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Abstract—The capabilities of Language Models (LMs) have 

continued to increase in recent years, as have their 

computational requirements. Widely available APIs have 

also become available. These APIs present new challenges 

for ease of gradient based fine-tuning by users, resulting in 

the use models which may be larger than necessary and 

more expensive, therefore reducing accessibility. In this 

paper, we present a new methodology for increasing 

performance of single-shot LMs by chaining multiple 

smaller LMs. Additionally, as the derived representation is 

in plain-text it is readily human interpretable. We show that 

optimizing the context which leads to this derived 

representation results in improved performance and 

reduced cost.  

 

Index Terms—Deep Learning (DL), Natural Language 

Processing (NLP), Language Models (LM), one-shot 

learning, API 

 

I. INTRODUCTION 

The goal of Language Models (LMs) is to predict the 

most likely text to be generated in a sequence given some 

form of context. The two most common forms of LMs are 

predicting future text from contextual, previous text (e.g. 

GPT [1], [2]) and filling in a blank from contextual, 

surrounding text (e.g. BERT [3], RoBERTa [4]). In 

recent years, LMs powered by neural network 

transformers have shown state-of-the-art performance 

across a multitude of language-reasoning tasks [5]. 

Although the full breadth of applications enabled by LMs 

is still an active area of research, many tools have become 

available to help disseminate the technology. Many 

platforms have developed their own solutions to help 

easily train and deploy large-scale LMs [6], [7]. However, 

direct under-the-hood access to large models is not 

provided across all services, which makes traditional 

forms of fine-tuning difficult. The decision to close 

models off is somewhat supported by the exponentially 

increasing burden of parameter size on available 

computational systems and the possibility of misuse. 

However, untrainable parameters can cause significant 

issues for finding a model which is both cost-effective 

and capable of solving a specific task. For example, the 

OpenAI API currently offers six AI models which cannot 

be readily fine-tuned. Each of the AI models is in 

different tiers of increasing cost and performance. The 

dilemma present is that inexpensive discrete options 

provided may not be sufficiently capable in modelling 

language, while the adequate models are too expensive. 

To this end, we investigate whether there are methods to 

utilize the functionality of multiple smaller LM models to 

reach the performance of a larger, more expensive model. 

Note that we use comparisons which are based on non-

finetunable models available through the OpenAI API. 

With these APIs, it is possible to use either one shot or 

few shot examples. We focus our comparisons on one-

shot learning for the following reasons: 1. it provides the 

least cost for the greatest number of tests (as the API 

charges based on input length), and 2. it is the most 

accessible version for users who do not have the ability of 

curating a dataset for a novel task, which are the primary 

target users for this research. 

A. Multi-stage Language Models 

Multi-stage models have been commonly developed 

for use in tasks such as image detection, where capturing 

variance in feature scales can be problematic [8], [9]. 

Furthermore, combining networks, such as Convolutional 

Neural Networks (CNNs) and logical reasoning solvers 

[10] has shown the ability of solving problems which 

CNNs alone cannot. In this work, we use multiple 

language models with their own assigned “tasks.”  

B. One-Shot Learning 

Traditionally, AI models have required large training 

sets to learn from. This approach has two major 

difficulties for general audiences: 1. training very large 

AI models and 2. finding large datasets for specific tasks. 

Fine-tuning large, pre-trained models with gradient 

descent on smaller task-specific datasets has become a 

primary methodology of reducing the need of collecting 

extensive numbers of samples. The need for examples to 

fine-tune from, however, can still be large. Significant 

work has been done on developing methodologies for 

extremely low-sample training. The work has focused on 

few-shot (few examples), one-shot (one example), and 

even zero-shot (no example) training. Few-shot and one-

shot learning were initially very challenging tasks with 

specific methodologies developed [11]-[13]. However, 

very large LMs, such as GPT-3, have shown to be 

particularly good at few-shot, one-shot, and in some cases, 

zero-shot training without using a specific training and 

inference paradigm [1]. If the context fed to the model 
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contains an input-output pair for an example and ends in 

an input without an output, then GPT-3 will infer an 

output which logically follows from the first example. 

The accuracy of the model’s output is based on its 

capability to understand the example and is restricted 

based on the capacity of the model (a larger model will be 

able to solve more difficult problems). The results from 

GPT-3 allow us to reasonably optimize our methodology 

using a single example for each “task” we assign to LMs, 

reducing the cost of testing each combination. 

Furthermore, only requiring a single example is more 

accessible than requiring users to curate larger datasets. 

In our work, we also utilize GPT-3’s zero-shot capability 

to sample possible example derivations. This alleviates 

users from the need to write their own set of possible 

derivations. 

C. Contributions 

Our major contribution is an analysis of context 

optimizations for LMs including most appropriate 

examples for one shot learning and question syntax. 

D. Organization 

The rest of our paper is organized into the following 

sections. A Methodology (II) Section, where we 

introduce the dataset, a brief introduction to LMs, and the 

novel multi-stage model. A Results and Discussion (III) 

Section where we present our results from fine-tuning 

multiple parameters of the model and how they compare 

with baselines. Finally, we conclude with the implications 

of increased accessibility of our method, as well as future 

work. 

II. METHODOLOGY 

A. Data 

To validate our method, we use the ReClor reading 

comprehension dataset [9]. ReClor suits our task due to:  

1. short context, allowing for extensive testing on 

multiple parameters at once, 2. logic based questions 

which could benefit from a multi stage approach, and 3. 

continued difficulty that even very large, fine-tuned, 

language models have on the dataset. 

ReClor is composed of questions from standardized 

graduate admissions examinations (e.g. GMAT and 

LSAT). Each sample has its own unique paragraph of 

context, a question, and four short-sentence answer 

choices (A, B, C, and D). We derive a simplified version 

of ReClor (ReClor_Simple) with balanced true/false 

answer choices taken from the original ReClor short-

sentence answer choices. A Reclor_Simple question 

combines the original question with one of the short-

sentence answer choices (A, B, C, or D), and if the 

answer choice is correct then the answer is true, 

otherwise it is false. An example of one sample question 

is shown in Fig. 1. 

The total number of training examples available in 

Reclor Simple is 9256, and the total number of validation 

samples is 1000. Both sets of data are split fifty-fifty 

between positive (true) and negative (false) examples. To 

explore the potential of tuning multiple parameters, we 

further reduce the number of examples used for single 

shot testing to 25 random samples and 50 samples for 

validation. 

 

Figure 1.  Best viewed in color. A sample from ReClor_Simple. In 

purple is the context, in green is the answer choice from ReClor and in 
red is the expected output (True or False). 

B. Language Models 

The problem of LMs is best formulated as modeling an 

unsupervised estimation of a distribution from a set of 

variable length sequences. Most language models use a 

Transformer architecture with multiple layers of attention 

[1], [5]. Attention is learned by learning a set of values (V) 

which construct a normalized output based on the dot 

product between a set of learned keys (K) and the query 

(Q). The most important feature of the Transformer 

architecture is the O(1) path length between input 

symbols. This is significantly different from RNNs which 

have O(input length) path length between input symbols. 

This advantage ensures the entire context is taken into 

account for each calculation, as well as increase 

prediction speed and training. 

We use the GPT-3 class of language models (from 

smallest to largest: ada, babbage, curie, davinci) as well 

as available zero-shot fine-tuned versions (curie-instruct, 

davinci-instruct) [1], [7]. We set the hyperparameters of 

all models to a constant top P of 1.0 and temperature of 

0.0, ensuring constant output across multiple API calls if 

the query is the same. This setup allowed for caching, 

thereby increasing sampling and reducing cost. 

C. Proposed Multistage Language Model (“Staged”) 

We define an example (input, derivations, and output) 

to be the context of the inference LM which is optimized 

for the task. This context is optimized using the results of 

testing on multiple sample inputs from the dataset. Using 

the example input, derivations, and output we can 

generate derivations and an output for each sample in the 

dataset (Fig. 2).  

Our hypothesis is that a smaller LM which outputs the 

expected response (True/False) as well as derived 

information about a sample can perform more accurately 

than a larger LM which only outputs the response 

(True/False). One of the restrictions of smaller GPT-3 

LMs (ada and babbage) is the poor performance on zero 

shot tasks. Therefore, we utilize larger, fine-tuned LMs 

(curie-instruct or davinci-instruct) to sample possible 

example derivations. We also optimize the questions 

wording by altering syntax of what is extracted (e.g. 

“evidence,” “details”) and in what form (e.g. “bulleted,” 
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“list”) Since sampling derivations from the large LM is 

only done while optimizing the multi-stage methodology 

on the dataset, and not during inference (Stages 2 and 3), 

we expect this stage will be a small fraction of production 

costs. Sampling and optimizing derivations could also be 

done through crowd-sourced methods but this would take 

far longer and be more tedious than collecting derivations 

through LM based generation. The derivation stage, 

called stage 1 (Fig. 2), is necessary since the smaller 

GPT-3 LM we use for inference do very poorly without 

at least one example. Therefore, we present an example 

derivation from a large LM for the smaller LM to use as 

context for its sample derivation (Stage 2).  

 

Figure 2.  Best viewed in color. Stages of our multi-stage LM method. 

The color coding is as follows: Purple - LM, Red - input context and 

derivations, Yellow - denotes example context and derivations. The 

stages are as follows: Stage 1 - An optimized additive question is asked 

of a Large LM (*) which has been fine tuned for zero shot QA. Stage 2 - 
Example input and derivations from large LM are used as a single shot 

example for derivations from a sample. Stage 3 - The input and 

derivations and output from the example are used as a single shot 
example for the small LM to generate an output. 

 

Figure 3.  Best viewed in color. Example context and output of final 
stage (Stage 3 from Fig. 2).  

In Stage 2, we define a single-shot example for a 

smaller LM using the example input and derivation from 

the large LM. In the final stage (Stage 3), the small LM 

uses a large context which includes: 1. the same example 

input and example derivation from Stage 2 with the 

example answer (ground truth known) appended, and 2. 

the sample input and sample derivation (from the LM 

output of Stage 2). This context makes the LM output an 

answer to the sample (True or False). In Fig. 3 we show 

an example of the context and output from the final stage. 

We analyze three potential tunable parameters. The 

first tuning parameter is that of model size, as well as 

combinations of large (used in Stage 1) and small (used 

in Stage 2 and 3) sizes. The second tuning parameter is 

the syntax of the object of the question (e.g. “evidence,” 

“details”) for sampling potential example derivations 

(Stage 1). 

The third tuning parameter is the list type (e.g. 

“bulleted,” “list”) of the question for sampling potential 

example derivations (also Stage 1).  

III. RESULTS AND DISCUSSION 

A. LM Selection 

 
Figure 4.  Box-and-whiskers plot comparison of simple baseline (bl) 
versus staged (st) models using 25 random single-shot examples. The 

same 25 single-shot examples were used for all tests. 50 validation 

samples were used to test each single-shot example. In parentheses are 
the models used: a stands for ada, b for babbage, c for curie, and d for 

davinci. The first model of two in the staged models stands for the large, 

zero-shot fine-tuned LM which is used for generating the first example 
(Fig. 2). The values of each average and max are as follows: model - 

(mean+/-s.d.), bl(a) - (0.51+/-0.02), bl(b) - (0.50+/-0.00), st(c,a) - 

(0.53+/-0.04), st(d,a) - (0.54+/0.04), st(c,b) - (0.53+/-0.03), st(d,b) - 
(0.53+/-0.05). 

We first test how our staged model performs against a 

baseline model with no derived information (Fig. 4). 

Notable is that the baseline babbage model failed to 

produce results beyond random chance for any of the 

possible examples. This is interesting as it is a larger and 

more costly version of ada. Overall, ada showed a larger 

variance for the accuracy of each single shot example, 

which is a beneficial attribute of finding the single-shot 

example which leads to the highest accuracy during 

inference. Furthermore, extracting example information 

(Stage 1) with davinci showed slightly more accurate 

examples over extracting the same example information 

with curie, a slightly smaller model. Although our tests 
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show that there is no significant difference between the 

medians among all single-shot examples, in the case 

where the best example can be chosen there were much 

clearer differences. For example, our best staged example 

had an accuracy of 0.66 while our best baseline model 

had an accuracy of 0.56. Overall it is clear that deriving 

additional example information is important for 

improving the distribution of examples to pick from for 

models. Even babbage, which was picking randomly 

when unstaged, showed some examples with improved 

performance with a staged model.  

B. Effects of Interchanging Extracted Object Noun in 

Question 

Our next test was on optimizing the question provided 

to the zero-shot large LM initially (Fig. 4) in stage 1 of 

our model. Our results (Fig. 5) show that although there 

are some differences in the examples, the validation 

accuracy is largely resilient to changes in a single noun 

phrase. 

 

Figure 5.  Box-and-whiskers comparison of what is asked to be 
extracted in the additive question. E.g. “details” stands for the additive 

zero-shot question “Extract a numbered list of details.” We use the top 

model from Fig. 4 (davinci derivation and ada synthesis) and the top 5 

examples ranked by accuracy on the validation set. We include the 
baseline of the top 5 ada examples as a comparison. 

C. Effects of Interchanging List Noun in Question  

 

Figure 6.  Box-and-whiskers comparison of bulleted (using ‘-’) versus 

numbered list (using ‘1.’, ‘2.’, etc.) during example derivation (stage 2, 
Fig. 2). 

We test using different representations for the model 

(Fig. 6), specifically in using numbered vs bulleted lists. 

We find that although the bulleted list manages to keep a 

larger distribution, it produces an overall negative shift in 

the accuracy of the samples. This indicates that although 

a relatively minor change, the list representation can have 

significant effects on the LM’s internal ability to apply 

example logic to samples. 

D. Example Extractions 

We explore what types of derivations our models are 

capable of. Fig. 7 shows an example of a derivation with 

two notable features. The first feature is reducing the 

introduction in (list #1). The second is re-stating (list #2) 

and then adding a logical induction (list #3). 

 

Figure 7.  Example extraction from the best performing model staged 
with davinci and ada. 

We also see that many poor derivations exist, such as 

Fig. 8 from one of our worse performing bulleted, rather 

than numbered models. The derivation shows simple 

repetition not just in the first two bullets, but also a repeat 

across the last two bullets. 

 

Figure 8.  Example extraction from a badly performing model staged 
with davinci and ada, but using bullets rather than numbers. 

IV. CONCLUSION 

As gradient-based methods of fine-tuning LMs become 

inaccessible due to exploding parameter sizes and debate 

surrounding ethical LM release policy, we demonstrate a 

new method for accessibly optimizing LMs for specific 

tasks. Our multi-stage method shows the utility of plain-

text representations in increasing the accuracy of LMs. 

During our tests on our zero-shot stage (Stage 1), we find 
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that there are some types of question syntax for which 

LMs are resilient (Fig. 5) and also question syntax for 

which LMs can be significantly affected (Fig. 6). 

This shows that even though LMs have been trained on 

an enormous corpus of text, that they can be biased in 

their ability to process input. This also shows why it is 

important to tune question syntax for each task. We show 

that a multi-stage LM variant provides the necessary 

variance to optimize single-shot learning through context 

rather than fine-tuning. This work increases LM 

accessibility by providing a method for tuning the output 

of smaller, more cost-effective, LMs by optimizing 

context. 

For future work, we plan to extend our method by 

finding novel ways of optimizing question syntax to 

overcome the implicit biases found in LMs. A potential 

method is to leverage previous research in logical 

reasoning [14] and sentiment analysis [15]-[17] to score 

questions for their ability to yield better example 

derivations. A question scoring model would reduce the 

cost, both financially and time-wise, of testing large 

parameter models across many outputs. Another potential 

area of future work is to find “tasks” which small LMs 

are capable of performing when given single or few-shot 

results from zero-shot large LMs. In this work, the multi-

stage method used tasks which were hand-defined. If 

such tasks could be defined by LMs, there could be more 

flexibility in the method and potentially higher accuracies 

after appropriate optimization.  
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