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Abstract—The method for camera-based 3D reconstruction 

of car undercarriages is proposed in this paper. It is 

designed for use in a special security scanner, which is 

placed under a road level and scans undercarriages of 

passing cars. The scanner uses mirrors to increase a 

distance from a camera and to simulate a stereo pair, thus 

capturing a stereo image by a single camera. The partial 3D 

models created from individual images are reconstructed by 

a correlation-based block-matching algorithm. Afterward, 

these models are transformed to common coordinate base 

according to visual odometry readings, and the individual 

pieces are clipped and stitched together to form a seamless 

model. The reconstruction works at near real-time speed 

and the complete process is fast enough to enable the 

inspection without substantial delay. The method was 

implemented on a prototype and successfully tested on real 

car undercarriages.  During the test, the prototype was able 

to facilitate number of inspections and successfully detect 

foreign objects placed on the undercarriage. 

 

Index Terms—stereo reconstruction, computer vision, visual 

odometry 

 

I. INTRODUCTION 

Vehicle inspection is a common part of the security 

procedures at key locations, such as military bases or 

entrances to strategic compounds. As part of the 

inspection routine, the undercarriage must be checked for 

anomalous devices placed by a malicious actor. In the 

Kassandra project and its previous iterations, a prototype 

of a camera-based scanner was developed to facilitate the 

inspection. The device is built into the checkpoint road, 

and it is able to scan the undercarriage and display it for 

the operator. A schematic of the system is depicted in Fig. 

1. 

 

Figure 1. Scheme of the camera-based 3D scanner. 

In typical inspections, several pairs of images are 

recorded as the car passes over the scanner. Dense stereo 

reconstruction is performed on each image pair, 

producing several partial 3D models of the undercarriage. 

These are composed in one unified model and presented 

to an operator for inspection.  

Many complicating factors differentiate this task from 

the well-investigated problem of a general stereo 

reconstruction. Due to the proximity of the cameras to the 

target surface, the stereo pair is very wide, and the 

viewpoint difference complicates finding 

correspondences between images. The scanner has to be 

equipped with artificial lighting, as there is not sufficient 

natural lighting on the undercarriage. Furthermore, such 

lightning on the target surface is necessarily uneven and 

impacts both cameras differently due to the proximity. It 

is difficult to correctly compute a disparity map on the 

undercarriage because the surface naturally contains large 

homogeneous parts. The lack of both texture and 

detectable image features causes problems for most 

computer vision methods. The target application requires 

almost real-time performance. An additional 

complication is present in the physical realization of the 

system. The total height of the capturing device is limited 

because the installation costs would get prohibitively 

high otherwise. 

This paper details the software part of the project, 

consisting of the camera controls and the algorithms for a 

reconstruction of the complete undercarriage picture. The 

history of the project and previous results are listed in 

Section II. The reconstruction algorithm is described in 

Section III. A brief overview of the system is given in 

subsection I.A to frame the context for the software 

problems, and subsection I.B shows the experimental 

results. 

II. STATE OF THE ART 

This work follows on from previous project Kerberos 

[1] focused on the development of a laser-based 

undercarriage scanner. The scanner consists of three laser 

rangefinders combined with cameras. The main 

advantage of this approach is the ability to reconstruct 3D 

shape regardless of an undercarriage texture. Two of the 

rangefinders with cameras are placed under the road level 

and scans an undercarriage of a car going across the 

scanner. The third rangefinder is placed horizontally, and 

it measures the car position. Further, the system contains Manuscript received November 2, 2020; revised July 2, 2021.
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a camera for a reading of a registration number and 

display showing a car speed. The maximal car speed for 

detection is 15 km/h, and display helps a driver not to 

exceed maximal speed. Apart from creating a model, the 

system automatically detects changes on the 

undercarriage based on comparison with previous scans 

of the same car. This scanner is offered as a commercial 

product, and it is successfully installed in several 

strategical compounds in the Czech Republic. 

 

Figure 2. Scanner installed in the road. 

The main disadvantage of the Kerberos system is its 

complicated installation because it has to be placed under 

 

was developed in associated project Kyklop (in the 

commercial version, called Kerberos Mobile) [2]. The 

system works only with one camera, and it returns a 2D 

model of an undercarriage. It does not contain 

undercarriages comparison, but it serves well for human 

visual inspection. It replaces inspection with mirrors or 

hand cameras, which requires a stop of a vehicle. This 

system can be a part of the Kerberos system or an 

independent portable device. 

Object detection [3] is a related task that aims to find 

known object or a class of object in the image. The 

relevant techniques are of limited applicability in this 

case, because the detected objects are not known 

beforehand. Instead, the scan of the undercarriage is 

compared with a previously stored record of the same 

vehicle. Image registration techniques (e.g. [4]) could be 

used at that point. 

Visual odometry [5] is a measurement of a moving 

camera position from its images relative to a captured 

scene. It is an essential part of many SLAM 

(Simultaneous Localization and Mapping) systems. The 

main difference between SLAM and visual odometry is 

that SLAM contains loop closure detection and global 

optimization. In most robotic tasks a camera is placed on 

a vehicle and measures its position in world coordinates 

[6]. Contrarily, the presented system uses a static camera 

and measures a movement of a vehicle above it. The 

older version of the proposed visual odometry method is 

in detail described in [7], [8]. Even though the method 

was designed on data from regular cameras with larger 

images, it can be used in the scanner with mirrors only 

with slight modifications. The improved version is 

presented in this article in subsection III.B. 

III. THE RECONSTRUCTION PIPELINE 

This section describes algorithms for the 

reconstruction of the 3D model of the car undercarriage. 

It works with the sequences of stereo-images taken by 

cameras looking on the system of mirrors while the car is 

passing over the scanner. The configuration of the mirrors 

split the image into two virtual cameras forming the 

stereo pair as well as prolongs the optical distance of the 

camera from the object. The algorithm consists of several 

parts, which are described in the following subsections. 

A. Pipeline Overview 

The image processing pipeline is shown in Fig. 3. 

During each operation, several pairs of images are 

captured in sequence. A visualodometry (subsection III.B) 

is used to compute their relative position. 

 

Figure 3. Scheme of the image processing pipeline. 

Each pair of images is used to reconstruct a piece of a 

3D model. The reconstruction is standard in principle. 

Most steps (image rectification, triangulation) relies on 

OpenCV [9] implementation. The disparity map is 

computed by correlation-based block-matching algorithm 

described in sections III.C and III.D. 

The partial model pieces are transformed into the 

whole model space. By design, there is a significant 

overlap of the partial models. The final model is 

composed by trimming the overlapping sections and 

triangulating the space between resultant edges (Fig. 4). 

 

Figure 4. Clipping and assembly of partial models. 

B. Visual Odometry 

The proposed visual odometry method is a feature-

based 3D-to-2D method according to the classification 

from [5]. In feature-based systems, a camera movement 

between two consecutive stereo-images is computed 

based-on visual feature matching. 3D-to-2D methods 

triangulate points only from one stereo image and 

searches for the best transformation, which reprojects 
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them to the second image with a minimal reprojection 

error. A pipeline of the visual odometry is depicted in Fig. 

5. 

 

Figure 5. Scheme of visual odometry pipeline. 

Inputs to the presented visual odometry method are 

stereo image in time t−1 and one image in time t (i.e. one 

from subsequent stereo image). Outputs are a rotation 

matrix and a vector of translation representing motion 

between stereo-images. All camera matrices and an 

essential matrix of stereo-camera are known from a 

camera calibration. The method is composed of following 

subsequent steps: detection and description of features, 

matching features in a stereo image and triangulation of 

points, matching 3D points and features in a third image, 

robust computation of rotation and computation of 

translation. 

The most significant change from [8] is a replacement 

of the ORB feature detector and descriptor by AKAZE 

ones. Due to using of mirrors, the number of cameras was 

decreased to two and a whole stereo image is captured 

only by one camera. It caused a substantial decrease in 

image information and ORB was not able to match 

features between images successfully. Based on 

experimental testing on new experimental data, the 

AKAZE detector was selected. 

In the first step, features from a stereo image in time 

t−1 are detected and matched. To ensure a uniform 

distribution of features, an image is divided into several 

rectangle areas for feature detection. Corresponding 

features are selected as features with the mutually closest 

descriptors. The correspondences are filtered out if the 

distance of one point from its epipolar line is larger than 

an assigned threshold. Afterward, 3D positions of points 

are computed. Points with larger or closer distance from 

the camera than assigned thresholds are removed. It is 

assumed that undercarriage distances are varying only in 

a fixed interval. 

Filtered 3D points are matched to features in the third 

image to gain 3D to 2D correspondences. Both features 

of a 3D point are matched separately, and only features 

with the same closest feature in the third image are 

retained. If some features are too close in the image, only 

the feature with the strongest descriptor is kept. 

Because some of the correspondences are still incorrect, 

the RANSAC algorithm is used. Rotation and translation 

are computed from 3 correspondences by P3P problem 

solver [10], which returns up to four possible solutions. 

The correct solution is selected by its testing for a 4th 

point. The output of RANSAC is a transformation with 

most of the points with reprojection error under an 

assigned level. 

The translation is computed only for points satisfying 

RANSAC condition. Only half of them with reprojection 

error closest to a median is selected to create an 

overdetermined system of linear equations. The only 

unknown is particular elements of the translation vector 

because rotation is taken from the previous step. The 

least-square solution of the equations is the final vector of 

translation. 

A transformation between not adjacent images is a 

concatenation of particular transformations. There is not 

used any bundle adjustment, loop closing or global 

optimization, because there is assumed that a movement 

of a car is straightforward and image overlapping 

between not adjacent images is minimal. 

C. Surface Reconstruction 

The disparity map is computed by a variant of the low 

texture stereo algorithm published in [11]. The algorithm 

as published was used for scene reconstruction in 

autonomous navigation applications, robot vision, and 

similar situations. It is designed to deal with difficulties 

in constructing models of walls, road segments and 

similar scenes where large areas with homogeneous 

texture are common, but also critical to reconstruct 

correctly. While specifics are different, the primary 

problem of large untextured areas in the input is present 

in our application as well. Although more sophisticated 

algorithms exist (e.g. [12]), strict limits on the running 

time of this application limit their use. 

The principle of the algorithm is to compute the 

disparity map by block-matching, and subsequent 

filtering of the map by an adaptive window filter. Details 

of the steps are described below. 

As a preprocessing, a Sobel filter is applied on the 

input to emphasize the texture and reduce noise in the 

images. The block-matching is performed to match pixels 

in both images. The original algorithm uses cosine 

distance as a cost function for block-matching. In order to 

deal with the illumination of reflective surfaces that 

compose a notable part of the undercarriage, block 

correlation (subsection 3.4) was employed instead. 

The filtering is guided by edges detected in the original 

input data. Moving weighted average window filtering is 

applied on a horizontal and vertical line in the cost 

function, with reduced weight for pixels that are 

separated by a line from the window center. For more 

details, refer to the original paper [11]. 

In the first pass, a corresponding matching block is 

selected by a simple optimum of the filtered cost function. 

If necessary, the precision and details of the model may 

be increased in several successive steps, where the model 

is refined by recomputing the cost function with 
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increasingly smaller filter windows to capture fine details. 

In these refinement steps, a combination of non-maxima 

suppression and quadratic distance penalty is used to 

preserve high-scale shape and to limit updates to small or 

strongly salient ones. 

𝑄𝑑𝑥 = 𝜌𝑑𝑥 − 𝑝𝑄(𝑑𝑥 − ℎ)2 − 𝑝𝐿|(𝑑𝑥 − ℎ)|      (1) 

The matching block is selected by the following 

criteria. Only peak values in correlation for the current 

level are taken into account. Each peak is evaluated 

according to (1). The disparity for this pixel calculated in 

the previous pass is introduced as a hint h. The peak at 

the location of the hint has a full value of the correlation, 

all the others are penalized according to the distance from 

the hinted location. The intention here is to use the peak 

closest to h unless a significantly better candidate appears 

elsewhere. 

D. Fast Block Correlation 

The previous algorithm relies on a similarity measure 

for areas in the image called here block correlation, 

named in reference to block similarity measure used in 

other block-matching algorithms. The measure is defined 

in (2). 

𝑟𝑥𝑦 =
∑𝑥𝑖𝑦𝑖−𝑛𝑥𝑦

√∑𝑥𝑖
2−𝑛𝑥

2√∑𝑦𝑖
2−𝑛𝑦

2
                    (2) 

Efficient computation of this measure is a key to the 

efficacy of the reconstruction algorithm, as each block of 

the left image needs to be compared to a range of blocks 

in the right image, for a total of x ∗ y ∗ dx computations. 

The block size also tends to be large. A dynamic 

programming formulation of the problem is used to keep 

the complexity manageable. 

The block computation involves wide use of a sliding 

window algorithm. The images are parsed sequentially, 

and the sliding window is used for simultaneous 

computation of a running sum of several succeeding 

values, squares of these values, and multiplication of 

corresponding values in L and R (corresponding 

according to the range of scanned disparity). The sliding 

window is used again for each column to obtain the sums 

for each respective block. Thus we obtain 
∑ 𝐿𝑥,𝑦𝑊 , ∑ 𝐿𝑥,𝑦

2
𝑊 , ∑ 𝑅𝑥,𝑦𝑊 , ∑ 𝑅𝑥,𝑦

2
𝑊 ∧ ∑ 𝐿𝑥,𝑦𝑅𝑥,𝑦𝑊 . 

From these, we can obtain correlation matrix by (3). 

The computation can be performed in a single pass. The 

resulting algorithm has a complexity of O(n∗dx). 

Specifically, the computational complexity is not 

dependent on the window size. 

𝐶(𝑥, 𝑦, 𝑑) =
∑𝐿𝑅−

∑𝐿

𝑤2
∑𝑅

𝑤2

√∑𝐿2−
∑𝐿2

𝑤2
√∑𝑅2−

∑𝑅2

𝑤2

                 (3) 

E. Model Assembly 

The reconstruction algorithm detailed above computes 

a disparity map for each stereo pair. That can be 

converted by triangulation into a mesh of points in the 

coordinate system of the camera. In the final step, these 

meshes need to be joined into a complete model (Fig. 6). 

Considering the model in the coordinate space of the 

target undercarriage, the visual odometry results give us 

the relative positions of the camera when taking each 

image. The partial meshes are shifted to their relevant 

position. By design, there is a significant overlap at the 

edges. The center of each model patch is computed, and 

the whole model is split into Voronoi cells according to 

the distance to the patch centers. Of each patch, only the 

points that are in its cell are kept (Fig. 4). The points on 

the cell edges are connected to fill in the gaps in the 

model. 

F. Model Comparison 

When the vehicle's model is completely reconstructed, 

and the system has a previous model of the same vehicle, 

these two models are compared, and spatial differences 

are highlighted for the human operator. The system 

identifies the vehicle by a registration plate. The reading 

of the registration plate is done by a separate system and 

is out of this paper's scope. 

The resulting model is captured in a relative frame of 

reference of the first virtual camera. Therefore, the model 

reconstructed from each passage of the vehicle can be 

shifted according to the vehicle's exact trajectory over the 

scanner. The model registration is the first step as we 

need to align the models' positions to match each other. 

The most suitable approach is to use the Iterative Closest 

Point (ICP) alignment method. The model is relatively 

flat, as the length of the car is around 4 meters, and the 

depth of the car undercarriage is approximately 20 

centimeters. Due to the flatness, it is beneficial to use the 

color information of the model for the model registration.  

We use the generalized color-supported iterative closest 

point [13] implementation from Point Cloud Library [14]. 

The color of the vertices is represented in L*a*b color 

space (or CIELAB), a color-opponent space with 

dimension L for lightness and a and b for the color-

opponent dimensions. As there is no relation between 

Euclidean spatial distance and distance in the color space, 

the color weight factor ɑ is introduced. The significance 

of the color is controlled by this factor. Usage of the color 

increases the precision of alignment in the x-y plane, 

especially in the presence of reconstruction residual 

artifacts on edges of the model. 

Two models are now aligned, and we want to detect 

spatial differences between them. As the size of the 

model is in orders of magnitude of millions of vertices, 

the comparison is made using the octree spatial structure 

implemented in Point Cloud Library [14]. All the vertices 

from the model created from the previous vehicle's 

passage are inserted into the octree structure. Then, we 

switch the octree buffer. It resets the octree but keeps the 

structure of the tree in the memory. Now, we insert the 

vertices from the currently made model. All the vertices 

from the octree voxels that are not presented in the first 

model are obtained. These detected vertices represent 

spatial differences. The size of the octree voxels 

significantly influences the computation speed and 

minimum size of detected change.  
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Figure 6. Assembled model of the undercarriage. 

 

Figure 7. Comparison with the model differences highlighted. 

We want to compute the significance of the change as 

well. For each vertex in the changed part, we calculate 

the distance to the previous model's surface. As the 

distance of the prior model is bigger, the change is more 

significant, and this significance is presented to the user 

in the form of a color map (Fig. 7). 

IV. EXPERIMENTS 

A. Hardware Prototype 

The prototype of the scanner consists of two RGB 

cameras, mirrors and artificial lighting (Fig. 8). The 

camera resolution is 1920×1200 px, but each frame is 

divided by mirrors into two images 1920x530 px. In this 

way, the system needs only one physical camera for each 

stereo pair. The system with mirrors allows increasing an 

undercarriage distance from a camera with the same 

sensor depth because most of the necessary distance is 

situated parallel to the ground. Further, it is possible to 

protect the cameras from falling debris without intruding 

in their field of view. On the other hand, the field of view 

in the longitudinal direction is limited. The cameras were 

calibrated by [15]. 

The overlapping field of view of a camera pair covers 

one side of the undercarriage. Two pairs are needed to 

reliably cover the entire width. Fig. 9 shows an example 

of the gathered data. An example of the resultant 

disparity map is in the Fig. 10. 

 

Figure 8. Device used to capture the images. Mirrors are used to 

increase effective distance from the target. 
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Figure 9. Stereo image of undercarriage captured by one camera and 

two mirrors. 

 

Figure 10. Example of disparity map. 

B. Reconstruction Results 

The physical experiment was performed at the facility 

of the industrial partner in the project. The prototype (as 

described in subsection I.A) was placed in the service pit 

in the access road and used to gather several sets of data 

from a passing vehicle. In total, 28 scans were performed 

on two vehicles under different illumination conditions, 

both with additional objects placed on the undercarriage 

and without. 

Tests confirmed that despite almost ideal weather 

conditions, strong artificial illumination is necessary for 

the scanner to operate correctly. The illumination as 

implemented in the prototype proved to be sufficient for 

the task. 

The system was able to build a model of the 

undercarriage (Fig. 6). The level of detail was sufficient 

to enable the detection of introduced test objects, both 

visually and by comparing the resultant mesh. 

V. CONCLUSION 

The primary aim of the Kassandra project is to 

improve upon previous undercarriage scanner and deliver 

a device able to compute a 3D model of an undercarriage 

from camera images. In this paper, we present algorithms 

to construct a piecewise model of the undercarriage and 

assemble it into a complete model. The functionality of 

the prototype was verified on a testing site. The system is 

able to detect a vehicle passing over the scanner, make a 

3D model of the complete undercarriage, and display it 

for the operator. 
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