain features that are close to that of a face could 

affect the robustness of the system. Other techniques 

included within the pre-processing and encoding of data 

could also be considered, as these may enhance the 

classification performance of the system, whilst adding 

very little extra computation overall. 
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