
A Proposal of Grammar-Concept Understanding

Problem in Java Programming Learning Assistant

System

Soe Thandar Aung, Nobuo Funabiki, Yan Watequlis Syaifudin, and Htoo Htoo Sandi Kyaw
Department of Electrical and Communication Engineering, Okayama University, Okayama, Japan

Email: funabiki@okayama-u.ac.jp

Shune Lae Aung and Nem Khan Dim
Department of Computer Studies, University of Yangon, Yangon, Myanmar

Email: shunelaeaung@gmail.com

Wen-Chung Kao
Department of Electrical Engineering, National Taiwan Normal University, Taipei, Taiwan

Email: jungkao@ntnu.edu.tw

 Abstract—Nowadays, Java has been extensively adopted in

practical IT systems as a reliable and portable object-

oriented programming language. To encourage self-studies

of Java programming, we have developed a Web-based Java

Programming Learning Assistant system (JPLAS). JPLAS

provides several types of exercises to cover different levels.

However, any type does not question grammar concepts of a

source code directly, although it can be the first step for

novice students. In this paper, we propose a Grammar-

Concept Understanding Problem (GUP) as a new type in

JPLAS. A GUP instance consists of a source code and a set

of questions on grammar concepts or behaviors of the code.

Each answer can be a number, a word, or a short sentence,

whose correctness is marked through string matching with

the correct one. We present the algorithm to automatically

generate a GUP instance from a given source code by: 1)

extracting the registered keywords in the code, 2) selecting

the registered question corresponding to each keyword, and

3) detecting the data required in the correct answer from

the code. As for evaluations, we first generate 20 GUP

instances with a total of 99 questions from simple codes on

fundamental Java grammar, and assign them to 100

university students in Indonesia. On the other hand, we

additionally generate 8 instances with a total of 30 questions,

and assign all the instances to 29 undergraduates in

Myanmar as the comparative study. The results show that

the proposal is effective to improve the performance of the

students who are novices in Java programming.

Index Terms—Java, JPLAS, grammar-concept

understanding problem, automatic generation algorithm

I. INTRODUCTION

For decades, Java has been frequently used in a variety

of applications such as client-server Web applications,

Android applications, IoT (Internet of Thing) systems,

 Manuscript received November 30, 2020; revised August 25, 2021.

and cloud service systems, as a highly portable object-

oriented programming language. Currently, Java is still

one of the most popular programming languages [1].

Thus, Java programming has been educated in numerous

universities and professional schools. To enhance the

education, we have studied a Web based online Java

Programming Learning Assistant System (JPLAS) [2], [3].

JPLAS offers various types of programming exercises

to cover different levels. In all types, JPLAS will

automatically mark an answer from the student at the

server. Two methods are adopted for this automatic

marking. One is the string matching between the answer

and the correct one stored in the database. If every

character is identical, the student answer will be

considered correct. Otherwise, it is not. Another is the

software testing. By running the test code on JUnit, the

correctness of the answer will be verified.

Currently, in JPLAS, we have defined and

implemented six different problem types, called the Value

Trace Problem (VTP) [4], the Element Fill-in-Blank

Problem (EFP) [5], the Code Completion Problem (CCP)

[6], the Code Correction Problem (CRP) [7], the

Statement Fill-in-Blank Problem (SFP) [8], and the Code

Writing Problem (CWP) [9]. For VTP, EFP, CCP, the

string matching is adopted in marking, where a set of

elements in a source code, such as numbers or words, will

be requested in the answer. For CRP, SFP, and CWP, the

software testing is adopted, where a full or part of a

source code is requested in the answer.

To learn programming effectively, it is suggested that

students solve simple problems for code reading and

grammar concept studies first, and then practice the

coding problems using object-oriented programming

concepts. Therefore, students are expected to solve the

programming exercises along this order of problem types

in JPLAS.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 342
doi: 10.12720/jait.12.4.342-350

Nevertheless, all problem types in JPLAS do not

explicitly require the student’s knowledge and

understanding of basic grammar concepts and keywords

of Java programming that are used in the given source

codes. In the programming study, novice students first

need to realize the basic grammar concepts and keywords

to read source codes correctly. Thus, teachers teach the

fundamentals in the lectures using textbooks before

assigning programming exercises to students. In all

programming languages, each concept has been initiated

for a specific purpose. Hence, the correct understanding

of the concepts is essential to read or write source codes

smoothly.

In this paper, we propose a Grammar-Concept

Understanding Problem (GUP) as a new problem type in

JPLAS and a first step problem for the novice students.

The main research question of this paper is how to find

the student who lacking the basic knowledge in

programming. By solving the GUP instances, the teacher

can know how much the students need necessary

knowledge and how much they understand on

programming concepts. Besides, we can encourage the

students to study by themselves if they cannot solve. On

the other hand, the students have to understand the

keyword concerned with the Java programming as the

first step. If the student doesn’t have proper knowledge, it

is impossible to continue study in programming.

A GUP instance consists of a Java source code, a set of

questions, and the correct answers. Each question

describes a basic grammar concept in Java programming

that appears in the source code, and requests to point out

the corresponding element or keyword in the source code.

The answer is marked by the string matching like VTP

and EFP.

To help teachers design GUP instances, we also

propose the algorithm to automatically generate a GUP

instance from a source code. To use this algorithm, the

teacher needs to select a Java source code that will be

studied by students for code reading. The algorithm first

extracts the keywords or elements that are related to basic

grammar concepts from the code. Then, it singles out the

questions corresponding to the keywords, where the

keywords in the code become the correct answers to the

questions.

The keyword list and the question list are prepared for

the algorithm. By updating them, the algorithm can deal

with the extensions of the Java grammar. Besides, by

changing them to a different programming language, the

algorithm can be used there.

This algorithm involves several limitations. When the

same keyword appears in the source code again, the

algorithm will generate the same question for the

keyword. A large number of Java source codes may have

common keywords such as class, access modifier, static,

void, and main. For those common keywords, the

corresponding same questions are duplicated even for one

code. To avoid it, the teacher needs to remove the

duplicate or redundant questions before presenting the

GUP instance to students.

In the evaluations, we first generate 20 GUP instances

with a total of 99 questions from simple codes on

fundamental Java grammar in a textbook [10], and assign

them to 100 undergraduates in Indonesia. The results

show that 87 students have acquired the necessary

knowledge of the fundamental Java grammar to continue

studying Java programming while the remaining students

do not achieve the required level and need instructions of

the teacher. As for the comparative study, we additionally

generate 8 instances with a total of 30 questions, and

assign all the instances to 29 undergraduates in Myanmar.

It is proved that all the students have obtained the

necessary knowledge to continue studying Java

programming. Thus, the proposal is effective in

identifying the students who are lack of the fundamental

knowledge of Java programming and need more

instructions.

The rest of this paper is organized as follows: Section

II reviews our JPLAS preliminary works to this paper.

Section III presents the details of the proposal. Section IV

demonstrates the GUP instance generation algorithm.

Section V shows evaluations of the proposal. Section VI

introduces related works in literature. Finally, Section VII

concludes this paper with future works.

II. REVIEW OF JPLAS

In this section, we review our preliminary works on

JPLAS.

A. JPLAS Software Platform

JPLAS is a Web application system which allows a

teacher to offer assignments of programming exercises to

plenty of students in the class at the same time, and to

manage their learning activities on the server. For the

server platform in Fig. 1, Linux is adopted for the

operating system, Tomcat is for the Web application

server, and MySQL is in the database. The applications in

JPLAS are implemented based on the MVC model, where

Java is used for the model (M) part, HTML/CSS/

JavaScript are for the view (V) part of the browser,

and JSP is for the control (C) part [3].

Figure 1. JPLAS server platform.

B. Implemented Problem Types

JPLAS provides the following types of programming

exercise problems to cover different learning stages of

Java programming:

• Value Trace Problem (VTP): VTP requests to

answer the actual values of important variables in

the given Java source code. The code often

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 343

implements a fundamental data structure or

algorithm.

• Element Fill-in-Blank Problem (EFP): EFP

requests to fill in the blank or missing elements

with the proper words in the given source code.

The locations of the blank elements are explicitly

shown in the source code.

• Code Completion Problem (CCP): CCP requests

to fill in the blank or missing elements with the

proper words in the given source code, like EFP.

However, their locations are not shown in the

code. Students need to discover the locations, and

complete the whole statements.

• Code Amendment Problem (CAP): CAP requests

to amend the incorrect elements in the source

code. The incorrect elements are either missing or

wrong. Students need to find out the locations of

the incorrect elements, and complete the whole

statements.

• Code Correction Problem (CRP): CRP requests

to correct the incorrect source code so that it can

pass the given test code on JUnit. The source

code has several errors that cannot be passed by

the test code.

• Statement Element Fill-in-Blank Problem (SFP):

SFP requests to fill in the blank statements in the

given source code so that it can pass the given

test code on JUnit.

• Code Writing Problem (CWP): CWP requests to

write a source code that passes the given test code

on JUnit. To help a student, the detailed

information for the source code implementation

is usually described in the test code.

In JPLAS, the answer to each problem will be marked

automatically on the server using the program. For VTP,

EFP, CCP, and CAP, the answer is marked by the string

matching with the correct one that is stored in the

database. For CRP, SFP, and CWP, the answer is marked

by the software testing using the test code on JUnit.

C. Limitation

These exercise problems assume that the students have

already acquired the basic grammar concepts and

keywords of Java programming in the lectures with

textbooks. To avoid a huge dropout from the course due

to insufficient knowledge, teachers should confirm the

understanding levels of students in basic grammar

concepts and keywords of Java programming, and help

the students out who may not catch up with them.

Therefore, JPLAS should provide a new type of

programming exercises that directly ask the grammar

concepts or keywords that appear in a source code. In the

next section, we will present the Grammar-Concept

Understanding Problem (GUP) for further studies.

III. PROPOSAL OF GRAMMAR-CONCEPT

UNDERSTANDING PROBLEM

In this section, we present the definition of the

Grammar Concept Understanding Problem (GUP) and

the algorithm to automatically generate a GUP instance.

A. Definition of Grammar-Concept Understanding

Problem

A GUP instance consists of a Java source code, a set of

questions, and the correct answers to the questions. Each

question describes a basic grammar concept in Java

programing that appears in the source code, and requests

to pick up the corresponding element or keyword in the

source code. The student answer is marked by the string

matching with the corresponding correct answer.

B. Example of GUP Instance

Here, we show an example of the GUP instance.

source code1 shows the source code.

source code1

1 import java.util.Scanner;

2 public class UserIntegerInput {

3 public static void main(String[] args) {

4 Scanner scanner = new Scanner(System.in);

5 int num = scanner.nextInt();

6 }

7 }

Then, the set of questions and the corresponding

correct answers are given as follows:

1) Which keyword is used to refer to the classes and

interfaces in other packages? (import)

2) Which library needs to run the Scanner class?

(java.util.Scanner)

3) Which keyword allows from other class in Line2?

(public)

4) What is class name? (UserIntegerInput)

5) Which keyword allows the method to run without

creating an object? (static)

6) Which keyword describes no returning data in

Line 3? (void)

7) Which keyword represents the entry point from

which the JVM can run this program? (main)

8) Which data type is used in Line 3? (String)

9) Which keyword represents the parameters

passed to the main method? (args)

10) What is the object name of Scanner class?

(scanner)

11) Which keyword is used to create a new object or

instance? (new)

12) Which keyword represents the standard input

stream that passes the predefined object for

creating an object of

Scanner class? (System.in)

13) Which data type is used in Line5? (int)

14) Which method is used to scan the next token of

the integer input? (nextInt)

It is noted that the correct answer is indicated inside

the blankets. Fig. 2 illustrates the user interface for this

GUP instance.

IV. GUP INSTANCE GENERATION ALGORITHM

In this section, we introduce the GUP instance

generation algorithm to assist a teacher to generate a new

GUP instance among the selected source code.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 344

Figure 2. GUP user interface in JPLAS.

A. Input Files

To use the algorithm, a teacher needs to prepare the

file of the source code that covers the grammar concepts

to be studied by students through solving the GUP

instance. Then, the algorithm will read the source code

file and generate the GUP instance file through the

procedure in Section IV-D. The files for the keyword list

and the question list must be prepared beforehand for this

algorithm.

B. Keyword List

TABLE I. KEYWORD LIST

Type Question Answer Keywords

1 Unique Unique

for, while, do, try, catch,

ArithmeticException,

NullPointerException, finally,

throw, throws,

read, IOException, close, void,

static, main, args, java.util.Scanner,

new, System.in, nextInt, nextLine,

extends, this, implements, return,

abstract, instanceof, valueOf

2 Unique in code class, interface, package, Scanner

3 in code Unique
int, long, short, byte,

double, float, String

4 Multiple Unique public, private, protected

The proposed algorithm uses the keyword list in Table

I to list every possible keyword to represent the basic

grammar concepts to be studied through solving GUP

instances. The keywords are categorized into the four

types, depending on the uniqueness of the selected

question and correct answer.

1) For the type-1 keyword, both the question and the

correct answer are unique for any source code. The

keyword itself becomes the correct answer.

2) For the type-2 keyword, the question is unique for

any source code. But, the correct answer must be found

from the source code using the keyword.

3) For the type-3 keyword, the question contains the

line number information in the source code to specify the

keyword, since otherwise, the question can be related to

other keywords in the code. The line number must be

found from the source code to complete the question. The

correct answer is unique for any source code, where the

keyword itself is the correct one.

4) For the type-4 keyword, the question has multiple

choices, depending on the concept that the teacher wants

to ask to students. One question contains the line number

information in the source code to specify the keyword,

which must be identified from the source code to

complete the question. The correct answer is unique for

any question, where the keyword itself is the correct one.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 345

TABLE II. QUESTION LIST

Type Keywords Questions

1 for Which keyword represents Looping?

1 while Which keyword represents Looping?

1 do Which keyword always have to execute the loop at least once?

1 try Which keyword indicates the following lines may cause errors?

1 catch Which keyword checks the error message when the exceptions occurred in the try block?

1 ArithmeticException
Which exception is thrown when an exceptional condition has occurred in an arithmetic

operation?

1 NullPointerException Which exception is thrown when referring to the members of an object is nothing?

1 finally
Which keyword represents the block that is always executed whether exception is occurred

in the try block or not?

1 throw
Which keyword is used in method body to declare the exceptions that can occur in the

statements present of the method?

1 throws
Which keyword is used in method signature to declare the exceptions that can occur in the try

block?

1 read Which method reads a byte of data from this input stream?

1 IOException Which exception is thrown when an input-output operation failed or interrupted?

1 close
Which method is used to terminate this file input stream and releases any system

resources associated with the stream?

1 static Which keyword allows the method to run without creating an object?

1 main Which keyword represents the entry point from which JVM can run this program?

1 args Which keyword represents the parameters passed to the main method?

1 extends Which keyword is necessary to inherit from the super class in the sub class?

1 nextInt Which method is used to scan the next token of the integer input?

2 class What is class name?

2 package What is the package name?

2 scanner What is the object name of Scanner class?

3 void Which keyword describes no returning data at Line#?

3
int, long, short, byte,

double, float, String
Which data type is used in Line#?

4 public
What is the access modifier at Line #?

Which keyword allows from any other class in Line#?

4 private
What is the access modifier at Line #?

Which keyword prohibits the access to this code from any other class?

4 Protected
What is the access modifier at Line#?

Which keyword allows the access to this code from other class only in the same package?

C. Question List

The question list in Table II is used to list the questions

for each keyword. It is noted that Table II shows the part

of the questions due to the limited space. For the type-1

or type-2 keyword, the corresponding question is unique

for any source code. For the type-3 or type-4 keyword,

the question can be completed after locating the line

number of the source code where the keyword appears. In

the question list, the line number is described by # that

must be replaced by the line number.

D. GUP Generation Procedure

A GUP instance file is generated through the following

procedure:

1) Read a Java source code file.

2) Extract he keywords in the keyword list from the

source code.

3) Select the question in the question list that

corresponds to each extracted keyword.

3-1) If multiple questions are registered in the

question list for the keyword, one of them is

randomly selected.

3-2) If the question needs to find the line number

of the source code for the keyword, it is

found and included in the question.

4) Find the element as the correct answer from the

source code.

5) If the same pair of the question and the correct

answer is selected, discard them as the duplicated

question.

6) Output the GUP instance file of the source code,

the questions, and the correct answers.

For example, for source code1 in Section III-B, the

following keywords are extracted:

• Import, java.util.Scanner, public, class,

• UserIntegerInput, public, static, void, main, String,

• args, Scanner, scanner, new, Scanner, System.in,

int,

• num, scanner, nextInt.

Then, the 14 questions and the correct answers in

Section III-B are selected from these keywords.

V. EVALUATION

In this section, we evaluate our proposal through

applications to undergraduate students in two universities

in Indonesia and Myanmar respectively.

A. Application to Students in Indonesia University

First, we apply the proposal to students in a university

in Indonesia.

1) Application Overview: We generated 20 GUP

instances with 99 questions from different source codes

that cover the topics of the basic Java grammar. Here, the

13 keywords, for, while, do, try, catch,

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 346

ArithmeticException, NullPointerException, finally,

throw, throws, read, IOException, close, are not

included in these source codes. It is confirmed that the

generated questions are suitable for the level of novice

students. Then, we required 100 undergraduate Indonesia

students to solve the problems using the offline

answering function [11].

The results show that 87 students among them have

learned the fundamentals of Java grammar and should

pursue an advanced level. However, the remaining 13

students fail to achieve the required level. Thus, the

teacher needs to take care of these students and provide

additional instructions and assignments.

2) Correct Answer Results: Based on the result, first,

we analyzed the performance by the number of correctly

solved questions, then divided the 100 students into five

groups. Table III shows the range of the number of

correctly solved questions, the number of students, the

range of the number of instances attempted to be solved,

and the average number of answer submission times per

student with its standard deviation for each group.

TABLE III. CORRECT ANSWER RESULTS

Group

of solved

questions

range

of

students

of

attempted

instances

range

ave. # of

submissions

(SD)

A 99 51 20 86.0 (58.6)

B 98 10 20 99.9 (43.8)

C 90-97 22 19 90.1 (83.1)

D 89-51 9 19-14 63.7 (49.2)

E 28-0 8 4-0 17.7 (14.0)

The table indicates that in group A, 51 students among

100 solved all the questions correctly. In group B, 10

students did not solve only one question where they

attempted to solve all the 20 GUP instances. In group C,

22 students solved 90 or more questions correctly where

they did not attempt to solve one GUP instance. In group

D, 9 students solved less than 90 questions correctly

where they did not try to solve several GUP instances. In

group E, 8 students only solved less than 28 questions

correctly where they attempted to solve a few GUP

instances. Hence, the teacher may spend more time on

taking care of the students in group E.

B. Submission Times Results

Next, we analyzed the performance according to the

number of times of answer submission. JPLAS allows the

students to submit their answers to the server at any time,

because it is the tool for self-studies. Table IV shows the

range of the answer submission and the corresponding

number of students.

The table suggests that in group I, 29 students among

100 submitted their answers 50 or less times to solve 20

GUP instances, which indicates less than 2.5 submissions

for each instance on average. These students have

thoroughly understood the questions, and carefully

prepared the answers before submissions. In groups V, VI

and VII, six students submitted answers 200 or more

times, which indicates more than 10 submissions for each

instance on average. It seems that these students did not

well understand the questions and submitted their

answers randomly. Furthermore, in group VIII, 7 students

did not reach even 20 submissions. The teacher needs to

care these 13 students.

TABLE IV. SUBMISSION TIMES RESULTS

Group
Submission

times range
of

students

I 20-50 29

II 50-100 37

III 100-150 15

IV 150-200 6

V 200-250 3

VI 250-300 2

VII 300- 350 1

VIII 0- 19 7

C. Application to Students in Myanmar University

Next, we apply the proposal to students in one

university in Myanmar.

1) Application Overview: In this application, we

additionally generated 8 GUP instances with 30 questions

from source codes that cover the 13 keywords that were

not included in the previous 20 source codes. Then, we

asked 29 undergraduate students to solve the instances

using the offline answering function, where among them,

only 15 students solved both the previous 20 instances

and the additional 8 instances.

The results confirm that all the students have acquired

the fundamentals of Java grammar and may continue

studying Java programming. This difference from the

Indonesia students may come from the difference in the

motivations of the participated students between the two

universities. In the Indonesia university, the teacher

requested all the students in the class to answer the GUP

instances. On the other hand, in the Myanmar university,

the teacher allowed the students to do so voluntarily.

Thus, only the self-motivated students might answer the

instances.

2) Correct Answer Results: Tables V and VI show the

range of the number of correctly solved questions, the

number of students, the range of the number of instances

attempted to be solved, and the average number of

answer submission times per student with its standard

deviation for each group, for the previous instances and

the additional instances, respectively. Table V indicates

that all the students solved 90 or more questions among

the 99 correctly where they did not attempt to solve one

or two instances. Also, Table VI signifies that all the

students solved 28 or more questions among the 30

correctly where they tried to solve all the instances.

3) Submission Times Results: Tables VII and VIII

demonstrate the range of the times of answer submission

and the corresponding number of students, for the

previous instances and the additional instances,

respectively. Table VII suggests that every student

submitted answers less than 8 times on average for each

of the previous 20 instances, and Table VIII does that

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 347

every student submitted answers less than 7 times on

average for each of the additional 8 instances.

TABLE V. CORRECT ANSWER RESULTS FOR PREVIOUS INSTANCES

Group

of solved

questions

range

of

students

of

attempted

instances

range

ave. # of

submissions

(SD)

A 99 18 20 71.4 (40.3)

B 98 3 20 66.7 (17.4)

C 97- 90 8 19 - 18 48.9 (20.2)

TABLE VI. CORRECT ANSWER RESULTS FOR ADDITIONAL INSTANCES

Group

of solved

questions

range

of

students

of

attempted

instances

range

ave. # of

submissions

(SD)

A 30 12 8 19.4 (12.7)

B 29 0 8 0.0 (0.0)

C 28 3 8 11.7 (2.9)

TABLE VII. SUBMISSION TIMES RESULTS FOR PREVIOUS INSTANCES

Group
submission

times range
of

students

I 20 – 50 12

II 50 – 100 12

III 100 – 150 5

TABLE VIII. SUBMISSION TIMES RESULTS FOR ADDITIONAL

INSTANCES

Group
submission

times range
of

students

I 8 – 30 12

II 30 – 40 2

III 40 – 50 1

VI. RELATED WORKS

In this section, we discuss related work in literature. In

[12], McIver et al. discussed seven undesirable features

in programming languages used to teach first-time

programmers: (1) less is more, (2) more is more, (3)

grammatical traps, (4) hardware dependence, (5)

backwards compatibility, (6) excessive cleverness, and

(7) violation of expectations. They proposed seven

language design principles: (1) start where the novice is,

(2) differentiate semantics with syntax, (3) make the

syntax readable and consistent, (4) provide a small and

orthogonal set of features, (5) be especially careful with

I/O, (6) provide better error diagnosis, and (7) choose a

suitable level of abstraction.

In [13], Galvez et al. presented a blended e-learning

experience using an Object Oriented Programming

learning tool called OOPS (Object Oriented

Programming System) and a web-based testing system

called SIETTE. OOPS can diagnose knowledge levels of

students, and generate feedback and hints to help them

understand and clear up misconceptions. It is found that

most of students have improved scores after solving

problems in OOPS.

In [14], Rex et al. analyzed the types of errors

committed by novice Java programmers and found that

there were five categories. Four of them were symbol

related or keyword-related errors (invalid symbols or

keywords, mismatched symbols, missing symbols, and

excessive symbols) and the last was naming-related error

(inappropriate naming error).

In [15], Okimoto et al. developed a learning support

system for C programming that will automatically

generate a source code to facilitate the programming

instruction through code reading, which is effective for

improving basic skills by tracing and debugging,

supporting novice learners who feel difficult in

programming concept. The system proposes a question

that requires learners to answer the proper value of a

variable after the execution of the code. The authors

utilized the system in a programming course with 108

first year students majoring in informatics, and clarified

that the program reading comprehension is challenging

for novices.

In [16], Jegede et al. analyzed error types and patterns

by undergraduate students in Java programming based on

fundamental concepts of methods and classes, decision

making, object concepts, and looping. The results

revealed that similar error types were found across ability

levels where students should be instructed based on

achievement levels, and learning Java programming

should be accomplished with an unintelligent editor.

VII. CONCLUSION

This paper proposed the Grammar-Concept

Understanding Problem (GUP) as a new type exercise

problem in JPLAS. A GUP instance gives questions on

grammar concepts or behaviors in the code. Each answer

may be a number, a word, or a short sentence, whose

correctness is marked through string matching with the

correct answer.

For evaluations, 28 GUP instances with a total of 129

questions from simple source codes on fundamental Java

grammar were generated and assigned to 100 students in

one university in Indonesia and to 29 students in one

university in Myanmar respectively. The results show

that the proposal is effective in identifying the students

who do not understand Java programming well and need

more instruction from the teacher.

For the limitations, this algorithm involves several

limitations. When the same keyword appears in the

source code again, the algorithm will generate the same

question for the keyword. A large number of Java source

codes may have common keywords. For those common

keywords, the corresponding same questions are

duplicated even for one problem. To avoid it, the teacher

needs to remove the duplicate or redundant questions

before presenting the GUP instance to students.

In future works, we will generate a variety of questions

for advanced Java programming topics using various

codes and apply them to students in Java programming

courses.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 348

AUTHOR CONTRIBUTIONS

All the authors conducted the research together.

Particularly, Soe Thandar Aung, Nobuo Funabiki, Htoo

Htoo Sandi Kyaw, and Wen-Chung Kao generated the

problems, analyzed the data, and wrote the paper. Yan

Watequlis Syaifudin, Shune Lae Aung, and Nem Khan

Dim assigned the problems to their students and collected

the data. All the authors had approved the final version.

ACKNOWLEDGMENT

Foremost, I would like to express my sincere gratitude

to my supervisor Prof. Nobuo Funabiki for the continuous

support of my research, for his patience, motivation,

enthusiasm, and immerse knowledge. His guidance

helped me in all the time of research and writing of this

paper. Besides my supervisor, I would like to thank the

rest of my research committee Prof. Wen-Chung Kao and

Htoo Htoo Sandi Kyaw for their encouragement and

insightful comments and enlightening me the first glance

of research. My sincere thanks also goes to Yan

Watequlis Syaifudin, Shune Lae Aung and Nem Khan

Dim for offering me to assign the problems to the

students in their universities and collect the data.

REFERENCES

[1] The Top Programming Languages.

[2] S. I. Ao, et al. (2018). IAENG Transactions on Engineering

Sciences: Special Issue for the International Association of

Engineers Conferences 2016 (Volume II), World Sci. Pub.

[Online]. 517-530. Available:

http://www.worldscientific.com/worldscibooks/10.1142/10727

[3] N. Ishihara, N. Funabiki, M. Kuribayashi, and W. C. Kao, “A

software architecture for Java programming learning assistant

system,” Int. J. Comput. Soft. Eng., vol. 2, no. 1, 2017.

[4] K. K. Zaw, N. Funabiki, and W. C. Kao, “A proposal of value

trace problem for algorithm code reading in Java programming

learning assistant system,” Inform. Eng. Exp., vol. 1, no. 3, pp. 9-

18, 2015.

[5] N. Funabiki, K. K. Zaw, N. Ishihara, and W. C. Kao, “A graph

based blank element selection algorithm for fill-in-blank problems

in Java programming learning assistant system,” IAENG Int. J.

Comput. Sci., vol. 44, no. 2, pp. 247-260, 2017.

[6] H. H. S. Kyaw, S. T. Aung, H. A. Thant, and N. Funabiki, “A

proposal of code completion problem for Java programming

learning assistant system,” in Proc. VENOA-2018, July 2018, pp.

855-864.

[7] N. Funabiki, S. He, H. H. S. Kyaw, and W. C. Kao, “A proposal of

code correction problem for Java programming learning assistant

system,” in Proc. VENOA-2019, 2019, pp. 671-680.

[8] N. Ishihara, N. Funabiki, and W. C. Kao, “A proposal of statement

fill-in-blank problem using program dependence graph in Java

programming learning assistant system,” Inform. Eng. Exp., vol. 1,

no. 3, pp. 19-28, 2015.

[9] N. Funabiki, Y. Matsushima, T. Nakanishi, K. Watanabe, and N.

Amano, “A Java programming learning assistant system using

test-driven development method,” IAENG Int. J. Comput. Sci., vol.

40, no. 1, pp. 38-46, 2013.

[10] P. J. Deitel and H. M. Deitel, Java: How to Program, 9th ed.,

Prentice Hall, 2011.

[11] N. Funabiki, H. Masaoka, N. Ishihara, I. W. Lai, and W. C. Kao,

“Offline answering function for fill-in blank problems in Java

programming learning assistant system,” in Proc. IEEE ICCE-TW

2016, May 2016, pp. 324-325.

[12] L. McIver and D. Conway, “Seven deadly sins of introductory

programming language design,” in Proc. Int. Conf. Soft. Eng.: Edu

Pract., Jan. 1996, pp. 309-316.

[13] J. Galvez, E. Guzmn, and R. Conejo, “A blended E-learning

experience in a course of object oriented programming

fundamentals,” Know.-Base. Syst., vol. 22, no. 4, pp. 279-286,

May 2009.

[14] P. Rex, Bringula, G. M. A. Manabat, M. A. A. Tolentino, and E. L.

Torres, “Predictors of errors of novice Java programmers,” World

J. Edu., vol. 2, no. 1, Feb. 2012.

[15] K. Okimoto, S. Matsumoto, S. Yamagishi, and T. Kashima,

“Developing a source code reading tutorial system and analyzing

its learning log data with multiple classification analysis,” Art. Life

Robot., vol. 22, pp. 227-237, 2017.

[16] P. O. Jegede, E. A. Olajubu, A. O. Ejidokun, and I. O. Elesemoyo,

“Concept based analysis of Java programming errors among low,

average and high achieving novice programmers,” J. Inform. Tech.

Edu.: Innov. Pract., vol. 18, pp. 49-59, June 2019.

Copyright © 2021 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

S. Thandar Aung received the B.E. degree in

Information Technology from Thanlyin

Technological University, Yangon, Myanmar,

in 2017. She is currently a research student in

Department of Electrical and Communication

Engineering at Okayama University, Japan.

Her research interests include educational

technology.

N. Funabiki received the B.S. and Ph.D.

degrees in mathematical engineering and

information physics from the University of

Tokyo, Japan, in 1984 and 1993, respectively.

He received the M.S. degree in electrical

engineering from Case Western Reserve

University, USA, in 1991. From 1984 to 1994,

he was with Sumitomo Metal Industries, Ltd.,

Japan. In 1994, he joined the Department of

Information and Computer Sciences at Osaka

University, Japan, as an assistant professor, and became an associate

professor in 1995. He stayed at University of Illinois, Urbana-

Champaign, in 1998, and at University of California, Santa Barbara, in

2000-2001, as a visiting researcher. In 2001, he moved to the

Department of Communication Network Engineering (currently,

Department of Electrical and Communication Engineering) at Okayama

University as a professor. His research interests include computer

networks, optimization algorithms, educational technology, and Web

technology. He is a member of IEEE, IEICE, and IPSJ.

Y. Watequlis Syaifudin received the B.S.

degree in Informatics from Bandung Institute

of Technology, Indonesia, in 2003, and the

M.S. degree in Information Technology from

Sepuluh Nopember Institute of Technology,

Surabaya, Indonesia, in 2011, respectively. In

2005, he joined State Polytechnic of Malang,

Indonesia, as a lecturer. He is currently a Ph.D.

candidate in Graduate School of Natural

Science and Technology at Okayama

University, Japan. His research interests include educational technology

and database systems. He is a student member of IEICE.

H. Htoo Sandi Kyaw received the B. E. and

M. E. degrees in information science and

technology from University of Technology

(Yatanarpon Cyber City), Myamar, in 2015

and 2018, respectively. She is currently a Ph.D.

candidate in Graduate School of Natural

Science and Technology at Okayama

University, Japan. Her research interests

include educational technology and Web

application systems. She is a student member

of IEICE.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 349

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

S. Lae Aung received the B.S. degree in

computer science from University of

Yadanabon, Mandalay, Myanmar, in 2012,

and the M.S. degree in computer science from

University of Yangon, Myanmar, in 2015. In

2017, she joined Department of Computer

Studies at University of Yangon, Myanmar, as

a lecturer, where currently, she is also a Ph.D.

candidate. Her research interests include

educational technology, assistive technology,

and human computer interaction.

N. Khan Dim received the B.S. and M.S.

degrees in computer science from University of

Yangon, Myanmar, in 2008 and 2011, and

Ph.D. in computer science from Kochi

University of Technology, Japan, in 2016,

respectively. She is currently a lecturer in

Department of Computer Studies at University

of Yangon, Myanmar. Her research interests

include human-computer interaction and

assistive technology.

W. Chung Kao received the M.S. and Ph.D.

degrees in electrical engineering from

National Taiwan University, Taiwan, in 1992

and 1996, respectively. From 1996 to 2000, he

was a Department Manager at SoC

Technology Center, ERSO, ITRI, Taiwan.

From 2000 to 2004, he was an Assistant Vice

President at NuCam Corporation in Foxlink

Group, Taiwan, where he was responsible for

leading embedded software team to develop

digital still/video cameras. In 2002, he was also invited to form SiPix

Technology Inc., Taipei, Taiwan, where he was in charge of setting up

the research team of the company and studying flexible electrophoretic

display. Since 2004, he has been with National Taiwan Normal

University (NTNU), Taipei, Taiwan, where he is currently the Research

Chair Professor at Department of Electrical Engineering and the Dean

of College of Technology and Engineering. His current research

interests include system-on-a-chip (SoC) as well as embedded software

design, flexible electrophoretic display, machine vision system, digital

camera system, and color imaging science.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 350

