
Increasing Accessibility of Language Models

with Multi-stage Information Extraction

Conrad Czejdo and Sambit Bhattacharya
Dept. of Mathematics and Computer Science, Fayetteville State University, Fayetteville, United States

Email: cczejdo1@broncos.uncfsu.edu, sbhattac@uncfsu.edu

Abstract—The capabilities of Language Models (LMs) have

continued to increase in recent years, as have their

computational requirements. Widely available APIs have

also become available. These APIs present new challenges

for ease of gradient based fine-tuning by users, resulting in

the use models which may be larger than necessary and

more expensive, therefore reducing accessibility. In this

paper, we present a new methodology for increasing

performance of single-shot LMs by chaining multiple

smaller LMs. Additionally, as the derived representation is

in plain-text it is readily human interpretable. We show that

optimizing the context which leads to this derived

representation results in improved performance and

reduced cost.

Index Terms—Deep Learning (DL), Natural Language

Processing (NLP), Language Models (LM), one-shot

learning, API

I. INTRODUCTION

The goal of Language Models (LMs) is to predict the

most likely text to be generated in a sequence given some

form of context. The two most common forms of LMs are

predicting future text from contextual, previous text (e.g.

GPT [1], [2]) and filling in a blank from contextual,

surrounding text (e.g. BERT [3], RoBERTa [4]). In

recent years, LMs powered by neural network

transformers have shown state-of-the-art performance

across a multitude of language-reasoning tasks [5].

Although the full breadth of applications enabled by LMs

is still an active area of research, many tools have become

available to help disseminate the technology. Many

platforms have developed their own solutions to help

easily train and deploy large-scale LMs [6], [7]. However,

direct under-the-hood access to large models is not

provided across all services, which makes traditional

forms of fine-tuning difficult. The decision to close

models off is somewhat supported by the exponentially

increasing burden of parameter size on available

computational systems and the possibility of misuse.

However, untrainable parameters can cause significant

issues for finding a model which is both cost-effective

and capable of solving a specific task. For example, the

OpenAI API currently offers six AI models which cannot

be readily fine-tuned. Each of the AI models is in

different tiers of increasing cost and performance. The

dilemma present is that inexpensive discrete options

provided may not be sufficiently capable in modelling

language, while the adequate models are too expensive.

To this end, we investigate whether there are methods to

utilize the functionality of multiple smaller LM models to

reach the performance of a larger, more expensive model.

Note that we use comparisons which are based on non-

finetunable models available through the OpenAI API.

With these APIs, it is possible to use either one shot or

few shot examples. We focus our comparisons on one-

shot learning for the following reasons: 1. it provides the

least cost for the greatest number of tests (as the API

charges based on input length), and 2. it is the most

accessible version for users who do not have the ability of

curating a dataset for a novel task, which are the primary

target users for this research.

A. Multi-stage Language Models

Multi-stage models have been commonly developed

for use in tasks such as image detection, where capturing

variance in feature scales can be problematic [8], [9].

Furthermore, combining networks, such as Convolutional

Neural Networks (CNNs) and logical reasoning solvers

[10] has shown the ability of solving problems which

CNNs alone cannot. In this work, we use multiple

language models with their own assigned “tasks.”

B. One-Shot Learning

Traditionally, AI models have required large training

sets to learn from. This approach has two major

difficulties for general audiences: 1. training very large

AI models and 2. finding large datasets for specific tasks.

Fine-tuning large, pre-trained models with gradient

descent on smaller task-specific datasets has become a

primary methodology of reducing the need of collecting

extensive numbers of samples. The need for examples to

fine-tune from, however, can still be large. Significant

work has been done on developing methodologies for

extremely low-sample training. The work has focused on

few-shot (few examples), one-shot (one example), and

even zero-shot (no example) training. Few-shot and one-

shot learning were initially very challenging tasks with

specific methodologies developed [11]-[13]. However,

very large LMs, such as GPT-3, have shown to be

particularly good at few-shot, one-shot, and in some cases,

zero-shot training without using a specific training and

inference paradigm [1]. If the context fed to the model

Manuscript received August 23, 2021; revised January 12, 2022.

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 181
doi: 10.12720/jait.13.2.181-185

mailto:cczejdo@hostname1.org
mailto:cczejdo@hostname1.org

contains an input-output pair for an example and ends in

an input without an output, then GPT-3 will infer an

output which logically follows from the first example.

The accuracy of the model’s output is based on its

capability to understand the example and is restricted

based on the capacity of the model (a larger model will be

able to solve more difficult problems). The results from

GPT-3 allow us to reasonably optimize our methodology

using a single example for each “task” we assign to LMs,

reducing the cost of testing each combination.

Furthermore, only requiring a single example is more

accessible than requiring users to curate larger datasets.

In our work, we also utilize GPT-3’s zero-shot capability

to sample possible example derivations. This alleviates

users from the need to write their own set of possible

derivations.

C. Contributions

Our major contribution is an analysis of context

optimizations for LMs including most appropriate

examples for one shot learning and question syntax.

D. Organization

The rest of our paper is organized into the following

sections. A Methodology (II) Section, where we

introduce the dataset, a brief introduction to LMs, and the

novel multi-stage model. A Results and Discussion (III)

Section where we present our results from fine-tuning

multiple parameters of the model and how they compare

with baselines. Finally, we conclude with the implications

of increased accessibility of our method, as well as future

work.

II. METHODOLOGY

A. Data

To validate our method, we use the ReClor reading

comprehension dataset [9]. ReClor suits our task due to:

1. short context, allowing for extensive testing on

multiple parameters at once, 2. logic based questions

which could benefit from a multi stage approach, and 3.

continued difficulty that even very large, fine-tuned,

language models have on the dataset.

ReClor is composed of questions from standardized

graduate admissions examinations (e.g. GMAT and

LSAT). Each sample has its own unique paragraph of

context, a question, and four short-sentence answer

choices (A, B, C, and D). We derive a simplified version

of ReClor (ReClor_Simple) with balanced true/false

answer choices taken from the original ReClor short-

sentence answer choices. A Reclor_Simple question

combines the original question with one of the short-

sentence answer choices (A, B, C, or D), and if the

answer choice is correct then the answer is true,

otherwise it is false. An example of one sample question

is shown in Fig. 1.

The total number of training examples available in

Reclor Simple is 9256, and the total number of validation

samples is 1000. Both sets of data are split fifty-fifty

between positive (true) and negative (false) examples. To

explore the potential of tuning multiple parameters, we

further reduce the number of examples used for single

shot testing to 25 random samples and 50 samples for

validation.

Figure 1. Best viewed in color. A sample from ReClor_Simple. In

purple is the context, in green is the answer choice from ReClor and in
red is the expected output (True or False).

B. Language Models

The problem of LMs is best formulated as modeling an

unsupervised estimation of a distribution from a set of

variable length sequences. Most language models use a

Transformer architecture with multiple layers of attention

[1], [5]. Attention is learned by learning a set of values (V)

which construct a normalized output based on the dot

product between a set of learned keys (K) and the query

(Q). The most important feature of the Transformer

architecture is the O(1) path length between input

symbols. This is significantly different from RNNs which

have O(input length) path length between input symbols.

This advantage ensures the entire context is taken into

account for each calculation, as well as increase

prediction speed and training.

We use the GPT-3 class of language models (from

smallest to largest: ada, babbage, curie, davinci) as well

as available zero-shot fine-tuned versions (curie-instruct,

davinci-instruct) [1], [7]. We set the hyperparameters of

all models to a constant top P of 1.0 and temperature of

0.0, ensuring constant output across multiple API calls if

the query is the same. This setup allowed for caching,

thereby increasing sampling and reducing cost.

C. Proposed Multistage Language Model (“Staged”)

We define an example (input, derivations, and output)

to be the context of the inference LM which is optimized

for the task. This context is optimized using the results of

testing on multiple sample inputs from the dataset. Using

the example input, derivations, and output we can

generate derivations and an output for each sample in the

dataset (Fig. 2).

Our hypothesis is that a smaller LM which outputs the

expected response (True/False) as well as derived

information about a sample can perform more accurately

than a larger LM which only outputs the response

(True/False). One of the restrictions of smaller GPT-3

LMs (ada and babbage) is the poor performance on zero

shot tasks. Therefore, we utilize larger, fine-tuned LMs

(curie-instruct or davinci-instruct) to sample possible

example derivations. We also optimize the questions

wording by altering syntax of what is extracted (e.g.

“evidence,” “details”) and in what form (e.g. “bulleted,”

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 182

“list”) Since sampling derivations from the large LM is

only done while optimizing the multi-stage methodology

on the dataset, and not during inference (Stages 2 and 3),

we expect this stage will be a small fraction of production

costs. Sampling and optimizing derivations could also be

done through crowd-sourced methods but this would take

far longer and be more tedious than collecting derivations

through LM based generation. The derivation stage,

called stage 1 (Fig. 2), is necessary since the smaller

GPT-3 LM we use for inference do very poorly without

at least one example. Therefore, we present an example

derivation from a large LM for the smaller LM to use as

context for its sample derivation (Stage 2).

Figure 2. Best viewed in color. Stages of our multi-stage LM method.

The color coding is as follows: Purple - LM, Red - input context and

derivations, Yellow - denotes example context and derivations. The

stages are as follows: Stage 1 - An optimized additive question is asked

of a Large LM (*) which has been fine tuned for zero shot QA. Stage 2 -
Example input and derivations from large LM are used as a single shot

example for derivations from a sample. Stage 3 - The input and

derivations and output from the example are used as a single shot
example for the small LM to generate an output.

Figure 3. Best viewed in color. Example context and output of final
stage (Stage 3 from Fig. 2).

In Stage 2, we define a single-shot example for a

smaller LM using the example input and derivation from

the large LM. In the final stage (Stage 3), the small LM

uses a large context which includes: 1. the same example

input and example derivation from Stage 2 with the

example answer (ground truth known) appended, and 2.

the sample input and sample derivation (from the LM

output of Stage 2). This context makes the LM output an

answer to the sample (True or False). In Fig. 3 we show

an example of the context and output from the final stage.

We analyze three potential tunable parameters. The

first tuning parameter is that of model size, as well as

combinations of large (used in Stage 1) and small (used

in Stage 2 and 3) sizes. The second tuning parameter is

the syntax of the object of the question (e.g. “evidence,”

“details”) for sampling potential example derivations

(Stage 1).

The third tuning parameter is the list type (e.g.

“bulleted,” “list”) of the question for sampling potential

example derivations (also Stage 1).

III. RESULTS AND DISCUSSION

A. LM Selection

Figure 4. Box-and-whiskers plot comparison of simple baseline (bl)
versus staged (st) models using 25 random single-shot examples. The

same 25 single-shot examples were used for all tests. 50 validation

samples were used to test each single-shot example. In parentheses are
the models used: a stands for ada, b for babbage, c for curie, and d for

davinci. The first model of two in the staged models stands for the large,

zero-shot fine-tuned LM which is used for generating the first example
(Fig. 2). The values of each average and max are as follows: model -

(mean+/-s.d.), bl(a) - (0.51+/-0.02), bl(b) - (0.50+/-0.00), st(c,a) -

(0.53+/-0.04), st(d,a) - (0.54+/0.04), st(c,b) - (0.53+/-0.03), st(d,b) -
(0.53+/-0.05).

We first test how our staged model performs against a

baseline model with no derived information (Fig. 4).

Notable is that the baseline babbage model failed to

produce results beyond random chance for any of the

possible examples. This is interesting as it is a larger and

more costly version of ada. Overall, ada showed a larger

variance for the accuracy of each single shot example,

which is a beneficial attribute of finding the single-shot

example which leads to the highest accuracy during

inference. Furthermore, extracting example information

(Stage 1) with davinci showed slightly more accurate

examples over extracting the same example information

with curie, a slightly smaller model. Although our tests

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 183

show that there is no significant difference between the

medians among all single-shot examples, in the case

where the best example can be chosen there were much

clearer differences. For example, our best staged example

had an accuracy of 0.66 while our best baseline model

had an accuracy of 0.56. Overall it is clear that deriving

additional example information is important for

improving the distribution of examples to pick from for

models. Even babbage, which was picking randomly

when unstaged, showed some examples with improved

performance with a staged model.

B. Effects of Interchanging Extracted Object Noun in

Question

Our next test was on optimizing the question provided

to the zero-shot large LM initially (Fig. 4) in stage 1 of

our model. Our results (Fig. 5) show that although there

are some differences in the examples, the validation

accuracy is largely resilient to changes in a single noun

phrase.

Figure 5. Box-and-whiskers comparison of what is asked to be
extracted in the additive question. E.g. “details” stands for the additive

zero-shot question “Extract a numbered list of details.” We use the top

model from Fig. 4 (davinci derivation and ada synthesis) and the top 5

examples ranked by accuracy on the validation set. We include the
baseline of the top 5 ada examples as a comparison.

C. Effects of Interchanging List Noun in Question

Figure 6. Box-and-whiskers comparison of bulleted (using ‘-’) versus

numbered list (using ‘1.’, ‘2.’, etc.) during example derivation (stage 2,
Fig. 2).

We test using different representations for the model

(Fig. 6), specifically in using numbered vs bulleted lists.

We find that although the bulleted list manages to keep a

larger distribution, it produces an overall negative shift in

the accuracy of the samples. This indicates that although

a relatively minor change, the list representation can have

significant effects on the LM’s internal ability to apply

example logic to samples.

D. Example Extractions

We explore what types of derivations our models are

capable of. Fig. 7 shows an example of a derivation with

two notable features. The first feature is reducing the

introduction in (list #1). The second is re-stating (list #2)

and then adding a logical induction (list #3).

Figure 7. Example extraction from the best performing model staged
with davinci and ada.

We also see that many poor derivations exist, such as

Fig. 8 from one of our worse performing bulleted, rather

than numbered models. The derivation shows simple

repetition not just in the first two bullets, but also a repeat

across the last two bullets.

Figure 8. Example extraction from a badly performing model staged
with davinci and ada, but using bullets rather than numbers.

IV. CONCLUSION

As gradient-based methods of fine-tuning LMs become

inaccessible due to exploding parameter sizes and debate

surrounding ethical LM release policy, we demonstrate a

new method for accessibly optimizing LMs for specific

tasks. Our multi-stage method shows the utility of plain-

text representations in increasing the accuracy of LMs.

During our tests on our zero-shot stage (Stage 1), we find

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 184

that there are some types of question syntax for which

LMs are resilient (Fig. 5) and also question syntax for

which LMs can be significantly affected (Fig. 6).

This shows that even though LMs have been trained on

an enormous corpus of text, that they can be biased in

their ability to process input. This also shows why it is

important to tune question syntax for each task. We show

that a multi-stage LM variant provides the necessary

variance to optimize single-shot learning through context

rather than fine-tuning. This work increases LM

accessibility by providing a method for tuning the output

of smaller, more cost-effective, LMs by optimizing

context.

For future work, we plan to extend our method by

finding novel ways of optimizing question syntax to

overcome the implicit biases found in LMs. A potential

method is to leverage previous research in logical

reasoning [14] and sentiment analysis [15]-[17] to score

questions for their ability to yield better example

derivations. A question scoring model would reduce the

cost, both financially and time-wise, of testing large

parameter models across many outputs. Another potential

area of future work is to find “tasks” which small LMs

are capable of performing when given single or few-shot

results from zero-shot large LMs. In this work, the multi-

stage method used tasks which were hand-defined. If

such tasks could be defined by LMs, there could be more

flexibility in the method and potentially higher accuracies

after appropriate optimization.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

C. Czejdo conducted the research and wrote the paper;

S. Bhattacharya analyzed the data, directed the research,

and edited the paper; all authors approved the final

version.

ACKNOWLEDGMENT

This article is based upon work supported by the

National Science Foundation under Grant No. 1818694.

REFERENCES

[1] A. Radford, et al., “Language models are unsupervised multitask

learners,” OpenAI Blog, vol. 1, no. 8, 2019.

[2] T. Brown, et al., “Language models are few-shot learners,”
arXiv:2005.14165, 2020.

[3] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “{BERT}: Pre-

training of deep bidirectional transformers for language
understanding,” in Proc. NAACL, 2019, pp. 4171-4186.

[4] Y. Liu, et al., “RoBERTa: A robustly optimized BERT pretraining

approach,” arXiv:1907.11692, 2019.

[5] A. Vaswani, et al., “Attention is all you need,” Advances in

Neural Information Processing Systems, vol. 30, pp. 6000-6010,

2017.
[6] H. Poor, An Introduction to Signal Detection and Estimation, New

York: Springer-Verlag, 1985, ch. 4.

[7] HuggingFace. [Online]. Available: https://huggingface.co/

[8] OpenAI API Beta. [Online]. Available: https://beta.openai.com/

[9] H. Cheng, F. Liang, M. Li, B. Cheng, F. Yan, H. Li, V. Chandra,
and Y. Chen, “ScaleNAS: One-Shot learning of scale-aware

representations for visual recognition,” arXiv:2011.14584, 2020.

[10] Z. Yan, et al., “Bodypart recognition using multi-stage deep
learning,” in Proc. International Conference on Information

Processing in Medical Imaging, 2015.

[11] P. Wang, P. Donti, B. B. Wilder, and Z. Kolter, “SATNet:
Bridging deep learning and logical reasoning using a differentiable

satisfiability solver,” in Proc. 36th International Conference on

Machine Learning, 2019.
[12] Y. Li, et al., “DEEPre: Sequence-based enzyme EC number

prediction by deep learning,” Bioinformatics, vol. 34, pp. 760-769.

2017.
[13] F. Li, R. Fergus, and P. Perona, “One-shot learning of object

categories,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 28, no. 4, pp. 594-611, April 2006.
[14] W. Yu, Z. Jiang, Y. Dong, and J. Feng, “ReClor: A reading

comprehension dataset requiring logical reasoning,” in Proc.

ICLR, 2019.
[15] M. Darwich, et al., “Quantifying the natural sentiment strength of

polar term senses using semantic gloss information and degree

adverbs,” Journal of Advances in Information Technology, vol. 11,
no. 3, pp. 109-118, August 2020.

[16] H. K. Darshan, A. R. Shankar, B. S. Harish, and H. M. K. Kumar,

“Exploiting RLPI for sentiment analysis on movie reviews,”
Journal of Advances in Information Technology, vol. 10, no. 1, pp.

14-19, February 2019.

[17] X. Zhao and Y. Ohsawa, “Sentiment analysis on the online
reviews based on hidden Markov model,” Journal of Advances in

Information Technology, vol. 9, no. 2, pp. 33-38, May 2018.

Copyright © 2022 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Conrad Czejdo completed his undergraduate

studies at the University of North Carolina at
Chapel Hill in 2019, graduating with a degree

of Bachelor of Science in Computer Science

with Honors as well as a Bachelor of Arts in

Chemistry. Currently, he is an MD candidate

at the Western Michigan Homer Stryker

University School of Medicine.

He has been awarded summer research
internships at Lawrence Berkeley National

Laboratory in 2016 and 2017. For the last several years he has been

working as a research assistant for Dr. Sambit Bhattacharya at
Fayetteville State University, Fayetteville, North Carolina. His research

interests are in Data Analytics, Medical Sciences, and Natural Language

Processing.

Sambit Bhattacharya is a Computer Scientist
with more than 15 years of experience in

teaching and research. He received his PhD in

Computer Science and Engineering from the

State University of New York at Buffalo,
USA in 2005. He is a Professor in Computer

Science at Fayetteville State University, North

Carolina, USA.
He directs the Intelligent Systems Lab at

Fayetteville State University. He has more
than 50 peer reviewed publications and has delivered 40+ oral

presentations, including keynote lectures at conferences. He leads

projects funded by national funding agencies and has visited research
labs of the US Department of Defense as a faculty fellow.

Dr. Bhattacharya is a Senior Member of the IEEE.

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 185

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

