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Abstract—The network optimization problem, which is an 

optimization problem for a discrete system as a graph 

structure consisting of nodes and links, has been applied to 

several fields. Network optimization problems may be more 

difficult depending on the network scale and problem setting. 

In contrast, Big-Data & Extreme Computing (BDEC) is a 

method to process a large amount of data, such as 

observation data acquired by technologies such as 5G and 

IoT, by pouring them into abundant computing resources 

using high-speed cloud computing. In recent years, BDEC 

environments have become more common. Based on these 

considerations, this study aims to develop a network 

optimization method that combines AI and simulations to 

obtain a fast solution that is effective in BDEC and also to 

conduct basic studies on the effectiveness of the method by 

applying it to actual network optimization problems. 

Therefore, the method was applied to the inverse estimation 

problem, confirming its effectiveness. For the OD traffic 

estimation, heuristic solutions at high speed were obtained. 

Future developments comprise the inclusion of a reliable 

forward analysis to enhance the accuracy of the system 

reproduction, improvements in the sampling method and use 

of hyperparameter tuning method.  

 

Index Terms—optimization, deep learning, data-centric 

supercomputing, high-performance computing 

 

I. INTRODUCTION 

Mathematical optimization problems, which require 

parameters to minimize or maximize an objective function 

such as cost formulated in a system described by a 

mathematical model, are important to support decision 

making in various situations in the real world. Particularly, 

the network optimization problem, which is an 

optimization problem for a discrete system as a graph 

structure consisting of nodes and links, has been applied to 

various fields. In fields such as transportation and logistics 

[1], optimization problems are solved by considering the 

spatial location as a graph structure and defining an 

objective function which can be expressed mathematically 

in the system as in the optimization problem of 

maximizing sales by the location of stores [2]. Network 

optimization has been applied to a wide range of fields 

other than transportation, such as echo state networks [3] 

and the configuration of communication paths in wireless 

networks [4]. The inverse estimation problem, in which the 

state parameters representing the internal state are 

estimated from the observed data, can also be solved as an 

optimization problem. For this, the error between the 

observed data and the estimated value of the observed data 

calculated by the estimated input parameters is taken as the 

objective function and minimized. An example of an 

inverse estimation problem that can be solved as a network 

optimization problem is the OD inverse estimation [5], 

which is the problem of estimating the traffic volume for 

each origin and destination in the field of transportation. 

Furthermore, for optimization problems related to real 

phenomena, such as the phenomenon of traffic flow into a 

network, a more realistic solution can be obtained by 

coupling with simulation [6]. Network optimization 

problems may be more difficult depending on the scale of 

the network and the problem setting. Examples include 

cases in which the phenomenon being treated exhibits 

strong nonlinearity or a time delay occurs in the system. 

Therefore, the problem may become one of the so-called 

NP-hard class problems, such as the traveling salesman 

problem, which cannot be solved in a realistic time due to 

the explosive computational complexity. In contrast, Big-

Data & Extreme Computing (BDEC) [7] is a method to 

process large amounts of data, such as observation data 

acquired by technologies such as 5G and IoT, by pouring 

them into abundant computing resources using high-speed 

cloud computing. In recent years, the BDEC environment 

is becoming increasingly popular. This environment is 

highly effective when a large amount of data patterns is 

assigned to a large number of computational nodes on a 

computer. The computational nodes process the data 

independently without communication, which is highly 

compatible with some data science fields such as machine 
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learning; thus, it is expected to solve various problems 

using a data-centric approach. As the field of data science 

attracts more attention, there is a growing need to construct 

analysis methods that can effectively use BDEC to obtain 

solutions at high speed. Based on these considerations, this 

study aims to develop a network optimization method that 

combines AI and simulation to obtain a fast solution, 

which is effective in BDEC, and also to conduct basic 

studies on the effectiveness of the method by applying it to 

actual network optimization problems. 

II. METHOD 

In this section, the proposed method is explained using 

a general network inverse estimation problem as an 

example with reference to a previous study [8]. 

A. Problem  

The problem of determining the number of resources for 

each path of the resource inflow is considered to minimize 

the cost of resources passing through the links when 

resources flow into and out of the network. In this case, the 

objective function is the sum of the costs of all links in the 

network. Moreover, the optimization problem is to 

determine the resource inflow amount for each resource 

inflow path minimizing the sum of costs. This optimization 

problem can be used for the inverse estimation problem of 

unobservable parameters using actual observation data. 

Specifically, the optimization problem is used to minimize 

the cost of each link at each time, which is defined as the 

error between “the time series of the resource at each link 

assumed when the resource flows with a certain allocation” 

and “the time series of each resource actually observed in 

the network. 

B. Proposed Method  

In the BDEC environment, a large amount of data can 

be input into the computer at once and processed. In this 

study, a method that is effective in this environment is 

proposed. A surrogate model is introduced, and the 

processing of multiple input patterns is parallelized. The 

basic approach is to reduce the computational cost by 

reducing the sequential processing, and also the 

complexity of the forward analysis by reducing the 

computation time through parallelization and introduction 

of the surrogate model. The optimization problem is used 

to define and minimize the function 𝐸𝑟𝑟, which represents 

the error of the link reference solution in the observed 

network. Thus, 𝐸𝑟𝑟 is defined by the following equation; 

𝐸𝑟𝑟 = 𝛴𝑙=1
𝑛𝑜𝑏𝑠𝐸𝑟𝑟𝑙

𝑙𝑜𝑐𝑎𝑙                          (1) 

where    𝐸𝑟𝑟𝑙
𝑙𝑜𝑐𝑎𝑙 = √

𝛴
𝑖𝑡=1
𝑛𝑡 (𝑦

𝑙,𝑖𝑡

𝑟𝑒𝑓
−𝑦𝑙,𝑖𝑡

)2

𝛴
𝑖𝑡=1
𝑛𝑡 (𝑦

𝑙,𝑖𝑡

𝑟𝑒𝑓
)2

 

where 𝑦𝑙,𝑖𝑡

𝑟𝑒𝑓
 and 𝑦𝑙,𝑖𝑡

 represent the observed and simulated 

values computed by the forward analysis of the resources 

at the it-th time step (𝑖𝑡 = 1 − 𝑛𝑡) and l-th observation link 

( 𝑙 = 1 − 𝑛𝑜𝑏𝑠 ), which can be computed using the time 

history 𝑥𝑖𝑡
 of the input resources as time-series data. The 

input parameters reducing the 𝐸𝑟𝑟 defined in the present 

study are assumed to be the appropriate parameters for the 

observed data and search for the parameter x that 

minimizes 𝐸𝑟𝑟. In this method, a surrogate model, which 

is not a regression model of 𝐸𝑟𝑟 but a classification model 

based on the value of 𝐸𝑟𝑟 , is developed using a Deep 

Neural Network (DNN). This surrogate model estimates 

the class according to the error magnitude from the input, 

not the error itself, and can proceed with the evaluation 

using a model simpler than the regression model. This 

model is expected to provide a fast and heuristic solution. 

The 𝑛1(≫ 𝑛0)  parameters were input to the DNN 

constructed as described, and the n0 input parameters were 

extracted, those with small 𝛴𝑙=1
𝑛𝑜𝑏𝑠𝐿𝑙 values in which each 𝐿𝑙 

value is lower than the standard value. The input parameter 

that gives the smallest 𝐸𝑟𝑟  value computed by forward 

analysis can be selected as the solution 𝑥𝑏𝑒𝑠𝑡 that fits the 

observed data. Therefore, the DNN constructed as a 

surrogate model can select a solution candidate from a 

large number of solution candidates. This significantly 

reduces the number of forward analyses to be performed, 

allowing the evaluation of a large amount of data with low 

computational costs. The algorithm summarizing the 

described above is demonstrated below. 

TABLE I.  AI-BASED OPTIMIZATION METHODS SUITED FOR THE 

ENVIRONMENT 

Set up 

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐴 

generate 𝑛0  samples based on 𝑥𝑏𝑎𝑠𝑒 

(past actual values), perform forward 

analysis, and compute 𝑦𝑙,𝑖𝑡
  

Compute 𝐸𝑟𝑟 compute 𝐸𝑟𝑟 from 𝑦𝑙,𝑖𝑡

𝑟𝑒𝑓
, 𝑦𝑙,𝑖𝑡

 

Construct 

DNNs 

compute 𝐿𝑙 (= 0 − 9) for each 

observation link according to the value 

of 𝐸𝑟𝑟  

Generate 

samples 

generate 𝑛1(≫ 𝑛0)  samples based on 

𝑥𝑏𝑎𝑠𝑒 

Evaluate by 

DNN 

 

Set up 

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐵 

extract 𝑛0 samples whose total 

evaluation value is small and each 𝐿𝑙  is 

less than the standard value among the 

samples input to DNNs from 𝑛1(≫ 𝑛0) 

samples and perform forward analysis 

Update 𝑥𝑏𝑒𝑠𝑡  
select the parameter with the smallest 

𝐸𝑟𝑟 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐵 as 𝑥𝑏𝑒𝑠𝑡  

Update 𝑥𝑏𝑎𝑠𝑒 update the value of 𝑥𝑏𝑎𝑠𝑒 to 𝑥𝑏𝑒𝑠𝑡 

III. APPLICATION EXAMPLE 

In this chapter, the effectiveness of the proposed method 

is validated by application to OD inverse estimation [5]. 

A. Definition of the Considered Problem 

In this study, the problem of inverse OD estimation [5], 

which is used to estimate the breakdown of the time history 

traffic volume flowing into the network from each origin 

by destination based on the time history traffic observed in 

the network, is considered. Real-time OD inverse 

estimation can be used in combination with traffic 

simulation to predict future traffic volumes in a network 

and is expected to be applied to real-time decision making 

on measures against traffic congestion, such as road 

pricing. Several methods have been proposed for inverse 

OD estimation (e.g., [9], such as Kalman filter [10], 
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particle filter [11] combined with simulation, machine 

learning [12]). The proposed method is based on the 

premise that the BDEC environment can be used with a 

large number of computational nodes in parallel. Moreover, 

it aims to achieve an ultra-fast network optimization by 

developing a new process for network minimization of the 

difference between observed data and simulations, which 

is suitable for parallel processing while also incorporating 

DNNs; this is a departure from previous research. 

 

Figure 1. Observation links and OD in the target network. 

Figure 1 shows the target network used in this study, 

which imitates a major trunk line in a city near Tokyo, 

where tourism congestion is a problem [13]. The network 

consists of 59 nodes and 240 links, in which each link is 

divided into upper and lower lines, achieving a directed 

graph network. For simplicity, the situations in which a 

vehicle OD is inside the network or a vehicle entering the 

network OD at the same location as its origin are not 

considered. Six origin/destination nodes are considered, 

and also the vehicles entering the network at any of these 

six nodes as origin and exiting the network at the other five 

nodes as destination. The aim of this study is to estimate 

the time history traffic volume of each OD pair that 

matches the observed data using network optimization. 

Thus, a problem in which time history traffic volume is 

observed at 14 observation links is considered. 

B. Results 

The optimization was performed according to the flow 

described in Table I, and the estimation of 𝑥𝑖,𝑗,𝑖𝑡

𝑟𝑒𝑓
 was 

performed from 𝑦𝑙,𝑖𝑡

𝑟𝑒𝑓
. Initially, 𝑛0 = 1000 OD traffic 

volumes 𝑥𝑖,𝑗,𝑖𝑡
 were generated by adding random numbers 

of uniform distribution (-𝑥𝑖,𝑗,𝑖𝑡

𝑏𝑎𝑠𝑒/2, 𝑥𝑖,𝑗,𝑖𝑡

𝑏𝑎𝑠𝑒/2) at each time to 

the past actual values 𝑥𝑖,𝑗,𝑖𝑡

𝑏𝑎𝑠𝑒. The total number of agents 

entering the network at each inflow point Σ𝑗=1,𝑖≠𝑗
6 𝑥𝑖,𝑗,𝑖𝑡

 

was adjusted; thus, no changes are observed at each time 

to be consistent with past results. Forward analysis was 

performed on each 𝑥𝑖,𝑗,𝑖𝑡
 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐴  and 𝑦𝑙,𝑖𝑡

 was 

obtained at each observation point. The 𝐸𝑟𝑟 obtained by 

𝑦𝑙,𝑖𝑡
 for each 𝑥𝑖,𝑗,𝑖𝑡

 is shown in Fig. 2. Because the number 

of parameters is 90 (𝑖 = 1 − 6, 𝑗 = 1 − 6, 𝑖 ≠ 𝑗, 𝑖𝑡 = 1 −
3) and each parameter exhibits a wide range of motion, a 

good solution cannot be obtained with approximately 1000 

samples. In fact, the 𝑥𝑖,𝑗,𝑖𝑡
 for the case in which 𝐸𝑟𝑟 

displayed the minimum value, shown in Fig. 3, was 

considerably different from the reference solution (Fig. 4). 

This is because when looking at the 𝐸𝑟𝑟𝑙
𝑙𝑜𝑐𝑎𝑙  (Table II), 

although the value of 𝐸𝑟𝑟  was small, the estimation 

performance of 𝑥𝑖,𝑗,𝑖𝑡
 was degraded due to the large errors 

in some 𝐸𝑟𝑟𝑙
𝑙𝑜𝑐𝑎𝑙 . The 𝐸𝑟𝑟𝑙

𝑙𝑜𝑐𝑎𝑙  for all 𝑥𝑖,𝑗,𝑖𝑡
 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐴 

did not generate uniformly small candidates, indicating 

that good solutions cannot be selected using 1000 samples. 

The quality of 𝑥𝑖,𝑗,𝑖𝑡
 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐴  was evaluated by the 

error shown in (1) and the results are shown in Fig. 2. 

 

Figure 2. Comparison of the 𝐸𝑟𝑟 distribution for 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐴 and 

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐵. 

  

  

  

Figure 3. OD traffic volume in the optimum solution of random 
sampling. 
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Figure 4. Reference OD traffic volume. 

Although 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐴 was generated based on the actual 

values, the candidate solutions close to the optimal values 

were not generated with a sampling of 1000 owing to a 

large number of parameters and their large range of motion 

as described above. 

Next, the results of this forward analysis were used to 

construct a DNN by DL. The DNN was divided into 10 

intervals between the maximum and minimum values of  

𝐸𝑟𝑟𝑙
𝑙𝑜𝑐𝑎𝑙  computed at each observation point. In a 

decreasing 𝐸𝑟𝑟𝑙
𝑙𝑜𝑐𝑎𝑙  value order, the samples in each 

interval were ranked 𝐿𝑙(= 0 − 9) , and 𝑛0(= 1000) 

datasets were created for training. The input of each DNN 

is 3D data and the hourly OD traffic is converted to 1D 

data 𝑥 . The relationship between 𝑥  and 𝐿𝑙  was used for 

training. In the form of learning the relationship between 𝑥 

and 𝐿𝑙 , a fully-connected DNN (the activation functions 

were ReLU (middle layer) and cross-entropy (output layer), 

and the number of units and layers were 60 and 4, 

respectively) was constructed for general class estimation 

by Pytorch. Adam was used as the optimizer (learning rate 

0.001), L1 regularization (coefficients λ = 10−4) to reject 

parameters spatially uncorrelated with the errors of the 

observed links, 1000 epochs, and a batch size of 200. The 

correctness of the validation data for 𝐷𝑁𝑁𝑙 constructed for 

each observation link with 𝑛𝑜𝑏𝑠( = 14) is shown in Table 

III. In this table, in addition to the usual correct answer rate, 

the correct answer rate is described when the estimated 

value is allowed to be one level before or after the correct 

answer. Because the grade is a value that divides the actual 

computed error, it is sufficient to predict the approximate 

value rather than estimate it precisely. Therefore, the 

DNNs can be used if the accuracy when the estimated 

value is allowed to be 1 from the correct answer is high. 

As shown in the table, the accuracy was high when the 

value 1 from correct answer was also allowed; therefore, 

the optimization proceeded using the 𝐷𝑁𝑁𝑙. 

  

  

  
Figure 5. OD traffic volume in the optimum solution by the proposed 

method. 

As in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐴, n1 (= 109) OD traffic volume 𝑥𝑖,𝑗,𝑖𝑡
, 

which was generated to be consistent with the past results, 

was input into 𝐷𝑁𝑁𝑙 and 𝐿𝑙was calculated for each 𝑥𝑖,𝑗,𝑖𝑡
. 

By evaluating 𝛴𝑙=1
𝑛𝑜𝑏𝑠𝐿𝑙, 𝑥𝑖,𝑗,𝑖𝑡

 with small error for each link 

as a whole would be selected and also 1000 𝑥𝑖,𝑗,𝑖𝑡
 with 

small 𝛴𝑙=1
𝑛𝑜𝑏𝑠𝐿𝑙  and 𝐿𝑙 < 3 . The error 𝐸𝑟𝑟  of the entire 

network was evaluated using (1) with 𝑦𝑙,𝑖𝑡
obtained by 

forward analysis for each 𝑥𝑖,𝑗,𝑖𝑡
 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐵 . Compared 

with the distribution of 𝐸𝑟𝑟 obtained by the initial random 

sampling of 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐴 , 𝑥𝑖,𝑗,𝑖𝑡
 was selected as 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐵 

because of the constraint of the solution space via DNN 

and the error with the observed data was small. The 

minimum value of 𝐸𝑟𝑟 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐵 is 1.42 and the 𝑥𝑖,𝑗,𝑖𝑡
 

in this case (Fig. 5) is in good agreement with the reference 

solution (Fig. 4). The 𝐸𝑟𝑟𝑙
𝑙𝑜𝑐𝑎𝑙  (Table II) exhibited a 

smaller value as 𝐸𝑟𝑟, unlikely that of the best 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐴 

solution, and the error was small for all 𝐸𝑟𝑟𝑙
𝑙𝑜𝑐𝑎𝑙 , 

indicating that the estimation performance of 𝑥𝑖,𝑗,𝑖𝑡
 was 
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high. The quality of 𝑥𝑖,𝑗,𝑖𝑡
 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐵 was evaluated by 

the errors shown in (2). 

𝐸𝑟𝑟𝑖𝑛𝑝𝑢𝑡 = Σ𝑖=1
6 𝐸𝑟𝑟𝑖𝑛𝑝𝑢𝑡𝑖

𝑙𝑜𝑐𝑎𝑙 , 

𝑤ℎ𝑒𝑟𝑒 𝐸𝑟𝑟𝑖𝑛𝑝𝑢𝑡𝑖
𝑙𝑜𝑐𝑎𝑙 = √

Σ𝑖𝑡=1
3 Σ𝑗=1,𝑖≠𝑗

6 (𝑥
𝑖,𝑗
𝑟𝑒𝑓,𝑖𝑡−𝑥

𝑖,𝑗
𝑖𝑡 )

2

Σ𝑖𝑡=1
3 Σ𝑗=1,𝑖≠𝑗

6 (𝑥
𝑖,𝑗
𝑟𝑒𝑓,𝑖𝑡)

2  (2)
  

TABLE II.  VALUE OF 𝐸𝑟𝑟𝑙
𝑙𝑜𝑐𝑎𝑙

 BY RANDOM SAMPLING AND PROPOSED 

METHOD 

𝑙 
𝑬𝒓𝒓𝒍

𝒍𝒐𝒄𝒂𝒍 

(Random sampling) 

𝐸𝑟𝑟𝑙
𝑙𝑜𝑐𝑎𝑙 

(Proposed method) 

1 0.238 0.049 

2 0.065 0.08 

3 0.196 0.057 

4 0.094 0.019 

5 0.17 0.07 

6 0.17 0.014 

7 0.04 0.054 

8 0.04 0.064 

9 0.11 0.096 

10 0.073 0.051 

11 0.42 0.11 

12 0.19 0.33 

13 0.11 0.19 

14 0.091 0.095 

TABLE III.  DNN ACCURACY 

DNN Accuracy (%) Accuracy (%, ±1 class tolerance) 

1 60 99 

2 40 90.5 

3 49 88.5 

4 65.5 97.5 

5 40.5 84.5 

6 41.5 92.5 

7 68.5 93.5 

8 63.5 98 

9 41.5 88.5 

10 48 93.5 

11 62.5 98 

12 50 92 

13 50 92 

14 49 91.5 

 

Compared with 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐴, this optimization process via 

DNN, which is trained on the structure of the problem, 

allows us to set a solution candidate closer to the reference 

solution as 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐵. Compared to 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐴, 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐵 

is closer to the reference solution by going through this 

optimization process via a DNN that has learned the 

problem structure. 

However, in the BDEC environment, the number of 

DNNs does not affect the execution time of the 

optimization because the construction of DNNs and their 

evaluation can be performed in parallel. Therefore, similar 

to the method described in the previous chapter, the 

optimization can be completed within a few minutes, 

which is essentially the computation time of several 

forward analyses and the computation time of DNN alone. 

The optimization process with a similar setup was 

performed (1 iteration of the process is accomplished). 

Conversely, optimization using simulated annealing [14] 

as a conventional method was attempted, and 1000 

iterations (real-time for 1000 forward analyses) were used 

for the optimization. A comparison of 𝐸𝑟𝑟𝑖𝑛𝑝𝑢𝑡𝑖
𝑙𝑜𝑐𝑎𝑙  of  

𝑥𝑖,𝑗,𝑖𝑡
 obtained by the proposed method, annealing method, 

and random sampling is shown in Table IV. 

By simulated annealing without appropriate 

modifications, a solution with lower accuracy than the best 

solution in random sampling was obtained. Conversely, 

the proposed method could obtain heuristic solutions with 

better accuracy than random sampling using a simple 

surrogate model. Finally, the time for computation was 

evaluated. The forward analysis used in this evaluation is 

an agent analysis on a network, which tends to present non-

uniform granularity and is difficult to ensure scalability for 

a large number of computation nodes. When using one 

Intel Xeon E5-2690 CPU, it takes nearly 24 seconds to 

compute one case. Furthermore, it takes approximately 41 

seconds to build one DNN with one Nvidia V100 GPU. It 

takes almost 24 seconds to evaluate 14 DNNs for  

samples on one Nvidia V100 GPU. Based on the above, 

the computation time of the proposed method can be 

evaluated on the BDEC environment (e.g., 256 Intel Xeon 

® E5-2690 and 512 Nvidia V100 GPUs). The actual 

computation time was approximately 557 seconds in total: 

one time of forward analysis (24 seconds), DNN 

construction (41 seconds), DNN application (468 seconds), 

and one time of forward analysis (24 seconds). Conversely, 

because the annealing process was performed 1000 times 

sequentially, the computation time was 1000×24 seconds 

= 24000 seconds, indicating that the proposed method 

achieves fast processing using the BDEC environment as 

the concept shown in Fig. 6.  

TABLE IV.  VALUE OF Errinputi
local

 FOR THE BEST SOLUTION 

OBTAINED BY EACH METHOD 

𝑖 1 2 3 4 5 6 

Random Sampling 0.40 0.27 0.52 0.18 0.30 0.27 

Simulated 

Annealing 

1.30 0.57 0.76 0.82 0.87 0.89 

Proposed Method 0.17 0.14 0.20 0.18 0.40 0.18 

 

 

Figure 6. Concept of computation time for optimization using simulated 
annealing and the proposed method. 

IV. CONCLUSION 

In this study, as a basic evaluation for proposing a data-

centric network optimization method based on BDEC, the 

method was applied to the OD inverse estimation problem, 

confirming its effectiveness. For the OD traffic estimation, 
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which is a problem with time delay and nonlinearity, a 

surrogate model using deep learning was used instead of 

forward analysis, and heuristic solutions at high speed 

were obtained. Future developments comprise the 

inclusion of a reliable forward analysis to enhance the 

accuracy of the system reproduction, in addition to 

improvements in the sampling method. For the former, a 

sophisticated sequential analysis (e.g., [15]) was 

considered. For the latter, the accuracy of DNNs was 

improved by effective sampling using the design of 

experiments, and more accurate solutions were achieved 

by inputting samples to DNNs based on the sampling 

results of training data. Furthermore, the use of 

hyperparameter tuning methods such as Bayesian 

optimization in the construction of surrogate models 

would result in faster and more accurate optimization. 
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