
Reinforcement Learning Based Offloading 

Framework for Computation Service in the Edge 

Cloud and Core Cloud 
 

Nasif Muslim and Salekul Islam 
United International University Dhaka, Bangladesh 

Email: {nasif, salekul}@cse.uiu.ac.bd 

 

Jean-Charles Grégoire 
INRS-EMT, Montréal, Canada 

Email: gregoire@emt.inrs.ca 

 

 

 
Abstract—Smartphones have increasingly become 

indispensable tools of our everyday lives, with extensive 

applications beyond communications, from utilitarian to 

entertaining. As such, demands on the technology remain 

stringent, leading to a limitation in performance and battery 

lifetime, requiring approaches such as computation 

offloading to improve the user experience for computation-

intensive tasks such as gaming. This work presents the use 

of Reinforcement Learning in an offloading framework that 

provides smartphones with the ability to decide whether to 

perform computations on the smartphone or on the remote 

Cloud (Edge and Core) to minimize process. Several 

scenarios have been used to produce simulations that 

demonstrate that the proposed algorithm can operate 

efficiently in a dynamic Cloud computing and networking 

environment.  

 

Index Terms—reinforcement learning, cloud computing, 

computation offloading 

 

I. INTRODUCTION 

Breakthroughs in mobile computing and wireless 

technology have allowed smartphones to dramatically 

impact human and social life by ever-improving 

processor performance and connectivity. These devices 

now support diverse applications ranging from simple 

information display to computationally expensive voice 

and face recognition. Battery technology, however, 

remains a major limiting factor of the smartphone 

progress: the increase in energy capacity (i.e., mA-hour) 

of the prevailing lithium-ion batteries has not been able to 

keep up with increases in power consumption. 

A promising solution to overcome many of the 

limitations of smartphone performance lies in 

computation offloading, the process of migrating 

compute-intensive tasks to the remote Cloud (Edge and 

Core). “Core Cloud” refers to commercial computing 

infrastructures (i.e., data centers) situated further away 

from clients or users. “Edge Cloud” points to commercial 

 
Manuscript received October 18, 2021; revised February 10, 2022. 

or private datacenter located closer to clients or users. 

Globally, access to a remote cloud is performed via the 

Internet core through high-performance access (e.g., 

cellular) infrastructures. 

Application types and hardware configuration greatly 

influence the decision to offload. Thus, Kumar et al. [1] 

suggest that offloading a computation task to the Cloud 

may not always be beneficial. Experimental results show 

that computation offloading is more beneficial for a chess 

game than for an image retrieval process due to the high 

amount of computation that the former requires. This 

paper presents an in-depth study of the offloading process 

and analyzes how different parameters affect each other 

in decision-making. Furthermore, we apply 

Reinforcement Learning (RL) in our proposed framework, 

and we use Face recognition, a computation and data-

intensive application, to evaluate the soundness of our 

offloading framework, extending in the process work 

presented earlier in [2]. Face recognition is nowadays 

commonly applied in authentication as well as for passive 

surveillance, and recent related research has exploited 

deep-learning-based approaches due to accuracy rates 

above 99.80% [3]. Yet executing deep learning 

algorithms is computationally intensive and especially 

taxing for smartphones; for example, [4], and [5] report 

processing rates of less than one video frame per second 

using Tensorflow’s Inception deep learning model on a 

typical Android phone. There is a noted need for a 

flexible, distributed infrastructure to enable cooperation 

between end-user devices (e.g., smartphones) and the 

remote Cloud infrastructures (Edge and Core) that 

provide more computational power, independent of any 

specific configuration of Cloud (Edge and Core), end-

user device, and face recognition technique [6], [7].  

The main contributions of this paper are as follows: 

•    We propose an offloading framework that makes 

its decisions using RL. This framework can obtain 

the optimal policy for local or remote allocation of 

task processing from evolving environment 

parameters without any complicated computation 

of an offloading solution. Simulation results show 

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 139
doi: 10.12720/jait.13.2.139-146



that the offloading decision converges quickly, 

adapts to different conditions, and outperforms a 

random offloading decision algorithm. 

•    Unlike most earlier research, which has focused on 

one or two parameters for offload decision making 

[8], our proposed offloading framework includes 

considerations for the (monetary) cost of 

providing the computing resources rather than 

simply computation costs (i.e., compute cycles). 

The end-user device can make the decision to 

offload directly to the Edge Cloud or Core Cloud 

without relaying to the Computing Access Points 

(CAPs) [9]. Using the experiments, we show that 

the proposed framework can realize savings in the 

combination of these parameters (i.e., processing 

time, end-device energy consumption and 

monetary cost). 

The rest of the paper is organized as follows: Section II 

presents an overview of previous work related to Edge 

Cloud computing and offloading frameworks. In Section 

III, we present the offloading problem and a solution 

based on multi-armed bandits. In Section IV, we present 

and discuss simulation results under synthetic scenarios. 

Finally, in Section V, we elaborate on possible extensions 

of our framework for future work.  

II. RELATED WORKS 

We have witnessed a proliferation of data centers, not 

only increasing the availability of low latency, high-speed 

service connectivity and cheap compute cycles but also 

decreasing the cost of storage and overall supporting the 

rapid progress of Cloud computing. Nowadays, the Edge 

Cloud deployed at the edge of the Internet in direct co-

operation with ISPs consists of a number of multiple 

smaller, generic clouds run by various operators. The 

simplified Edge Cloud architecture [10] is shown in Fig. 

1. 

On the application side, computationally expensive 

models such as Deep Neural Networks (DNNs) have 

become popular for tasks like face detection, language 

translation, autonomous driving, etc. More specifically, 

Chemodanov et al. [11] have proposed a novel policy-

based computational offloading scheme based on the 

trade-off between performance and cost parameters, 

which decides to offload either to an Edge, Core cloud, or 

apply function-centric computing- decomposing 

applications into smaller functions that can be deployed 

on to the Edge and Core Cloud–for real-time video 

analytics. This work has not taken into consideration 

computation time variations of distinct DNN based object 

recognition systems, as well as random network delay 

and server load. Chinchali et al. [12] have proposed an 

offloading framework that accounts for both local 

computation accuracy and offloading latency using a 

Deep Reinforcement Learning algorithm. The authors’ 

proposed solution is, however, based on static 

communication ad computational delays. In our previous 

work, Nasif et al. [2] proposed an offloading framework 

based on Deep Reinforcement Learning that provides 

smartphones with the ability to make decisions for 

offloading. Shakarami et al. [13] proposed a deep 

learning-based hybrid approach for computation 

offloading. However, training DRL-based offloading is 

time and resource expensive compared with the currently 

proposed RL-based offloading framework. 

Shahidinejad et al. [14] proposed a hybrid approach for 

computation offloading. In this paper, the smartphone 

makes the decision to offload in the Edge Cloud using 

Learning Automata (LA), which is closely related to the 

Reinforcement Learning (RL) approach. Additionally, the 

master Edge Cloud collects resources information from 

the Edge information system and Cloud information 

system. Using this information, the master Edge Cloud 

makes the decision for processing in the Edge Cloud or 

Core Cloud. However, in our proposed offloading 

framework, the smartphone makes the ultimate decision 

for offloading, which saves additional processing in the 

master Edge Cloud. 

Shahidinejad et al. [15] also proposed a computation 

offloading technique based on DRL. The Federated 

learning technique is used to improve the offloading 

decision model inside the smartphone. The cost for 

implementing federated learning is higher because it 

requires significantly more smartphone processing power 

and memory to train the model. Moreover, Federated 

learning requires periodic communication between the 

smartphone and the server during the learning process, 

which requires high bandwidth connections. 

Most research on offloading decisions to date has 

focused on optimizing the energy and/or time 

consumption of offloaded applications while generally 

ignoring decision-making algorithms overhead. Instead, 

we focus here on making offloading decisions 

dynamically, in time-varying environments, and on 

reducing the computational complexity of the offloading 

decision algorithm. This objective differs from earlier 

investigations by focusing on the combination of three 

parameters (processing time, energy consumption of the 

smartphone, monetary cost) to decide if and where to 

offload. 

III. MODEL OFFLOADING PROBLEM AND SOLUTION 

BASED ON MULTI-ARMED BANDITS 

We assume that devices and datacenters are connected 

to or reachable from wireless networks.  However, we do 

not assume prior knowledge of the end-devices hardware 

configuration, infrastructures underlying either form of 

Cloud, or network-related information (e.g., bandwidth, 

hop-count, round-trip-time). The smartphone itself must 

decide whether to process tasks locally or remotely, either 

in the Edge or Core Cloud. Choosing the best-suited 

location to process a task is not a trivial task, mainly 

when the required information is not available. The 

problem becomes more challenging in a dynamic 

environment where computation time and network 

characteristics vary over time. 

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 140



 

Figure 1.  Edge cloud architecture. 

Multi-objective optimization is challenging in general. 

Such problems are generally formulated as Mixed Integer 

Programming (MIP) problems due to the existence of 

binary offloading variables. To solve the MIP problems, 

branch-and-bound algorithms [16] and dynamic 

programming [17] have been adopted. However, both 

alternatives tend to converge very slowly to a satisfying 

local optimum. 

Reinforcement Learning (RL) [18] has been used as an 

effective solution for multi-objective optimization 

problems [19]. The model-free approach of RL is capable 

of learning optimal offloading policies based solely on 

the features included in the environment. By utilizing 

reward feedback from the time-variant environment, the 

RL agent can adjust its policy to achieve the optimization 

of resources. To solve the selection of the device to 

perform processing tasks, the offloading problem is 

modeled using the Multi-armed Bandit (MAB) problem, 

which is a variant of RL with a single state. 

 

Figure 2.  Multi-arm bandit problem - agent’s action and 
environment’s reply. 

Multi-Arm Bandit is a classic RL problem whose main 

elements include agent, reward, and environment. The 

agent decides what action to take, and the environment 

will then provide feedback to the agent in the form of a 

reward. Based on the experience of interacting with the  

environment, the agent will try to learn and create a set 

of rules on how to behave in this environment to get 

maximum reward. Fig. 2 shows the block diagram of the 

Multi-arm bandit problem. 

RL utilizes purely evaluative feedback to indicate how 

good the action taken was. For that reason, it requires 

maintaining a balance between ‘exploration’, actively 

trying new ways, and ‘exploitation’, the process of 

applying things that have worked best in the past. The 

following subsections will explain this strategy and 

reward calculation for the proposed algorithm. 

A. Exploitation and Exploration 

Upper Confidence Bound (UCB-1) [20] is a widely 

used solution method for the multi-armed bandit problem 

that keeps the balance between ‘exploitation’ and 

‘exploration’. UCB-1 makes the selection of an arm or 

device based on uncertainty. In other words, the greater 

the uncertainty about an arm the more important it is to 

explore that arm. The confidence interval of each device 

is calculated using equation (1). 

               (1) 

It shows that each time device i is selected, the 

uncertainty is presumably reduced: Ni increments as it 

appears in the denominator and the uncertainty term 

decreases. However, each time a device other than i is 

selected n increases as it appears in the denominator, but 

Ni does not. Therefore, the uncertainty estimate increases. 

UCB-1 pseudo-code is presented in Algorithm 1.  

 

Algorithm 1 Upper Confidence Bound (UCB-1) 

1: for n in range (number of device): do 

2: The average reward of device i up to iteration n: 

3: 

 

where N is number of time device i is selected over 

n iteration steps 

4: 

 

where c is degree of exploration 

5:  

6: end for 

 

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 141



However, UCB-1 policies are not appropriate for 

environments where the evolution of rewards undergo 

abrupt changes [21], i.e., non-stationary. Discounted 

UCB (D-UCB) [22] solves this problem, where average 

rewards are computed based on past values with a 

discount factor giving more weight to recent observations. 

D-UCB pseudocode is presented in Algorithm 2. 

Algorithm 3 provides the pseudocode for offload decision 

making based on D-UCB. 

 

Algorithm 2 Discounted UCB (D-UCB) 

1: for n in range (number of device): do 

2: The average reward of device i up to iteration n: 

3:  where, N is 

number of time device i is selected over n iteration 

steps. 

4: 

 
where c is degree of exploration 

5: Device selection = max (  +  ) 

6: end for 

 

Algorithm 3 Offload decision making 

1: reward memory: to store [choice, reward] 

2: memory: to store [device, number of face, time, 

energy, cost] 

3: number of device = 3 

4: function MAIN: 

5:     for n in range (iteration): do 

6:           choice = 0 max upper bound = 0 

7: #calculate the UCB value for each device, find out 

which one is maximum, that will be the selected 

for offload 

8:      for i = 1 to 3 do 

9:          if numbers of selections[i] > 0 then 

10: average-reward = Calculate discounted empirical 

average reward for i-th device from reward 

memory[choice, reward] 

11: end if 

12: counts[i] = Calculate number of times i-th device 

is selected from reward memory[choice, reward] 

13: 
        delta_i = 2 / 3 ×  

14:         upper_bound = average_reward + delta_i 

15:         else upper bound = infinite  

16:         end if 

17:         if upper bound > max upper bound then 

18:             max upper bound = upper bound 

19:             choice = i 

20:         end if 

21:      end for 

22:    # Offload processing task to the selected device 

and collect corresponding ‘time’, ‘energy’, ‘cost’ 

information 

23:   time, energy, cost = OFFLOAD(choice, number 

of face) 

24:   memory UPDATE 

25:  # Calculate reward based on selected device for 

processing task Offload 

26:   choice reward = REWARD(choice, number of 

face, memory) 

27:   reward memory UPDATE 

28:  end for 

29: end function 

30: function OFFLOAD(choice, number_of_face): 

31:   if choice == 0 then 

32:     process in the smartphone and measure 

Tsmartphone, Esmartphone, Csmartphone 

33:   else if choice == 1 then 

34:     process in the Edge Cloud and measure Tedge, 

Eedge, Cedge 

35:   else if choice == 2 then 

36:   process in the Core Cloud and measure Tcore, 

Ecore, Ccore 

37:  end if 

38: end function 

B. Reward 

The proposed algorithm, once a device is selected and 

computation task processing is performed, collects the 

corresponding processing time, energy consumption and 

monetary cost information. For example, when the 

smartphone is selected for task processing then 

processing time Tsmartphone, energy consumption Esmartphone 

and monetary cost Csmartphone of the smartphone are 

collected for the current iteration θ. Next, a matrix is 

constructed that includes three choices (end-device, Edge 

and Core) and their corresponding three criteria values 

(shown in Table I). The criteria value of other choices 

(Edge Cloud and Core Cloud) which are not selected in 

this iteration are calculated by taking the average value 

from the previous θ − 1 iteration (shown in Equation (2)). 

The reward calculation pseudocode is presented in 

Algorithm 4. 

 

Algorithm 4 Reward calculation 

1: Calculate normalized score of TsmartphoneN, TedgeN, 

TcoreN 

2: Calculate normalized score of EsmartphoneN, EedgeN, 

EcoreN 

3: Calculate normalized score of CsmartphoneN, CedgeN, 

CcoreN 

4: # Calculate preference score 

5: if choice == 0 then 

6:      smartphone_performance = TsmartphoneN + 

EsmartphoneN + CsmartphoneN 

7:      return smartphone_performance 

8: if choice == 1 then 

9:     edge_performance = TedgeN + EedgeN + 

CedgeN 

10:     return edge_performance 

11: if choice == 2 then 

12:     core_performance = TcoreN + EcoreN + 

CcoreN 

13:     return core_performance 

14: end if 

15: end function 

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 142



TABLE I. CRITERIA VALUE OF CHOICES SHOWN IN THE MATRIX AT Θ 

ITERATION 

 Criteria 
Choice Time (s) Energy (mAh) Cost ($) 

Smartphone 
processing 

x11 x12 x13 

Edge Cloud 
processing 

x21avg, θ x22avg, θ x23avg, θ 

Core Cloud 
processing 

x31avg, θ x32avg, θ x33avg, θ 

                         (2) 

where xij is the j-th criterion value of the i-th choice, m is 

the iteration index where choice i is selected, p is total 

number of times the i-th choice is selected in θ-1 iteration. 

Then, the normalized matrix for criteria (shown in 

Equation (3)) is calculated using linear scale 

transformation (max method) (shown in Equation 4 and 5) 

[23]. 

                             (3) 

              (4) 

             (5) 

where, xj
Max is the maximum value among choices for 

criteria j = 1, 2, 3.  

Table I shows the value of choices in the matrix at θ 

iteration. These values are normalized using the Equation 

(4) and (5). After normalization, Equation (3) shows the 

normalized value in the matrix format. Finally, Equation 

6 shows how the reward value of choice is calculated by 

summing the normalized score of each criterion. 

                             (6) 

Finally, the reward value for local processing in the 

smartphone is calculated. If smartphone processing 

minimizes processing time, energy consumption, 

monetary cost then it will receive a higher reward value, 

which will be added to the corresponding cumulative 

reward value of the smartphone. The location for task 

processing will be selected based on the average reward, 

which is calculated from the cumulative reward value. 

Therefore, if a device minimizes processing time, energy 

consumption, and monetary cost compared to other 

devices, it will be selected for task processing. 

IV. SIMULATION RESULT 

For face recognition, the Inception v3 [24] model of 

the Tensorflow [25] is used in a smartphone, Edge Cloud 

and Core Cloud. The Inception v3 is a deep convolutional 

architecture designed for classification tasks on ImageNet 

[26] dataset. It consists of 1.2 million RGB images from 

1000 classes. Table II lists the details of the simulation 

parameters, most of which reflect real measurements. 

In the first experiment, the behavior of UCB-1 and D-

UCB are tested by investigating their performance in a 

dynamic environment. In this case, the computation time 

Tedgeserver is varied. Fig. 3 shows the variation of Edge 

Cloud server computation time Tedgeserver for face 

recognition in the remote Cloud. Fig. 4 shows that the 

selection of Edge Cloud as a computation device changes 

over time due to the variation of Edge server computation 

time Tedgeserver. However, the response of UCB-1 (Fig. 4a) 

is slow compared to D-UCB (Fig. 4b) to detect the 

breakpoints (iteration = 300 and 600). UCB-1 and D-

UCB respond to the first breakpoint at iteration = 430 and 

400 respectively by selecting Core Cloud as an optimal 

device for offloading. It takes a long time after the second 

breakpoint by the UCB-1 to select Edge Cloud (iteration 

= 1800) compared with D-UCB (iteration = 690). 

 

Figure 3.  Variation of computation time Tedgeserver for face recognition 
in the remote cloud. 

Next, regret is used to compare the performance of 

UCB-1, random selection, and D-UCB. Regret analysis is 

defined as the expectation of the difference between the 

total reward obtained by selecting the optimal device and 

the total reward obtained by selecting the device using the 

algorithm. Fig. 5 shows the regret analysis between USB-

1, random selection, and D-USB. The cumulative regret 

of D-USB rises slowly compared with USB-1 and 

random selection. 

 
a. UCB-1 

 
b. D-UCB 

Figure 4.  Selection of edge cloud as computation device changes over 
time due to the variation of edge server computation time Tedgeserver. 

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 143



TABLE II. LISTS OF SIMULATION PARAMETERS 

Target device Parameters 

Smartphone 1.4 GHz 

Quad-core Cortex-A53 
RAM: 2 GB 

Processing time = 0 to 2.8 second 

Energy consumption of the smartphone for local processing = 8.736 mAh per face image 
Monetary cost = 0 $ per second 

Edge Cloud (UIU datacenter) 

Intel Xeon Processor E5-2630 V3 
4 core @ 2.40 GHz, RAM: 8 GB 

Processing time = 0 to 0.6 second 

Energy consumption of the smartphone for remote processing = 1 mAh per face image 
Monetary cost = 0.000046 $ per second 

CoreCloud (t2.xlarge instance) 

Intel Xeon Processor E5-2686 V4 
4 core @ 2.30 GHz, RAM: 16 GB 

Processing time = 0 to 0.55 second 

Energy consumption of the smartphone for remote processing = 1 mAh per face image 
Monetary cost = 0.0000555$ per second 

Network  

Smartphone to Edge Cloud Bandwidth = 12 mbps 

Edge RTT = 0.0157 millisecond 
Hop count = 13 

Smartphone to Core Cloud Bandwidth = 10 mbps 
Core RTT = 0.087 millisecond 

Hop count = 27 

 

 

Figure 5.  Regret analysis between UCB-1, random selection and D-
UCB. 

 
a. Commutation time TCoreserver variation for face recognition in the 

remote cloud 

 
b. D-UCB 

Figure 6.  Selection of core cloud as the processing device changes 
over variation of core server computation time Tcoreserver. 

In the second experiment, the behavior of D-UCB is 

tested by investigating its performance when the 

computation time of the Core Cloud server Tcoreserver 

varies (Fig. 6). Fig. 6a shows that Core Cloud is selected 

as a computation device at iteration = 340 due to the 

variation of Core server computation time at the first 

breakpoint (iteration = 300) (Fig. 6b). The selection 

changes back to Edge Cloud at iteration = 690 due to the 

second breakpoint (iteration = 600) of Core server 

computation time. In the third experiment, the behavior 

of D-UCB is tested by investigating its performance by 

varying smartphone processing time, the energy 

consumption of the smartphone for local processing, 

smartphone to Edge Cloud network bandwidth, the 

monetary cost for Edge Cloud processing, smartphone to 

Core Cloud network bandwidth, the monetary cost for 

Core Cloud processing. Fig. 7 shows that the smartphone 

as a commutation processing device is selected at 

iteration = 390 due to the variation of Core server 

computation time (Table III) at the first breakpoint 

(iteration = 300). The selection changes back to Edge 

Cloud at iteration = 910 due to the second breakpoint 

(iteration = 600).  

 

Figure 7.  Selection of smartphone as processing device changes over 
time due to the variation of Table III parameters. 

TABLE III. CHANGE OF SIMULATION PARAMETERS FROM ITERATION 

300 TO 600 

Parameter 

Smartphone processing time = 2.8 second 

Smartphone energy consumption = 9 second 

Smartphone to Edge Cloud network bandwidth = 12000000 mbps 

Monetary cost for Edge Cloud processing = 0.000046$ 

Smartphone to Core Cloud network bandwidth = 10000000 mbps 

Monetary cost for Core Cloud processing = 0.000055$ 

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 144



V. CONCLUSION 

In this paper, we have proposed an offloading 

framework exploiting trade-offs between processing time 

and energy saving, as well as considering economic 

factors. This framework can adapt its decision in dynamic 

network and cloud server load environments with reduced 

computation time. In future work, we will expand the 

capability of the proposed framework for video streaming 

with transcoding, with extensions towards Virtual 

Reality/Augmented Reality (VR/AR) applications. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Nasif Muslim conducted the research, collected data 

and wrote the paper. Salekul Islam and Jean-Charles 

Grégoire supervised the work and approved the final 

version. 

ACKNOWLEDGMENT 

This work was supported by a grant, UIU-RG-161011 

from the Institute for Advanced Research (IAR), United 

International University (UIU). 

REFERENCES 

[1] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can 
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 

51-56, 2010. 

[2] N. Muslim, S. Islam, and J. C. Gregoire, “Offloading framework 
for computation service in the edge cloud and core cloud: A case 

study for face recognition,” International Journal of Network 

Management, p. e2146, 2020. 
[3] W. Mei and W. Deng, “Deep face recognition: A survey,” arXiv 

preprint arXiv: 1804.06655, 2018. 
[4] X. Xia, C. Xu, and B. Nan, “Inception-v3 for flower 

classification,” in Proc. 2nd International Conference on Image, 

Vision and Computing, 2017, pp. 783-787. 
[5] T. Y. H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. 

Balakrishnan, “Glimpse: Continuous, real-time object recognition 

on mobile devices,” in Proc. the 13th ACM Conference on 

Embedded Networked Sensor Systems, 2015, pp. 155-168. 

[6] T. Ahonen, A. Hadid, and M. Pietikainen, “Face recognition with 
local binary patterns,” in Proc. European Conference on 

Computer Vision, 2004, pp. 469-481. 

[7] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-
v4, inception-resnet and the impact of residual connections on 

learning,” in Proc. Thirty-First AAAI Conference on Artificial 
Intelligence, 2017. 

[8] Q. K. Gill and K. Kaur, “A review on energy efficient 

computation offloading frameworks for mobile cloud computing,” 
International Journal of Innovations & Advancement in Computer 

Science, vol. 5, p. 1, 2016. 
[9] M. H. Chen, B. Liang, and M. Dong, “A semidefinite relaxation 

approach to mobile cloud offloading with computing access 

point,” in Proc. IEEE 16th International Workshop on Signal 
Processing Advances in Wireless Communication, 2015, pp. 186-

190. 
[10] S. Islam and J. C. Gregoire, “Network edge intelligence for the 

emerging next-generation internet,” Future Internet, vol. 2, no. 4, 

pp. 603-623, 2010. 
[11] D. Chemodanov, C. Qu, O. Opeoluwa, S. Wang, and P. Calyam, 

“Policy-based function-centric computation offloading for real-

time drone video analytics,” in Proc. IEEE International 
Symposium on Local and Metropolitan Area Networks, 2019, pp. 

1-6. 

[12] S. Chinchali, et al., “Network offloading policies for cloud 

robotics:     A learning-based approach,” arXiv preprint 

arXiv:1902.05703, 2019. 
[13] A. Shakarami, A. Shahidinejad, and M. Ghobaei-Arani, “An 

autonomous computation offloading strategy in mobile edge 
computing: A deep learning-based hybrid approach,” Journal of 

Network and Computer Applications, vol. 178, p. 102974, 2021. 

[14] A. Shahidinejad and M. Ghobaei-Arani, “Joint computation 
offloading and resource provisioning for edge-cloud computing 

environment: A machine learning-based approach,” Software: 
Practice and Experience, vol. 50, no. 12, pp. 2212-2230, 2020. 

[15] A. Shahidinejad, F. Farahbakhsh, M. Ghobaei-Arani, M. H. Malik, 

and T. Anwar, “Context-aware multi-user offloading in mobile 
edge computing: A federated learning-based approach,” Journal of 

Grid Computing, vol. 19, no. 2, pp. 1-23, 2021. 

[16] S. Xiao and X. l. Wang, “The method based on q-learning path 

planning in migrating workflow,” in Proc. International 

Conference on Mechatronic Sciences, Electric Engineering and 
Computer, 2013, pp. 2204-2208. 

[17] P. Zhao, H. Tian, C. Qin, and G. Nie, “Energy-saving offloading 

by jointly allocating radio and computational resources for mobile 
edge computing,” IEEE Access, vol. 5, pp. 11255-11268, 2017. 

[18] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement 
learning: A survey,” Journal of Artificial Intelligence Research, 

vol. 4, pp. 237-285, 1996. 

[19] A. Moustafa and M. Zhang, “Multi-objective service composition 
using reinforcement learning,” in Proc. International Conference 

on Service-Oriented Computing, 2013, pp. 298-312. 

[20] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of 
the multiarmed bandit problem,” Machine Learning, vol. 47, no. 

2-3, pp. 235-256, 2002. 
[21] C. Hartland, S. Gelly, N. Baskiotis, O. Teytaud, and M. Sebag. 

(2016). Multi-armed bandit, dynamic environments and meta-

bandits. [Online]. Available: https://hal.archives-ouvertes.fr/hal-
00113668 

[22] L. Kocsis and C. Szepesvari, “Discounted UCB,” in Proc. 2nd 
PASCAL Challenges Workshop, 2006. 

[23] S. Chakraborty and C. H. Yeh, “A simulation based comparative 

study of normalization procedures in multiattribute decision 
making,” in Proc. the 6th Conference on 6th WSEAS Int. Conf. on 

Artificial Intelligence, Knowledge Engineering and Data Bases, 
2007, pp. 102-109. 

[24] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, 

“Rethinking the inception architecture for computer vision,” in 
Proc. the IEEE Conference on Computer Vision and Pattern 

Recognition, 2016, pp. 2818-2826. 

[25] M. Abadi, et al., “Tensorflow: Large-scale machine learning on 
heterogeneous distributed systems,” arXiv preprint 

arXiv:1603.04467, 2016. 
[26] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, 

“Imagenet: A large-scale hierarchical image database,” in Proc. 

IEEE Conference on Computer Vision and Pattern Recognition, 
2009, pp. 248-255. 

 

Copyright © 2022 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 
 

 

 
Nasif Muslim received the B.Sc. degree in 

Computer Engineering from American 
International University-Bangladesh (AIUB), 

Dhaka, Bangladesh, in 2007, and the M.Sc. 

degree in Communication Technology from 

University of Ulm, Ulm, Baden Württemberg, 

Germany, in 2012. He has also completed 
M.Sc. degree in Computer Science and 

Engineering from United International 

University (UIU), Dhaka, Bangladesh in 2019. 
His current research interest includes Edge Cloud computing, Software 

Defined Networking, and future Internet architecture. 
 

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 145

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Salekul Islam is a Professor and Head of the 

Computer Science and Engineering (CSE) 

Department of United International University 
(UIU), Bangladesh. Earlier, from 2008 to 

2011, he worked as an FRQNT Postdoctoral 
Fellow at the Énergie, Matériaux et 

Télécommunications (EMT) center of Institut 

national de la recherche scientifique (INRS), 
Montréal. He completed his PhD in 2008 from 

Computer Science and Software Engineering 
Department of Concordia University, Canada. His present research 

interests are in Cloud computing, virtualization, future Internet, 

blockchain, SDN and analysis of security protocols. He also carried out 
research in IP multicast especially in the area of security issues of 

multicasting. 

Jean-Charles Grégoire is a Professor at 

INRS, a constituent of the Université du 

Québec with a focus on research and 
education at the Masters and Ph.D. levels. His 

research interests cover all aspects of 
telecommunication systems engineering, 

including protocols, distributed systems, 

network design and performance analysis, and 
more recently, security. He also has made 

significant contributions in the area of formal 
method 

 

 
 

 

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 146


