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Abstract—Microblogging and social networking sites such as 

Twitter, Facebook, and Instagram, are becoming 

increasingly popular, registering more than 500 million 

posts each day. Twitter uses hashtags that are dynamic, 

user-generated text, preceded by a pound (#) symbol, to 

retrieve similar posts or topics, to mark events or to tag 

channels. Following segmentation, hashtags can be used for 

many Natural Language Processing (NLP) applications. 

These include sentiment analysis, text classification, named 

entity recognition, and sarcasm detection. This study delves 

into a comparison of three algorithms, namely the Viterbi, 

Triangular matrix and Word breaker algorithms, to 

determine the best among the three, for the segmentation of 

hashtags. These algorithms utilize different resources, to 

calculate the probability of the segmented parts, in order to 

rank the possible generated segmentations. For example, 

while the Viterbi and Triangular Matrix algorithms use two 

statistical corpora of unigram and bigram, the Word 

Breaker algorithm uses the n-gram language model. 

According to conducted experiment, the Viterbi algorithm is 

better for hashtag segmentation than the Triangular Matrix 

algorithm. This can be attributed to the manner in which 

the Viterbi algorithm conducts the backtracking. On the 

other hand, the Word Breaker algorithm, which can 

ascertain the meaningful tokens in the form of words, before 

proceeding with the segmentation of the remaining 

characters, is considered superior to both the Viterbi and 

Triangular Matrix algorithms, particularly when it comes to 

the detection of unknown words. Used together with the 

Good-Turing smoothing algorithm, the Word Breaker 

algorithm achieved 86.64% f1-score on a large language 

model.  
  

Index Terms—hashtag segmentation, twitter, viterbi 

algorithm, word breaker algorithm, triangular matrix 

algorithm 

 

I. INTRODUCTION 

Social media platforms such as Twitter, Facebook and 

Instagram are currently inundated with information. The 

information provided by social media platforms, are used 

for a variety of applications, which include sentiment 

analysis and data mining [1], or for a user review for 

recommender systems [2]. The Twitter platform alone 
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has 330 million monthly active users, who post half a 

billion Tweets each day [3]. Twitter data in the form of 

hashtags, play an essential role in several NLP 

applications. A hashtag is a user-generated text, used to 

label channels in the social media, for the delivery of a 

message to people, or for marking a significant event [4]. 

A hashtag is represented by the pound symbol (#), which 

is a form of metadata tag used on social networks, along 

with Twitter and a variety of micro-blogging services. 

The hashtag concept is the brainchild of Chris Messina, 

who in a 2007 Tweet posted the message “How do you 

feel about using # (pound) for groups. As in 

#barcamp[msg]?”. Initially looked upon as a “thing for 

nerds”, the use of hashtags quickly became the norm 

among social media platforms.  

Hashtags represented by one word (for instance eclipse) 

are called single-token hashtags, while hashtags 

represented by a combination of words without spaces are 

called multiple-token hashtags. Multiple-token hashtags 

can come in the lower case (for instance, 

addictivetvshows), with each token capitalized (for 

instance, WakingUpTooEarly), or with an underscore (for 

instance, covid_19). Hashtag segmentation involves the 

breaking down of a hashtag into its tokens. For example, 

following segmentation, the hashtag addictivetvshows 

becomes addictive tv shows. 

Hashtag segmentation for NLP applications, has to do 

with the use of hashtag tokens, to automatically label 

sentiment analysis datasets with positive, negative, or 

neutral classifications, based on the sentiment of the 

hashtag [5]. Hashtag tokens are also used for identifying 

the names for named entity recognition systems [6], for 

classifying Tweets [7], and for detecting sarcasm [8].  

This undertaking focuses on a comparative study 

involving the Viterbi, Triangular Matrix and Word 

Breaker algorithms, in terms of hashtag segmentation. 

This comparative study will serve to determine the most 

suitable algorithm, for the segmentation of Twitter data 

hashtags. The motivation for this study derives from the 

fact that (a) other hashtag segmentation techniques, such 

as the longest maximum matching, are ineffective for the 

detection of unknown words, (b) statistical approaches, 

such as the use of the language model to calculate 

probability, are more applicable for the identification of 
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rarely used words, and (c) some hashtag segmentation 

approaches do not include an evaluation of the 

segmentation process itself. Belainine et al. used the 

segmented hashtag with other features, such as synonym 

and hypernymy from WordNet, for the classification of 

Tweets, not for the segmentation process [6]. The three 

algorithms selected for this study come with several plus 

points. The Viterbi algorithm has the capacity to monitor 

the segmented characters, generate new ones, and 

conduct matching with the previous as well as next 

characters, to determine if a correct segmentation has 

been generated. Additionally, the Viterbi algorithm can 

be employed with a unigram and bigrams in this study. 

The Word Breaker algorithm exploits the beam search 

algorithm to perform characterization by reducing the 

time and memory consumption to ensure that the optimal 

result is realized in a limited set. As reported by [9] and 

[10], the Word Breaker algorithm is considered robust for 

the segmentation process. As for the Triangular Matrix 

algorithm, while it has been previously employed for 

spell correction, there is no record of this algorithm being 

used for segmentation.  

The rest of this paper is organized as follows: Section 

II describes previous works on hashtag segmentation, 

Section III explains the methodology of the segmentation 

process, Section IV presents the results and discussion, 

and Section V provides the conclusion to this paper. 

II. LITERATURE REVIEW 

The significance of the segmentation process derives 

from the lack of delimitation for languages such as 

Chinese, Japanese and Korean, as well as the frequent 

occurrence of abundant compounds in certain languages 

such as German. The segmentation concept has its roots 

in word segmentation for such languages. The methods 

used for word segmentation, often involve the tagging of 

the characters of the text, to identify the position of the 

character, in order to enter the boundaries of the words. 

Machine learning classifiers (as those used for the 

Chinese language segmentation) are then brought into the 

picture. While some researchers applied the neural 

network for tagging the characters, followed by the 

implementation of deep learning techniques to score the 

words [11], [12], others utilized the rule-based from 

corpora for the compound words (as for the German 

language). In a comparison exercise conducted by [13], 

involving a word-based model and a character-based 

model, the character-based model was proclaimed 

superior for hashtag segmentation. 

The hashtag segmentation process is essential for many 

NLP applications. For instance, sentiment analysis relies 

on hashtags to label the dataset with positive, negative or 

neutral sentiments, as in [5].  

Hashtag segmentation approaches can be grouped into 

four categories. Rule-based approaches identify the 

tokens of the hashtag, by detecting certain features 

included in the hashtag itself. For instance, the hashtag 

can be segmented through the detection of capitalization, 

numbers, or the underscore in the hashtag. However, as 

the dataset could also include hashtags in lowercase or 

uppercase patterns, the hashtags are segmented character 

by character, followed by the search for a match in a 

dictionary, to realize the correct segmentation. In a 

situation where there is more than one segmentation, the 

longest maximum matching technique is applied as in [6]. 

Likewise, [14] utilized the camel-cased technique to 

segment the hashtags of their dataset, and the POS 

tagging, to validate the English vocabulary included in a 

hashtag. While [8] applied the same process as [6] and 

[14] to segment the hashtags, unlike [6], they opted for 

the Viterbi-alike algorithm to select the best segmentation 

for lower case hashtags.  

The word boundary detection approach considers 

hashtag segmentation a binary classification task. This 

approach entails the use of BI, which stands for 

Beginning or Inside the word schema. Each letter is 

considered an individual training instance for the learning 

algorithm, and labelled the first letter (boundary) of a 

word, or not, in the sequence. In order to determine the 

possible boundaries, some features are implemented to 

detect the (B)eginning or (I)nside character. The word 

boundary technique was demonstrated in studies 

conducted by [4] and [9]. They utilized vocabulary-based 

features, bigram-based features, and orthography-based 

features (for instance, the capitalized letters in a hashtag 

or a number), to determine the possible boundaries, then 

(CRFs) and Maximum Entropy (MaxEnt) classifiers, to 

realize segmentation.   

Statistical approaches use the probability or other score 

functions, to rank the generated segmentations. The work 

in [15] involved the use of a regression model, to score 

the generated candidate segmentations produced by 

segmenting the hashtag, followed by matching either with 

Wikipedia pages, or the context of the Tweet. While [16] 

used a score function to rank the possible candidates, [7] 

used a probabilistic language model, to rank the 

candidates generated from the viterbi algorithm. The 

works of [17]-[19] all involved the use of the viterbi 

algorithm, with the former using it to segment the text of 

the Palm Leaf Manuscript, for Optical Character 

Recognition (OCR) systems. Ref. [18] implemented the 

Viterbi algorithm for named entity recognition systems, 

and [19] used it to segment the hashtags of Twitter for 

sentiment analysis systems. In contrast to this study, [18] 

implemented the viterbi algorithm with unigram corpus, 

to calculate probability.   

Machine and deep learning approaches are frequently 

used for hashtag segmentation. In a study conducted by 

[20], a pairwise neural ranking technique was utilized to 

rank the segmentations generated by the word breaker 

algorithm. Researchers [21], [22] utilized the Recurrent 

Neural Network (RNN) to rank the segmentations. The 

work of [21] considered hashtag segmentation a sequence 

of labelling task, in which each symbol of a given string 

is labelled either 1 or 0. The value 1 represents a white 

space after this symbol, and 0, otherwise. Their approach 

was applied for the Russian language. Meanwhile, in a 

study conducted by [22], the Recurrent Neural Network 

(RNN) on character/byte was used, for the segmentation 
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of hashtags, with the utilization of the beam search 

algorithm. 

III. METHODS 

This section presents the framework of this study, and 

describes the methods utilized for hashtag segmentation. 

Also provided are explanations regarding the dataset and 

the pre-processing phase.  

 

Figure 1. Hashtag segmentation framework. 

 

Figure 2. Probability calculation process. 

Fig. 1 depicts the design of the automatic hashtag 

segmentation process, while Fig. 2 demonstrates the 

calculation process, for ascertaining the probability for 

the generated hashtag segments.   

A.  Dataset  

The dataset is a fragment set introduced by [20], which 

originates from the Stanford dataset. It consists of 2518 

hashtags, with their gold truth (segmentation performed 

manually). Only a single hashtag is extracted per Tweet. 

Eighty percent of dataset is for the train, and the rest is 

for the test. A sample of hashtags and their gold truth is 

displayed in Table I. 

TABLE I.  SAMPLE OF DATASET 

Hashtag Gold Truth 

addictivetvshows Addictive TV Shows 

stupidaccident stupid accident 

FailWhaleBeGone Fail Whale be gone, fail whale be 

gone, Fail Whale Be Gone 

rssreader RSS Reader 

 

B.  Pre-processing 

This section describes the preparation of the dataset, 

for the segmentation phase. Only a single hashtag is 

extracted per Tweet. Also, the hashtag and gold truth are 

normalized to the lowercase. This serves to raise the 

evaluation quality, as prior to normalization, although the 

algorithms generated correct segmentations, due to case 

sensitivity, these segmentations do not match the gold 

truth. Table II illustrates the significance of gold truth 

normalization.  

TABLE II.   IMPORTANCE OF NORMALIZATION FOR GOLD TRUTH 

Algorithm 

Segmentation 

Gold Truth 

Segmentation 

Segmentation 

Status 

addictive tv shows Addictive TV Shows False 

cloud views Cloud Views False 

 

C.  Resources Used for Segmentation 

Several resources were used to conduct the 

experiments for this study. To begin with, two statistical 

corpora, one collected from Twitter, and the other from 

English Wikipedia, were utilized to calculate probability. 

Both corpora were collected by [19]. A unigram and 

bigram, with their frequencies, are used to calculate the 

probability of the Viterbi and Triangular Matrix 

segmented parts. During the segmentation process, the 

algorithms check for a match with the corpus. The 

detection of a match is followed by the return of the token 

as a segment. Otherwise, the probability is calculated as 

shown in Fig. 2. Two types of language models were 

used with the Word Breaker algorithm. One is a test.arpa1 

from KenLM [23], which is a small language model with 

size 2.71 KB, modified by way of the Kneser-Ney 

smoothing algorithm. This model consists of the unigram, 

bigram, trigram, 4-gram and 5-gram. The other type of 

 
1 https://github.com/zomux/modified-kenlm/tree/master/lm 
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language model used, which is larger, is taken from [20]. 

The language model was trained on 1.1 billion Tweets, 

with the Good-Turing smoothing algorithm, using 

SRILM [24]. The binary format of this model ensured 

that less space is taken up, and that the loading process is 

accelerated.  

D.  Segmentation Algorithms 

The three hashtag segmentation algorithms 

investigated were the Viterbi, Triangular Matrix, and 

Word Breaker algorithms.  

1) Viterbi algorithm: The Viterbi algorithm is a 

dynamic programming algorithm, designed to ascertain 

the most likely series of unknown finite states or hidden 

states (known as the viterbi path), that lead to a sequence 

of observed events. The objective of the Viterbi algorithm, 

is to uncover the best segmentation from possible 

generated ones, based on their probability. The Viterbi 

algorithm splits the hashtag into two parts, and then 

calculates the probability for the first part, using the 

statistical corpora collected from Twitter and Wikipedia 

separately. Subsequently, it applies a recursive function, 

to segment the remainder of the hashtag. Each time a new 

character enters the segmentation process, it is examined 

with the other characters in the segmentation process. 

Algorithm 1 exhibits the pseudocode for the Viterbi 

algorithm. 

 

Algorithm 1: Viterbi algorithm pseudocode 

Input: hashtag 

Output: segmented hashtag 

if hashtag is not lowercase: 

apply regular expression to segment (camelCased_function ()) 

else: 

execute findSegment (hashtag, prev): 

if hashtag not text: return zero 

else:   

#segment the hashtag 

for i in range(min(len(hashtag), 

maxSplitLength=20)): 

first = hashtag[: i+1] 

reminder = hashtag[i+1 : ] 

return first, reminder 

for first, reminder: 

calculate the probability for first 

recursive findSegment() for reminder  

return candidates 

return max(candidates) 
 

2) Triangular Matrix (TM): The Triangular Matrix 

algorithm, a particular type of square matrix, is widely 

used in the field of mathematics, notably in the linear 

algebra discipline. Better known for its spelling 

correction capacity in machine translation systems, this 

algorithm was put to the test for hashtag segmentation. 

TM breaks down the hashtag into small portions, to 

subsequently solve each piece once, before storing the 

result in an array. The next time when the algorithm 

recurs to segment the remainder of the hashtag, it 

determines if the portion was previously segmented. If so, 

instead of performing a re-computation, it proceeds to 

retrieve the best segmentation. This time-saving move 

renders the performance of the TM algorithm quicker.  

The TM algorithm computes the different 

segmentations of a prefix of the substring, at a specific 

position of the inner loop. It starts to segment the input 

hashtag from the left, and when the inner loop reaches the 

end of the string, the last segment is retrieved. 

Subsequently, the segmentation process begins on the 

remainder of the input from the second character. As 

shown in Fig. 3, each time a new character starts the 

segmentation process, the first character is excluded. The 

pseudocode for the algorithm is illustrated in Algorithm 

2. 

 

Figure 3. Triangular Matrix segmentation process. 

Algorithm 2: Triangular Matrix pseudocode 

input: hashtag 

output: segmented hashtag 

initialize arraySize = 0 

initialize arrayWidth = 0 

segmentedSpaceBits = [] #to store spaces instead of 

segmented text 

findSegment(hashtag): 

#i represents all possible part start position (outer loop) 

for i in range(0, len(hashtag)): 

if i > 0: 

combine best segmentation of i with 

part_1 generated from the inner loop 

imax = min(len(hashtag)-i, 

maxSegWordLen) 

for j in range(1, len(imax)): 

part_1.split(i, j) 

calculate probability then the best 

segmentation stores in array 

#end inner loop 

return the best segmentation for outer loop based on its 

probability 

 

3) Word Breaker (WB): The implementation of the WB 

algorithm entails the use of the beam search algorithm, 

with the n-gram language model. The beam search is a 

heuristic algorithm that explores all the possible 

candidates, and returns the results based on some 

heuristic information. The beam search algorithm 

considers the segmented hashtag a tree. It analyses the 

input hashtag one character (token) at a time from the left, 

and determines if a word boundary token in that position 

is appropriate. If so, two segmented nodes of the hashtag 

will be generated. As the algorithm processes the entire 

data, the best k number of candidates will be selected 

from the current possibly made. K in this experiment is 

set up to 10, meaning that the algorithm will generate 10 

different segmentations. When a new character enters the 

segmentation process, the algorithm examines it with 

other characters in the segmentation process, to identify 

the possible boundary for the segmentation. Algorithm 3 

illustrates the pseudocode for the algorithm. 
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Algorithm 3: Word Breaker pseudocode 

input: hashtag 

output: segmented hashtag 

initialize positionCurrentWord = 0 

initialize score = 0 

initialize segments = null 

beamSearch(hashtag): 

for i in range(positionCurrentWord +1 to len(hashtag)+1): 

currentWord = hashtag[positionCurrentWord :i] 

getScore(segments, currentWord): 

 

calculate probability using language model 

push the new segment in list 

while list not empty: 

if newSegment.position == len(hashtag): 

                                                push newSegment in topk_segments 

else:  

       recursive beamSearch(newSegment) 

for segment in topk_segments: 

return segment[k] 

 

E.  Evaluation  

The performance of the segmentation process was 

evaluated by way of the four standard evaluation metrics: 

accuracy, precision, recall and f-score. Accuracy 

represents full matching with the gold truth. It is a 

percentage of corrected segmentation with respect to 

whole instances in the dataset [20]. 

accuracy = 
dataset of instances ofnumber  whole

hashtag segmentedcorrectly  ofnumber 
  (1) 

Precision, recall, and f-score consider the partial 

matches on the segmentation level [20]. Precision 

represents the percentage of correct words in the 

segmentation, to the number of words in the segmentation 

by an algorithm.  

Precision = 
on segmentati   theoflength 

on segmentati ain   rdscorrect wo ofnumber 
  (2) 

Recall represents the number of correct words in 

segmentation to the gold truth.  

Recall = 
on segmentati truth gold   theoflength 

on segmentati ain   rdscorrect wo ofnumber 
   (3) 

F-score is the harmonic measure between precision and 

recall.  

F-score = 
 recall precision 

 recall *precision  * 2

+
               (4) 

IV. RESULTS AND DISCUSSION   

The experiments were performed using 2518 hashtags 

with their gold truth segmentation (manual segmentation). 

The dataset comprised hashtags of English Twitter data. 

The experiments were conducted to assess the 

performance of three algorithms (Viterbi, Triangular 

Matrix and Word Breaker algorithms) in order to 

determine the best hashtag segmentation algorithm. 

Python 3.7 was used for experiments on Anaconda 

software. The Viterbi and Triangular Matrix algorithms 

use the unigram and bigram for probability calculations. 

The Word Breaker algorithm utilizes two forms of the n-

gram language model to estimate likelihood; one 

smoothed with Good-Turing, and the other smoothed 

with the Kneser-Ney technique. 

A.  Evaluation Results for Each Algorithm 

This section discusses the performance of each 

algorithm with regards to hashtag segmentation. The first 

comparison for the Twitter and Wikipedia corpora was 

performed for the Viterbi algorithm, while the second 

was performed for the Triangular Matrix, as it uses the 

same corpora as the Viterbi algorithm. The Word Breaker 

algorithm was compared to two types of language models: 

one smoothed with the Good-Turing algorithm, and the 

other smoothed with Kneser-Ney. As the WB algorithm 

generates k different segmentations, it was examined in 

different positions. For this experiment, the k value set up 

to 10, in order to obtain 10 different segmentations. The 

details of these experiments are provided below.  

1) Viterbi algorithm: The results from the experiment 

on the Viterbi algorithm, using the Wikipedia and Twitter 

corpora, are exhibited in Table III. As can be observed, 

the English-Wikipedia corpus outperformed the Twitter 

corpus by small portions, in all evaluation metrics for the 

test set, as the former includes more tokens in the hashtag 

after splitting. This denotes a correct segmentation for the 

algorithm on this corpus. 

TABLE III.     RESULTS IN THE PERCENTAGE OF VITERBI ALGORITHM  

The test set with normalization 

Statistical 

corpora 
Accuracy Precision Recall 

F1-

score 

Twitter 76.83 81.17 78.01 78.99 

English-

Wikipedia 
80.31 82.94 79.41 80.54 

 

2) Triangular Matrix algorithm: The details of the 

experiment conducted on the Twitter and Wikipedia 

corpora, for the Triangular Matrix algorithm, are 

displayed in Table IV. Here again, the English-Wikipedia 

corpus outperformed the Twitter corpus, for the same 

reasons stated for the Viterbi algorithm.   

TABLE IV.  RESULTS IN THE PERCENTAGE OF TRIANGULAR MATRIX 

ALGORITHM  

The test set with normalization 

Statistical 

corpora 
Accuracy Precision Recall F1-score 

Twitter 71.04 74.11 69.07 70.55 

English-

Wikipedia 
72.97 75.14 70.07 71.53 

 

3) Word Breaker algorithm: The Word Breaker 

algorithm was examined for two types of Language 

Models (LMs). One type is an n-gram language model, 

which is a small sized language model smoothed with 

Kneser-Ney (KN). The latter is 3-gram, large in scale, 

and smoothed with the Good-Turing (GT) algorithm. The 

WB algorithm was tested on different positions of the 

segmentation, as this algorithm returns the top k 

segmentations, where k is set up to 10, unlike the Viterbi 

and TM algorithms, which return only the best one 

according to its probability. Table V displays the results 
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for the WB algorithm, on the 1st position of the test set, 

for both language models. 

TABLE V.  RESULTS IN PERCENTAGE FOR THE WORD BREAKER 

ALGORITHM  

The test set on the 1st position of segmentation for two language 

models  

Language 

Model 
Accuracy Precision Recall 

F1-

score 

Small (KN) 55.79 55.79 55.79 55.79 

Large (GT) 75.67 78.11 79.09 78.48 

KN: Kneser-Ney 

GT: Good-Turing 

 

Table VI shows the results for the WB algorithm in the 

5th position of segmentation. 

TABLE VI.  RESULTS IN PERCENTAGE FOR THE WB ALGORITHM IN THE 

5TH
 POSITION OF SEGMENTATION 

The test set on 5th position of segmentation for two language 

models  

Language Model Accuracy Precision Recall 
F1-

score 

Small (KN) 69.30 74.13 72.20 72.89 

Large (GT) 81.08 83.08 83.95 83.43 

 

Table VII shows the results for the WB algorithm in 

the 10th position of segmentation. 

TABLE VII.  RESULTS IN PERCENTAGE FOR THE WB ALGORITHM IN 

THE 10TH
 POSITION OF SEGMENTATION  

The test set on the 10th position of segmentation for two 

language model 

Language Model Accuracy Precision Recall 
F1-

score 

Small (KN) 83.01 89.86 87.16 88.07 

Large (GT) 84.36 86.30 87.13 86.64 

 

As shown in Table V and Table VI, the large model 

with GT outperformed the small one, which is smoothed 

with KN in the first and fifth positions. This is an 

indication that in terms of segmentation, the larger model 

is superior. Also, it is obvious, that increasing the 

position, covers more generated segmentations. This 

enhances the effectiveness of the algorithm, for the 

detection of the best segmentation. The need to cover 

several generated segmentations has to do with overcome 

the nature of the beam search algorithm, which can either 

detect the optimal target immediately, or reach the end of 

the search with nothing to show. Surprisingly, the small 

model, with KN, outperformed the larger one, with GT, 

for precision and f-score. This can be attributed to the 

superior capacity of KN for the detection of 

abbreviations/rare words, and single words in the test 

dataset. GT, on the other hand, performs better when it 

comes to multi-token hashtags.  

B.  Comparison among the Three Algorithms 

The first comparison exercise involved the Viterbi and 

Triangular Matrix algorithms. Both use the same 

statistical corpora.  

Fig. 4 displays the comparison between the Viterbi and 

TM algorithms, for the English-Wikipedia corpus. Fig. 5 

shows a similar comparison, conducted on a statistical 

corpus collected from Twitter.  

According to Fig. 4 and Fig. 5, the Viterbi algorithm 

outperformed the TM algorithm. This can be attributed to 

the nature of the former, which examines a new character 

with other characters each time it enters the segmentation 

process, and computes the probability every time. This 

form of backtracking, provides the Viterbi algorithm with 

an edge over the TM algorithm. 

 

Figure 4. Viterbi vs. Triangular Matrix for the English-Wikipedia 

corpus. 

 

Figure 5. Viterbi vs. Triangular Matrix for Twitter corpus. 

The second comparison exercise, which was conducted 

on the Word Breaker algorithm, involved the use of 

different types of language models. Fig. 6 demonstrates 

the manner in which the language model, smoothed with 

Good-Turing, outperformed the language model, 

modified with the use of the Kneser-Ney smoothing 

algorithm.  

 

Figure 6. Large LM (GT) vs. small LM (KN) for WB. 
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As the Word Breaker algorithm selects the top 10 

segmentations, from the possible generated 

segmentations, an additional comparison was applied to 

the language model smoothed with Good-Turing, in 

different positions of the segmentation. Fig. 7 shows the 

results derived from this third comparison exercise, with 

regards to these different positions. 

 

Figure 7. Segmentations of WB for large LM (GT) on different 

positions. 

The fourth comparison exercise involved the best 

results attained by the Viterbi, Triangular Matrix and 

Word Breaker algorithms, on various resources. As can 

be observed in Fig. 8, the WB algorithm, with an f1-score 

of 86.64%, outperformed both the Viterbi algorithm (f1-

score of 80.54%) and the Triangular Matrix algorithm 

(f1-score of 71.53%).   

This outcome can be attributed to the capacity of the 

WB algorithm, to detect the meaningful tokens in the 

segmentation process, as it uses heuristic information, 

and can calculate their probabilities regarding the other 

tokens in the segmentation. Moreover, due to the 

smoothing technique employed, the language model can 

identify unknown words better, even if only one word 

from the segmentations is apparent. 

 

Figure 8. Viterbi vs. WB vs. TM algorithms. 

V. CONCLUSION  

The main goal of this study is to select the best 

algorithm among the Viterbi, Triangular Matrix, and 

Word Breaker algorithms, for hashtag segmentation on 

the Twitter dataset. To begin with, the Viterbi algorithm 

outperformed the Triangular Matrix algorithm, for both 

the Twitter and Wikipedia word statistical corpora used. 

As this investigation involved the use of different types 

of language models, a separate comparison exercise was 

conducted, to determine the best model for the WB 

algorithm, when it comes to the segmentation of Twitter 

hashtags. The findings revealed that the most outstanding 

performance was delivered by the language model, 

smoothed with the Good-Turing algorithm, as it proved to 

be best at detecting multi-token hashtags. 

To summarize, the Word Breaker algorithm, which is 

implemented using the beam search algorithm with the n-

gram language model, proved to be superior to the other 

two algorithms, investigated during this undertaking. In 

terms of f1-score, the Word Breaker algorithm achieved 

86.64%, compared to 80.54% for the Viterbi algorithm, 

and 71.53% for the Triangular Matrix algorithm.  

In view of the results derived through this comparative 

study, the Word Breaker algorithm can be considered 

superior to the Viterbi and Triangular Matrix algorithms, 

when it comes to hashtag segmentation. For future work, 

different datasets should be examined for the algorithms, 

so that the results can be generalized. A large language 

model should be considered for the Word Breaker 

algorithm, as this can serve to enhance its segmentation 

performance. And lastly, machine learning techniques 

should be brought into the picture, to improve the hashtag 

segmentation process. 
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