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Abstract—Patient-Ventilator Asynchrony (PVA) is a 

common cause of ventilation-related medical complications 

and are traditionally only able to be reliably identified by 

trained clinicians. The need for constant monitoring and 

limited access to trained experts are major challenges in 

managing PVA, both of which can potentially be solved by 

automating the detection process. In this research, we 

propose a new data-driven approach to PVA detection using 

several similarity and randomness measures, including how 

unusual a time window is in the series and randomness of 

the time window. We found that all these similarity or 

randomness measures can be estimated with variants of the 

highly efficient Matrix Profile (MP) algorithm, and that one 

base routine can be repeated to generate all the features 

used in classification. We show that MP-based features, 

when used in combination with basic statistical and spectral 

features, can achieve an F-2 score of over 0.9 for two classes 

of PVA events in a sample of participants with moderate to 

high rate of PVA occurrence. 

 

Index Terms—patient-ventilator asynchrony, matrix profile, 

anomaly detection 
  

I. INTRODUCTION 

Patient-Ventilator Asynchrony (PVA) are anomalous 

events during mechanical ventilation where the ventilator 

cycle is desynchronised from the patient’s breathing 

cycles. It has been shown that frequent PVA events can 

lead to many adverse consequences for the patient, such 

as reduced sleep quality, lung injury, and even increased 

ICU and hospital mortality rate [1]. Detecting and 

managing PVA often rely on bedside waveform 

monitoring by trained clinicians, and the availability of 

such experts also poses a challenge. Therefore, research 

on automating PVA detection would greatly benefit the 

patients, as well as relieving the stress on the medical 

staff. 

In this work, our research aims to explore the most 

consistent distinguishing properties of PVA events versus 

non-PVA monitoring data by examining similarity and 

randomness measures. We find that the local inter-class 

similarity, the local randomness measure, and the multi-

channel frequency difference over time are three 
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properties that capture the fundamental differences 

between asynchrony and synchronised breaths. We then 

propose a new PVA detection algorithm based on 

exploiting these three properties and show that it is 

possible to build a highly interpretable anomaly detector 

for PVA events that is also competitive against existing 

machine learning detection algorithms using domain-

specific features. 

II. RELATED WORK 

The majority of existing PVA automatic detection 

methods use either rule-based threshold detectors or 

machine learning classifiers using hand-crafted features. 

Most of previous research works focus on defining a set 

of rules based on domain knowledge to detect particular 

patterns in the ventilator readings and trigger an event 

detection when a preset threshold is reached, such as in 

[2]-[4]. These methods are often limited in the types of 

events they can detect, or the quality of input data 

required. 

Alternatively, machine-learning algorithms based on 

hand-crafted features [5], [6] or raw data inputs [7] have 

been proposed to tackle this problem. They often achieve 

over 90% precision and recall in most cases, proving that 

effectively detecting PVA automatically is indeed 

feasible. However, the predictions made by these 

algorithms can be hard to interpret for domain experts, 

and the complexity of these models can make them 

unsuitable to be adapted to different patient types or 

sensor setups. 

In recent years, there have been several efforts on PVA 

detection by estimating and comparing the data-

generation process of PVA and non-PVA breathing 

cycles. Marchuk et al. [8] proposed using a Hidden 

Markov Chain model to identify hidden state changes 

from low PVA-risk state to high PVA-risk state and vice 

versa. Although this model is only able to model the 

count of PVA events over a longer time window, rather 

than performing fine-grained individual event detection, 

this nevertheless shows that it is possible to trace the 

observed distinctions between PVA and normal data back 

to their different data-generation processes. Sarlabous et 

al. [9] proposed that instead of estimating the actual data-

generation process, we can estimate the randomness or 
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predictability changes of the underlying process via 

Sample Entropy and detect potential PVA events by 

exploiting the high variation / low predictability of PVA 

events versus regular breaths. 

Overall, existing research traditionally rely more on 

identifying features of given PVA event types, but there 

are also promising results exploiting the high variation 

and inter-class dissimilarity of PVA events, taking an 

approach more similar to outlier detection problems. We 

believe that the latter approach has the potential to be 

more robust, adaptive and interpretable, but is not yet 

adequately explored. In this work, we aim to quantify 

such similarity and variability, and integrating them into 

the feature set for PVA detection. 

III. DATA AND METHODS 

A. Data Collection and Annotation 

The data for our analysis was collected from 59 

participants undergoing non-invasive ventilation. 

Multiple channels of ventilator readings such as mask 

pressure and airflow were collected. Additional sensors 

on the patient also recorded more data channels such as 

abdominal and thoracic movement, leg movement, EMG, 

etc. Fig. 1 shows a sample data with four channels. 

A group of respiratory experts subsequently examined 

the data and added annotations (consisting of timestamps 

and event type) over breathing cycles in the monitoring 

data they deemed to be PVA events. By definition, PVA 

events are events that introduce mismatches between the 

ventilation cycles and the patient’s breathing efforts. 

B. Change of Frequency Difference Detection 

Given a proxy measure of ventilation cycles and 

patient’s breathing cycles (for example “mask pressure” 

and “thoracic movement”), the most fundamental 

distinction between a PVA event and a normal ventilation 

cycle should be that the PVA event has a non-zero 

frequency difference between the two data channels. 

Many of the previous researches, such as [2], [6], [7] did 

not have access to proxies of breathing efforts, and did 

not take advantage of this PVA detection method. We 

have access to two measures of breathing efforts, thoracic 

and abdominal movement in our dataset, therefore we 

include this direct detection approach in our analysis. Fig. 

1 gives an example of direct detection approach. 

To determine the frequency of each data channels over 

time, we opt to use Filtered Hilbert Transform to extract 

phase sequences from detrended data channels, and then 

use peak detection to find end points of each cycle. We 

then apply a windowed moving average to count the 

number of completed cycles around each time point, as 

use the number of neighbouring cycles as a measure of 

instantaneous frequency. We found this approach to be 

more robust than directly calculating frequency from 

phase angles. We then calculate the phase difference 

between two channels by taking the difference of their 

respective windowed moving average cycle counts. A 

positive difference typically corresponds to Autocycle 

(AT) or Double Trigger (DT) events, whereas a negative 

difference often corresponds to Ineffective Effort (IE) 

events. 

C. Self-Join Similarity Search via Matrix Profile 

The direct approach is straightforward, but often fails 

when the signal is highly irregular or there are alternating 

behaviours over time. To detect PVA events more 

reliably, we desire to identify the irregularities in the data 

and determine which ones correspond to PVA events. 

Hence, we explore performing similarity search via 

matrix profile. 

As suggested by the results of [9], PVA event intervals 

are less predictable and more irregular than normal 

ventilation cycles, and therefore will likely also have a 

lower inter-class similarity compared to normal cycles. 

PVA events are also usually the minority class across the 

duration of the patient monitoring time series, therefore it 

is more likely for time windows of regular cycles to be 

similar to each other, and for time windows containing 

PVA events to be more distinct from other time windows. 

The Matrix Profile algorithm [10] is well-suited for 

anomaly detection tasks such as this. It compares each 

fixed-length time windows to all other time windows in 

the same time series (or with a different time series), and 

either finds the distance of each time window to their 

nearest neighbour (we denote this as 𝑀𝑃1𝑁𝑁 ), or the 

accumulated correlation to all other windows (denoted as 

𝑀𝑃𝑠𝑢𝑚 ). The 𝑀𝑃1𝑁𝑁  and 𝑀𝑃𝑠𝑢𝑚  of matrix profiles are 

defined as below: 

𝑀𝑃1𝑁𝑁 = 〈 min
𝑗,|𝑖−𝑗|>𝑑

‖𝑥𝑖:𝑖+𝑚 − 𝑥𝑗:𝑗+𝑚‖〉 , 𝑖 ∈ [0, 𝑙 − 𝑚] 

𝑀𝑃𝑠𝑢𝑚 = 

〈 ∑ ‖𝑥𝑖:𝑖+𝑚 − 𝑥𝑗:𝑗+𝑚‖ ∙ 𝐼‖𝑥𝑖:𝑖+𝑚 − 𝑥𝑗:𝑗+𝑚‖ > 𝛼

𝑗,|𝑖−𝑗|>𝑑

〉 

where 𝑖 , 𝑗  are indices of time series elements, x  are 

length- 𝑚  subsequences of the time series, 𝛼  is a 

threshold value for summation to exclude low and/or 

negative correlations, and 𝐼 is the indicator function. 

Since PVA events are typically rarer and more 

dissimilar to each other, they will more likely show up as 

having a higher 𝑀𝑃1𝑁𝑁 and very low 𝑀𝑃𝑠𝑢𝑚 compared to 

normal cycle time windows. 

As classification features, the self-join matrix profiles 

capture how unusual a given time window is compared to 

the rest of the time series. From the matrix profile 

distribution histograms in Fig. 2 and Fig. 3, we can see 

that certain event classes like Autocycle (AC) and 

Double Trigger (DT) has noticeably higher 𝑀𝑃1𝑁𝑁  and 

𝑀𝑃𝑠𝑢𝑚  compared to the unlabelled class (OTHER). 

However, we also noticed that for the Ineffective Effort 

(IE) event class, neither matrix profile measures 

demonstrate a distinct distribution from the unlabelled 

class, therefore these features may not have much 

discriminative power for IE event. 
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Figure 1. PVA detection of Ineffective Effort events via frequency difference detection. The red lines in the figure are lined up with mask pressure 

cycles, whereas the green lines are lined up with thoracic signal cycles. As we see, there are20 Pmask cycles in this snippet, but there are 25 
corresponding Thor cycles, indicating there are missed ventilation cycles. 

 

Figure 2. 𝑀𝑃1𝑁𝑁 Distribution histogram for each event class (AC - Autocycle, DT - Double Trigger, IE - Ineffective Effort, OTHER - not labelled as 

events) from observation s2g2p55. 

 

Figure 3. 𝑀𝑃𝑠𝑢𝑚 Distribution histogram for each event class, from observation s2g2p55. 

D. Efficient Modified Approximate Entropy via Matrix 

Profile 

Matrix Profile provides us with a highly efficient tool 

for comparing self-join similarities between rolling time 

windows. However, it does not directly measure the 

randomness or regularity of the time series, only how it 

manifests in the distribution of time series snippets. 

𝑀𝑃1𝑁𝑁  and 𝑀𝑃𝑠𝑢𝑚  are still dependent on the particular 

distribution of time series “shapes”. For example, a non-

PVA pattern might be highly regular, but because it only 

appears a few times, it may not have a high 𝑀𝑃𝑠𝑢𝑚 score. 

Conversely, a PVA event might be quite irregular, but it 

might happen to match up well with one single pattern by 

chance, and end up with a much lower 𝑀𝑃1𝑁𝑁 score. Is 

there a way to directly measure randomness with matrix 

profile, similar to the Sample Entropy used in [9]. We 

believe this is possible. 

Approximate Entropy [11] and Sample Entropy [12] 

are regularity statistics for time series. They measure how 

likely patterns that are similar to each other will evolve 

over time in a similar way. According to [13], 

approximate entropy and sample entropy can be defined 

as follows: 

𝑆𝑎𝑚𝑝𝐸𝑚(X, 𝑚, 𝑟) =

−𝑙𝑜𝑔
∑ ∑ 𝐼

𝑙𝑋−𝑚−1

𝑗=0,𝑗≠𝑖

𝑙𝑋−𝑚−1

𝑖=0
{∥x𝑖:𝑖+𝑚+1−x𝑗:𝑗+𝑚+1∥∞<𝑟}

∑ ∑ 𝐼
𝑙𝑋−𝑚−1

𝑗=0,𝑗≠𝑖

𝑙𝑋−𝑚−1

𝑖=0
{∥x𝑖:𝑖+𝑚−x𝑗:𝑗+𝑚∥∞<𝑟}

  

𝐴𝑝𝑝𝑟𝑜𝑥𝐸𝑚(X, 𝑚, 𝑟) =

−
1

𝑁−𝑚
∑ 𝑙𝑁−𝑚−1
𝑖=0 𝑜𝑔

∑ 𝐼
𝑙𝑋−𝑚−1

𝑗=0
{∥x𝑖:𝑖+𝑚+1−x𝑗:𝑗+𝑚+1∥∞<𝑟}

∑ 𝐼
𝑙𝑋−𝑚−1

𝑗=0
{∥x𝑖:𝑖+𝑚−x𝑗:𝑗+𝑚∥∞<𝑟}

  

where 𝑚 is the time window size and 𝑟 is a predefined 

distance threshold that determines what subsequences we 

consider similar. Essentially, approximate entropy sums 

up the log probability of length-𝑚 time windows which 

are close to each other staying close to each other when 

extended to length 𝑚 + 1 . Sample entropy moves the 

summation inside the log function, with a few other 

minor changes to the calculation. Notice that in both 

equations above, the calculation involves comparing each 

time window to all other time windows in the same series, 

which is exactly the task that can be efficiently computed 

with matrix profile. Also, instead of summarising the 

entire time series by adding up all the log probabilities 

over the full time length, we can perform the summation / 

averaging over a rolling time window or a given set of 

episodes (like breathing cycles), and obtain a new time 

series of evolving approximate entropy. 

We define our modified approximate entropy pre-

summation as follows: 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑. 𝐴𝑝𝑝𝑟𝑜𝑥𝐸𝑚 =

⟨−𝑙𝑜𝑔
∑ 𝐶
𝑙𝑋−𝑚−1

𝑗=0
𝑜𝑟𝑟(x𝑖:𝑖+𝑚+1,x𝑗:𝑗+𝑚+1)⋅𝐼{𝐶𝑜𝑟𝑟(x𝑖:𝑖+𝑚+1,x𝑗:𝑗+𝑚+1)>𝑟}

∑ 𝐶
𝑙𝑋−𝑚−1

𝑗=0
𝑜𝑟𝑟(x𝑖:𝑖+𝑚,x𝑗:𝑗+𝑚)⋅𝐼{𝐶𝑜𝑟𝑟(x𝑖:𝑖+𝑚,x𝑗:𝑗+𝑚)>𝑟}

⟩  
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Figure 4. Modified approximate entropy distribution, from observation s2g2p55. 

 

Figure 5. Modified approximate entropy distribution, from observation s2g1p19. 

Notice that we also changed the subsequence a 

counting with distance threshold of ∥⋅∥∞ to summation of 

correlations larger than a threshold. 

Fig. 4 and Fig. 5 show that when applied to the PVA 

dataset, modified approximate entropy generally has 

distinct distributions for AT and DT events versus non-

event time windows, but the distribution for IE events 

might differ less from the corresponding non-event 

distribution for certain participants. 

E. Feature Generation and Classification 

We aggregate the features generated from previous 

sections per ventilation cycle, including signal phase, 

amplitude, phase difference and peak count, as well as 

the two MP-based features, 𝑀𝑃1𝑁𝑁  and modified 

approximate entropy as features for final classification. 

We first select valid sections of observation data and 

segment the data into individual ventilation cycles using 

a mean squared peak detector over the mask pressure 

channel. We then calculate the mean, max, min and 

standard deviation of simple features listed above, for 

each data channel. The classification methods can be 

generic machine learning models that are easy to interpret. 

For example, we use a LightGBM classifier [14] as the 

final detector. We label each ventilation cycle based on 

whether it contains a PVA event. 

IV. EXPERIMENT 

A. Experimental Setup 

We conduct experiment using the data from the data 

collection section. We select 44 participants with 

sufficient valid ventilation cycles in their observation 

data to be used in the experiment. 

We sequentially perform leave-one-out testing on each 

of the participants, where the classifier is trained and 

five-fold validated on all but one participant, then tested 

on the remaining participants. We use F-2 score ((1 +
22) ⋅ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙)/(22 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)) as 

the primary performance metric due to the higher 

importance of recall for our applications, then calculate 

the best precision and recall given the best F-2. 

To evaluate the effectiveness of our model, we apply 

the same classifier and the same validation and testing 

settings, using the feature sets offered in the ventMAP 

model of [15]. The model extracts 16 shape-based 

features per ventilation cycle from pressure and flow 

values. It does not make use of the abdominal or thoracic 

sensor readings in our dataset, however, thus a direct 

comparison of performance would not be fair. Therefore, 

we also combine our feature sets with that of ventMAP to 

see whether and by how much the new features can 

improve upon the performance of ventMAP features 

alone. 

B. Results 

 
Figure 6. Event (AC+DT) percentage of all ventilation cycles versus the 

performance of the classifier. As we see, the classifier performs better 
on participants with higher event prevalence. 

The overall classification performance and 

comparisons are shown in Fig. 6. For a significant portion 

of the participants tested, our model is able to detect 

combined AC and DT events at over 90% recall and over 

80% F-2 score. As we can see in Fig. 6, generally, event 

detection is significantly better in participants with a 

higher prevalence of PVA (i.e., AC+DT percentage > 

5%). Looking at the testing precision and recall, we see 
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that the classifier can achieve over 90% recall for most 

participants, but the detection precision drops as the ratio 

of PVA events as a percentage of all ventilation cycles 

decreases to less than 3-5%. 

We can also observe from Fig. 7 that the MP-based 

features perform slightly better than ventMAP features. If 

we combine the MP-based and ventMAP features, we see 

a noticeable F-2 score increase across all event 

prevalence levels. The precision of detection is still low 

for low-event-rate participants, but with the combined 

features, even there it is much improved. 

 
Figure 7. Feature importance for combined feature set. 

If we look at the feature importance of the classifier 

for the combined feature set (Fig. 7), we see that the 

classifier is making use of features from all sources, 

including basic shape, ventMAP, phase difference, self-

join matrix profile and modified approximate entropy. 

V. DISCUSSION 

We have shown that our MP-based features, self-join 

matrix profile and modified approximate entropy, when 

coupled with basic statistics and signal features, can be 

effective for Autocycle and Double Trigger event 

detection for participants with high event rates. The 

performance is at least comparable to the results with the 

same classifier using ventMAP features. Generally, our 

method is able to achieve very high (90%+) test recall for 

most participants. From Fig. 7 we can also find the MP-

based features being actively used by the classifier as 

some of the most relevant features when we mix both MP 

and ventMAP features in the same feature set. The 

classifier trained on combined feature set performs better 

than with separate feature sets, and make use of features 

from both sets, indicating that the new MP-based features 

are indeed providing some information not captured by 

the ventMAP features. 

Unfortunately, the precision suffers when the 

participants’ PVA event rate is very low. The reason for 

poor precision in low-PVA participants has to be 

investigated further, as normally it should be easier to 

detect anomalies when most of the data is regular. 

Currently we believe there could be two non-exclusive 

explanations. The first is that the low-PVA patients often 

have isolated PVA events without a sustained period of 

irregular breathing, which could be easier to miss. The 

second explanation is that as in the previous explanation, 

PVA events in low-event-rate participants might behave 

quite differently, and there might not be enough samples 

in the data for the classifier to learn well enough, because 

they happen so rarely. We hope that with more data, data 

augmentation techniques and stratified training, we will 

be able to achieve higher performance even on 

participants with low PVA rates. 

We have not addressed event identification problem 

with the current classifier. Different PVA events like 

Autocycle or Double Trigger can appear very similar 

based on some basic features like pressure standard 

deviation or cycle difference, but the waveforms will 

have different shape characteristics. The self-join MP-

based features are great for anomaly detection, but alone, 

they cannot effectively determine the type of the 

anomaly,. Therefore our current MP-based feature set is 

unfit for high-precision PVA event identification. 

In future work, we are going to explore using matrix 

profile as an AB comparison algorithm that measures the 

similarity between two different time series and their 

subseries. Using this approach, we will be able to use 

annotated data as templates and find the closest match of 

a suspected PVA event in a collection of labelled time 

series, making event identification easier. We are actively 

investigating ways we can incorporate both similarity 

self-match and cross-match in our methods. 

Another task for future work is to include Ineffective 

Effort detection in our method. The main challenge is 

that Ineffective Effort events can be much subtler than 

Autocycle or Double Trigger events, and often on a 

shorter time scale. Our current approach only focuses on 

anomalies on the scale of whole ventilation cycles, but 

for sub-cycle anomalies, we will have to adjust how we 

calculate our features, for example, using matrix profile 

with lower time window sizes. This will be challenging, 

as shorter time window distances are more affected by 

random noise, which we will have to mitigate. 

VI. CONCLUSION 

In this work, we proposed quantifying the variability 

of the ventilator output time series with two similarity-

based features, self-join matrix profile and modified 

approximate entropy, and showed that they serve as great 

addition to existing shape-based features in PVA 

detection through machine learning. Even though these 

features do not achieve high detection precision on their 

own, they are powerful for detecting suspected PVA 

events, and can potentially boost other methods that are 

better at classifying events. In future works, we aim to 

extend similarity-based methods to supervised nearest-

neighbour search for better event confirmation and 

identification. 
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