
Hashtag Segmentation: A Comparative Study

Involving the Viterbi, Triangular Matrix and

Word Breaker Algorithms

Samia F. Abd-hood1,2 and Nazlia Omar1
1 Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia

2 Hadhramout University, Hadhramout, Yemen

Email: gp07233@siswa.ukm.edu.my, nazlia@ukm.edu.my

Abstract—Microblogging and social networking sites such as

Twitter, Facebook, and Instagram, are becoming

increasingly popular, registering more than 500 million

posts each day. Twitter uses hashtags that are dynamic,

user-generated text, preceded by a pound (#) symbol, to

retrieve similar posts or topics, to mark events or to tag

channels. Following segmentation, hashtags can be used for

many Natural Language Processing (NLP) applications.

These include sentiment analysis, text classification, named

entity recognition, and sarcasm detection. This study delves

into a comparison of three algorithms, namely the Viterbi,

Triangular matrix and Word breaker algorithms, to

determine the best among the three, for the segmentation of

hashtags. These algorithms utilize different resources, to

calculate the probability of the segmented parts, in order to

rank the possible generated segmentations. For example,

while the Viterbi and Triangular Matrix algorithms use two

statistical corpora of unigram and bigram, the Word

Breaker algorithm uses the n-gram language model.

According to conducted experiment, the Viterbi algorithm is

better for hashtag segmentation than the Triangular Matrix

algorithm. This can be attributed to the manner in which

the Viterbi algorithm conducts the backtracking. On the

other hand, the Word Breaker algorithm, which can

ascertain the meaningful tokens in the form of words, before

proceeding with the segmentation of the remaining

characters, is considered superior to both the Viterbi and

Triangular Matrix algorithms, particularly when it comes to

the detection of unknown words. Used together with the

Good-Turing smoothing algorithm, the Word Breaker

algorithm achieved 86.64% f1-score on a large language

model.

Index Terms—hashtag segmentation, twitter, viterbi

algorithm, word breaker algorithm, triangular matrix

algorithm

I. INTRODUCTION

Social media platforms such as Twitter, Facebook and

Instagram are currently inundated with information. The

information provided by social media platforms, are used

for a variety of applications, which include sentiment

analysis and data mining [1], or for a user review for

recommender systems [2]. The Twitter platform alone

Manuscript received January 19, 2021; revised August 25, 2021.

has 330 million monthly active users, who post half a

billion Tweets each day [3]. Twitter data in the form of

hashtags, play an essential role in several NLP

applications. A hashtag is a user-generated text, used to

label channels in the social media, for the delivery of a

message to people, or for marking a significant event [4].

A hashtag is represented by the pound symbol (#), which

is a form of metadata tag used on social networks, along

with Twitter and a variety of micro-blogging services.

The hashtag concept is the brainchild of Chris Messina,

who in a 2007 Tweet posted the message “How do you

feel about using # (pound) for groups. As in

#barcamp[msg]?”. Initially looked upon as a “thing for

nerds”, the use of hashtags quickly became the norm

among social media platforms.

Hashtags represented by one word (for instance eclipse)

are called single-token hashtags, while hashtags

represented by a combination of words without spaces are

called multiple-token hashtags. Multiple-token hashtags

can come in the lower case (for instance,

addictivetvshows), with each token capitalized (for

instance, WakingUpTooEarly), or with an underscore (for

instance, covid_19). Hashtag segmentation involves the

breaking down of a hashtag into its tokens. For example,

following segmentation, the hashtag addictivetvshows

becomes addictive tv shows.

Hashtag segmentation for NLP applications, has to do

with the use of hashtag tokens, to automatically label

sentiment analysis datasets with positive, negative, or

neutral classifications, based on the sentiment of the

hashtag [5]. Hashtag tokens are also used for identifying

the names for named entity recognition systems [6], for

classifying Tweets [7], and for detecting sarcasm [8].

This undertaking focuses on a comparative study

involving the Viterbi, Triangular Matrix and Word

Breaker algorithms, in terms of hashtag segmentation.

This comparative study will serve to determine the most

suitable algorithm, for the segmentation of Twitter data

hashtags. The motivation for this study derives from the

fact that (a) other hashtag segmentation techniques, such

as the longest maximum matching, are ineffective for the

detection of unknown words, (b) statistical approaches,

such as the use of the language model to calculate

probability, are more applicable for the identification of

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 311
doi: 10.12720/jait.12.4.311-318

rarely used words, and (c) some hashtag segmentation

approaches do not include an evaluation of the

segmentation process itself. Belainine et al. used the

segmented hashtag with other features, such as synonym

and hypernymy from WordNet, for the classification of

Tweets, not for the segmentation process [6]. The three

algorithms selected for this study come with several plus

points. The Viterbi algorithm has the capacity to monitor

the segmented characters, generate new ones, and

conduct matching with the previous as well as next

characters, to determine if a correct segmentation has

been generated. Additionally, the Viterbi algorithm can

be employed with a unigram and bigrams in this study.

The Word Breaker algorithm exploits the beam search

algorithm to perform characterization by reducing the

time and memory consumption to ensure that the optimal

result is realized in a limited set. As reported by [9] and

[10], the Word Breaker algorithm is considered robust for

the segmentation process. As for the Triangular Matrix

algorithm, while it has been previously employed for

spell correction, there is no record of this algorithm being

used for segmentation.

The rest of this paper is organized as follows: Section

II describes previous works on hashtag segmentation,

Section III explains the methodology of the segmentation

process, Section IV presents the results and discussion,

and Section V provides the conclusion to this paper.

II. LITERATURE REVIEW

The significance of the segmentation process derives

from the lack of delimitation for languages such as

Chinese, Japanese and Korean, as well as the frequent

occurrence of abundant compounds in certain languages

such as German. The segmentation concept has its roots

in word segmentation for such languages. The methods

used for word segmentation, often involve the tagging of

the characters of the text, to identify the position of the

character, in order to enter the boundaries of the words.

Machine learning classifiers (as those used for the

Chinese language segmentation) are then brought into the

picture. While some researchers applied the neural

network for tagging the characters, followed by the

implementation of deep learning techniques to score the

words [11], [12], others utilized the rule-based from

corpora for the compound words (as for the German

language). In a comparison exercise conducted by [13],

involving a word-based model and a character-based

model, the character-based model was proclaimed

superior for hashtag segmentation.

The hashtag segmentation process is essential for many

NLP applications. For instance, sentiment analysis relies

on hashtags to label the dataset with positive, negative or

neutral sentiments, as in [5].

Hashtag segmentation approaches can be grouped into

four categories. Rule-based approaches identify the

tokens of the hashtag, by detecting certain features

included in the hashtag itself. For instance, the hashtag

can be segmented through the detection of capitalization,

numbers, or the underscore in the hashtag. However, as

the dataset could also include hashtags in lowercase or

uppercase patterns, the hashtags are segmented character

by character, followed by the search for a match in a

dictionary, to realize the correct segmentation. In a

situation where there is more than one segmentation, the

longest maximum matching technique is applied as in [6].

Likewise, [14] utilized the camel-cased technique to

segment the hashtags of their dataset, and the POS

tagging, to validate the English vocabulary included in a

hashtag. While [8] applied the same process as [6] and

[14] to segment the hashtags, unlike [6], they opted for

the Viterbi-alike algorithm to select the best segmentation

for lower case hashtags.

The word boundary detection approach considers

hashtag segmentation a binary classification task. This

approach entails the use of BI, which stands for

Beginning or Inside the word schema. Each letter is

considered an individual training instance for the learning

algorithm, and labelled the first letter (boundary) of a

word, or not, in the sequence. In order to determine the

possible boundaries, some features are implemented to

detect the (B)eginning or (I)nside character. The word

boundary technique was demonstrated in studies

conducted by [4] and [9]. They utilized vocabulary-based

features, bigram-based features, and orthography-based

features (for instance, the capitalized letters in a hashtag

or a number), to determine the possible boundaries, then

(CRFs) and Maximum Entropy (MaxEnt) classifiers, to

realize segmentation.

Statistical approaches use the probability or other score

functions, to rank the generated segmentations. The work

in [15] involved the use of a regression model, to score

the generated candidate segmentations produced by

segmenting the hashtag, followed by matching either with

Wikipedia pages, or the context of the Tweet. While [16]

used a score function to rank the possible candidates, [7]

used a probabilistic language model, to rank the

candidates generated from the viterbi algorithm. The

works of [17]-[19] all involved the use of the viterbi

algorithm, with the former using it to segment the text of

the Palm Leaf Manuscript, for Optical Character

Recognition (OCR) systems. Ref. [18] implemented the

Viterbi algorithm for named entity recognition systems,

and [19] used it to segment the hashtags of Twitter for

sentiment analysis systems. In contrast to this study, [18]

implemented the viterbi algorithm with unigram corpus,

to calculate probability.

Machine and deep learning approaches are frequently

used for hashtag segmentation. In a study conducted by

[20], a pairwise neural ranking technique was utilized to

rank the segmentations generated by the word breaker

algorithm. Researchers [21], [22] utilized the Recurrent

Neural Network (RNN) to rank the segmentations. The

work of [21] considered hashtag segmentation a sequence

of labelling task, in which each symbol of a given string

is labelled either 1 or 0. The value 1 represents a white

space after this symbol, and 0, otherwise. Their approach

was applied for the Russian language. Meanwhile, in a

study conducted by [22], the Recurrent Neural Network

(RNN) on character/byte was used, for the segmentation

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 312

fed these instances into the Conditional Random Fields

of hashtags, with the utilization of the beam search

algorithm.

III. METHODS

This section presents the framework of this study, and

describes the methods utilized for hashtag segmentation.

Also provided are explanations regarding the dataset and

the pre-processing phase.

Figure 1. Hashtag segmentation framework.

Figure 2. Probability calculation process.

Fig. 1 depicts the design of the automatic hashtag

segmentation process, while Fig. 2 demonstrates the

calculation process, for ascertaining the probability for

the generated hashtag segments.

A. Dataset

The dataset is a fragment set introduced by [20], which

originates from the Stanford dataset. It consists of 2518

hashtags, with their gold truth (segmentation performed

manually). Only a single hashtag is extracted per Tweet.

Eighty percent of dataset is for the train, and the rest is

for the test. A sample of hashtags and their gold truth is

displayed in Table I.

TABLE I. SAMPLE OF DATASET

Hashtag Gold Truth

addictivetvshows Addictive TV Shows

stupidaccident stupid accident

FailWhaleBeGone Fail Whale be gone, fail whale be

gone, Fail Whale Be Gone

rssreader RSS Reader

B. Pre-processing

This section describes the preparation of the dataset,

for the segmentation phase. Only a single hashtag is

extracted per Tweet. Also, the hashtag and gold truth are

normalized to the lowercase. This serves to raise the

evaluation quality, as prior to normalization, although the

algorithms generated correct segmentations, due to case

sensitivity, these segmentations do not match the gold

truth. Table II illustrates the significance of gold truth

normalization.

TABLE II. IMPORTANCE OF NORMALIZATION FOR GOLD TRUTH

Algorithm

Segmentation

Gold Truth

Segmentation

Segmentation

Status

addictive tv shows Addictive TV Shows False

cloud views Cloud Views False

C. Resources Used for Segmentation

Several resources were used to conduct the

experiments for this study. To begin with, two statistical

corpora, one collected from Twitter, and the other from

English Wikipedia, were utilized to calculate probability.

Both corpora were collected by [19]. A unigram and

bigram, with their frequencies, are used to calculate the

probability of the Viterbi and Triangular Matrix

segmented parts. During the segmentation process, the

algorithms check for a match with the corpus. The

detection of a match is followed by the return of the token

as a segment. Otherwise, the probability is calculated as

shown in Fig. 2. Two types of language models were

used with the Word Breaker algorithm. One is a test.arpa1

from KenLM [23], which is a small language model with

size 2.71 KB, modified by way of the Kneser-Ney

smoothing algorithm. This model consists of the unigram,

bigram, trigram, 4-gram and 5-gram. The other type of

1 https://github.com/zomux/modified-kenlm/tree/master/lm

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 313

language model used, which is larger, is taken from [20].

The language model was trained on 1.1 billion Tweets,

with the Good-Turing smoothing algorithm, using

SRILM [24]. The binary format of this model ensured

that less space is taken up, and that the loading process is

accelerated.

D. Segmentation Algorithms

The three hashtag segmentation algorithms

investigated were the Viterbi, Triangular Matrix, and

Word Breaker algorithms.

1) Viterbi algorithm: The Viterbi algorithm is a

dynamic programming algorithm, designed to ascertain

the most likely series of unknown finite states or hidden

states (known as the viterbi path), that lead to a sequence

of observed events. The objective of the Viterbi algorithm,

is to uncover the best segmentation from possible

generated ones, based on their probability. The Viterbi

algorithm splits the hashtag into two parts, and then

calculates the probability for the first part, using the

statistical corpora collected from Twitter and Wikipedia

separately. Subsequently, it applies a recursive function,

to segment the remainder of the hashtag. Each time a new

character enters the segmentation process, it is examined

with the other characters in the segmentation process.

Algorithm 1 exhibits the pseudocode for the Viterbi

algorithm.

Algorithm 1: Viterbi algorithm pseudocode

Input: hashtag

Output: segmented hashtag

if hashtag is not lowercase:

apply regular expression to segment (camelCased_function ())

else:

execute findSegment (hashtag, prev):

if hashtag not text: return zero

else:

#segment the hashtag

for i in range(min(len(hashtag),

maxSplitLength=20)):

first = hashtag[: i+1]

reminder = hashtag[i+1 :]

return first, reminder

for first, reminder:

calculate the probability for first

recursive findSegment() for reminder

return candidates

return max(candidates)

2) Triangular Matrix (TM): The Triangular Matrix

algorithm, a particular type of square matrix, is widely

used in the field of mathematics, notably in the linear

algebra discipline. Better known for its spelling

correction capacity in machine translation systems, this

algorithm was put to the test for hashtag segmentation.

TM breaks down the hashtag into small portions, to

subsequently solve each piece once, before storing the

result in an array. The next time when the algorithm

recurs to segment the remainder of the hashtag, it

determines if the portion was previously segmented. If so,

instead of performing a re-computation, it proceeds to

retrieve the best segmentation. This time-saving move

renders the performance of the TM algorithm quicker.

The TM algorithm computes the different

segmentations of a prefix of the substring, at a specific

position of the inner loop. It starts to segment the input

hashtag from the left, and when the inner loop reaches the

end of the string, the last segment is retrieved.

Subsequently, the segmentation process begins on the

remainder of the input from the second character. As

shown in Fig. 3, each time a new character starts the

segmentation process, the first character is excluded. The

pseudocode for the algorithm is illustrated in Algorithm

2.

Figure 3. Triangular Matrix segmentation process.

Algorithm 2: Triangular Matrix pseudocode

input: hashtag

output: segmented hashtag

initialize arraySize = 0

initialize arrayWidth = 0

segmentedSpaceBits = [] #to store spaces instead of

segmented text

findSegment(hashtag):

#i represents all possible part start position (outer loop)

for i in range(0, len(hashtag)):

if i > 0:

combine best segmentation of i with

part_1 generated from the inner loop

imax = min(len(hashtag)-i,

maxSegWordLen)

for j in range(1, len(imax)):

part_1.split(i, j)

calculate probability then the best

segmentation stores in array

#end inner loop

return the best segmentation for outer loop based on its

probability

3) Word Breaker (WB): The implementation of the WB

algorithm entails the use of the beam search algorithm,

with the n-gram language model. The beam search is a

heuristic algorithm that explores all the possible

candidates, and returns the results based on some

heuristic information. The beam search algorithm

considers the segmented hashtag a tree. It analyses the

input hashtag one character (token) at a time from the left,

and determines if a word boundary token in that position

is appropriate. If so, two segmented nodes of the hashtag

will be generated. As the algorithm processes the entire

data, the best k number of candidates will be selected

from the current possibly made. K in this experiment is

set up to 10, meaning that the algorithm will generate 10

different segmentations. When a new character enters the

segmentation process, the algorithm examines it with

other characters in the segmentation process, to identify

the possible boundary for the segmentation. Algorithm 3

illustrates the pseudocode for the algorithm.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 314

Algorithm 3: Word Breaker pseudocode

input: hashtag

output: segmented hashtag

initialize positionCurrentWord = 0

initialize score = 0

initialize segments = null

beamSearch(hashtag):

for i in range(positionCurrentWord +1 to len(hashtag)+1):

currentWord = hashtag[positionCurrentWord :i]

getScore(segments, currentWord):

calculate probability using language model

push the new segment in list

while list not empty:

if newSegment.position == len(hashtag):

 push newSegment in topk_segments

else:

 recursive beamSearch(newSegment)

for segment in topk_segments:

return segment[k]

E. Evaluation

The performance of the segmentation process was

evaluated by way of the four standard evaluation metrics:

accuracy, precision, recall and f-score. Accuracy

represents full matching with the gold truth. It is a

percentage of corrected segmentation with respect to

whole instances in the dataset [20].

accuracy =
dataset of instances ofnumber whole

hashtag segmentedcorrectly ofnumber
 (1)

Precision, recall, and f-score consider the partial

matches on the segmentation level [20]. Precision

represents the percentage of correct words in the

segmentation, to the number of words in the segmentation

by an algorithm.

Precision =
on segmentati theoflength

on segmentati ain rdscorrect wo ofnumber
 (2)

Recall represents the number of correct words in

segmentation to the gold truth.

Recall =
on segmentati truth gold theoflength

on segmentati ain rdscorrect wo ofnumber
 (3)

F-score is the harmonic measure between precision and

recall.

F-score =
 recall precision

 recall *precision * 2

+
 (4)

IV. RESULTS AND DISCUSSION

The experiments were performed using 2518 hashtags

with their gold truth segmentation (manual segmentation).

The dataset comprised hashtags of English Twitter data.

The experiments were conducted to assess the

performance of three algorithms (Viterbi, Triangular

Matrix and Word Breaker algorithms) in order to

determine the best hashtag segmentation algorithm.

Python 3.7 was used for experiments on Anaconda

software. The Viterbi and Triangular Matrix algorithms

use the unigram and bigram for probability calculations.

The Word Breaker algorithm utilizes two forms of the n-

gram language model to estimate likelihood; one

smoothed with Good-Turing, and the other smoothed

with the Kneser-Ney technique.

A. Evaluation Results for Each Algorithm

This section discusses the performance of each

algorithm with regards to hashtag segmentation. The first

comparison for the Twitter and Wikipedia corpora was

performed for the Viterbi algorithm, while the second

was performed for the Triangular Matrix, as it uses the

same corpora as the Viterbi algorithm. The Word Breaker

algorithm was compared to two types of language models:

one smoothed with the Good-Turing algorithm, and the

other smoothed with Kneser-Ney. As the WB algorithm

generates k different segmentations, it was examined in

different positions. For this experiment, the k value set up

to 10, in order to obtain 10 different segmentations. The

details of these experiments are provided below.

1) Viterbi algorithm: The results from the experiment

on the Viterbi algorithm, using the Wikipedia and Twitter

corpora, are exhibited in Table III. As can be observed,

the English-Wikipedia corpus outperformed the Twitter

corpus by small portions, in all evaluation metrics for the

test set, as the former includes more tokens in the hashtag

after splitting. This denotes a correct segmentation for the

algorithm on this corpus.

TABLE III. RESULTS IN THE PERCENTAGE OF VITERBI ALGORITHM

The test set with normalization

Statistical

corpora
Accuracy Precision Recall

F1-

score

Twitter 76.83 81.17 78.01 78.99

English-

Wikipedia
80.31 82.94 79.41 80.54

2) Triangular Matrix algorithm: The details of the

experiment conducted on the Twitter and Wikipedia

corpora, for the Triangular Matrix algorithm, are

displayed in Table IV. Here again, the English-Wikipedia

corpus outperformed the Twitter corpus, for the same

reasons stated for the Viterbi algorithm.

TABLE IV. RESULTS IN THE PERCENTAGE OF TRIANGULAR MATRIX

ALGORITHM

The test set with normalization

Statistical

corpora
Accuracy Precision Recall F1-score

Twitter 71.04 74.11 69.07 70.55

English-

Wikipedia
72.97 75.14 70.07 71.53

3) Word Breaker algorithm: The Word Breaker

algorithm was examined for two types of Language

Models (LMs). One type is an n-gram language model,

which is a small sized language model smoothed with

Kneser-Ney (KN). The latter is 3-gram, large in scale,

and smoothed with the Good-Turing (GT) algorithm. The

WB algorithm was tested on different positions of the

segmentation, as this algorithm returns the top k

segmentations, where k is set up to 10, unlike the Viterbi

and TM algorithms, which return only the best one

according to its probability. Table V displays the results

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 315

for the WB algorithm, on the 1st position of the test set,

for both language models.

TABLE V. RESULTS IN PERCENTAGE FOR THE WORD BREAKER

ALGORITHM

The test set on the 1st position of segmentation for two language

models

Language

Model
Accuracy Precision Recall

F1-

score

Small (KN) 55.79 55.79 55.79 55.79

Large (GT) 75.67 78.11 79.09 78.48

KN: Kneser-Ney

GT: Good-Turing

Table VI shows the results for the WB algorithm in the

5th position of segmentation.

TABLE VI. RESULTS IN PERCENTAGE FOR THE WB ALGORITHM IN THE

5TH
 POSITION OF SEGMENTATION

The test set on 5th position of segmentation for two language

models

Language Model Accuracy Precision Recall
F1-

score

Small (KN) 69.30 74.13 72.20 72.89

Large (GT) 81.08 83.08 83.95 83.43

Table VII shows the results for the WB algorithm in

the 10th position of segmentation.

TABLE VII. RESULTS IN PERCENTAGE FOR THE WB ALGORITHM IN

THE 10TH
 POSITION OF SEGMENTATION

The test set on the 10th position of segmentation for two

language model

Language Model Accuracy Precision Recall
F1-

score

Small (KN) 83.01 89.86 87.16 88.07

Large (GT) 84.36 86.30 87.13 86.64

As shown in Table V and Table VI, the large model

with GT outperformed the small one, which is smoothed

with KN in the first and fifth positions. This is an

indication that in terms of segmentation, the larger model

is superior. Also, it is obvious, that increasing the

position, covers more generated segmentations. This

enhances the effectiveness of the algorithm, for the

detection of the best segmentation. The need to cover

several generated segmentations has to do with overcome

the nature of the beam search algorithm, which can either

detect the optimal target immediately, or reach the end of

the search with nothing to show. Surprisingly, the small

model, with KN, outperformed the larger one, with GT,

for precision and f-score. This can be attributed to the

superior capacity of KN for the detection of

abbreviations/rare words, and single words in the test

dataset. GT, on the other hand, performs better when it

comes to multi-token hashtags.

B. Comparison among the Three Algorithms

The first comparison exercise involved the Viterbi and

Triangular Matrix algorithms. Both use the same

statistical corpora.

Fig. 4 displays the comparison between the Viterbi and

TM algorithms, for the English-Wikipedia corpus. Fig. 5

shows a similar comparison, conducted on a statistical

corpus collected from Twitter.

According to Fig. 4 and Fig. 5, the Viterbi algorithm

outperformed the TM algorithm. This can be attributed to

the nature of the former, which examines a new character

with other characters each time it enters the segmentation

process, and computes the probability every time. This

form of backtracking, provides the Viterbi algorithm with

an edge over the TM algorithm.

Figure 4. Viterbi vs. Triangular Matrix for the English-Wikipedia

corpus.

Figure 5. Viterbi vs. Triangular Matrix for Twitter corpus.

The second comparison exercise, which was conducted

on the Word Breaker algorithm, involved the use of

different types of language models. Fig. 6 demonstrates

the manner in which the language model, smoothed with

Good-Turing, outperformed the language model,

modified with the use of the Kneser-Ney smoothing

algorithm.

Figure 6. Large LM (GT) vs. small LM (KN) for WB.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 316

As the Word Breaker algorithm selects the top 10

segmentations, from the possible generated

segmentations, an additional comparison was applied to

the language model smoothed with Good-Turing, in

different positions of the segmentation. Fig. 7 shows the

results derived from this third comparison exercise, with

regards to these different positions.

Figure 7. Segmentations of WB for large LM (GT) on different

positions.

The fourth comparison exercise involved the best

results attained by the Viterbi, Triangular Matrix and

Word Breaker algorithms, on various resources. As can

be observed in Fig. 8, the WB algorithm, with an f1-score

of 86.64%, outperformed both the Viterbi algorithm (f1-

score of 80.54%) and the Triangular Matrix algorithm

(f1-score of 71.53%).

This outcome can be attributed to the capacity of the

WB algorithm, to detect the meaningful tokens in the

segmentation process, as it uses heuristic information,

and can calculate their probabilities regarding the other

tokens in the segmentation. Moreover, due to the

smoothing technique employed, the language model can

identify unknown words better, even if only one word

from the segmentations is apparent.

Figure 8. Viterbi vs. WB vs. TM algorithms.

V. CONCLUSION

The main goal of this study is to select the best

algorithm among the Viterbi, Triangular Matrix, and

Word Breaker algorithms, for hashtag segmentation on

the Twitter dataset. To begin with, the Viterbi algorithm

outperformed the Triangular Matrix algorithm, for both

the Twitter and Wikipedia word statistical corpora used.

As this investigation involved the use of different types

of language models, a separate comparison exercise was

conducted, to determine the best model for the WB

algorithm, when it comes to the segmentation of Twitter

hashtags. The findings revealed that the most outstanding

performance was delivered by the language model,

smoothed with the Good-Turing algorithm, as it proved to

be best at detecting multi-token hashtags.

To summarize, the Word Breaker algorithm, which is

implemented using the beam search algorithm with the n-

gram language model, proved to be superior to the other

two algorithms, investigated during this undertaking. In

terms of f1-score, the Word Breaker algorithm achieved

86.64%, compared to 80.54% for the Viterbi algorithm,

and 71.53% for the Triangular Matrix algorithm.

In view of the results derived through this comparative

study, the Word Breaker algorithm can be considered

superior to the Viterbi and Triangular Matrix algorithms,

when it comes to hashtag segmentation. For future work,

different datasets should be examined for the algorithms,

so that the results can be generalized. A large language

model should be considered for the Word Breaker

algorithm, as this can serve to enhance its segmentation

performance. And lastly, machine learning techniques

should be brought into the picture, to improve the hashtag

segmentation process.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

For the research work, Samia F. Abd-hood carried out

the investigation on techniques of hashtag segmentation,

implemented the algorithms and performed the

experiment. Nazlia Omar advised the investigation and
writing of this manuscript, in which all authors had

approved the final version.

ACKNOWLEDGMENT

This project is funded by UKM under the research

code GP-2020-K007009. The first author would like to

thank Establishment of Hadhramout for Development and

Humanity.

REFERENCES

[1] B. Saberi and S. Saad, “Sentiment analysis or opinion mining: A

review,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 5, pp. 1660-

1666, 2017.

[2] S. M. Al-Ghuribi and S. A. M. Noah, “Multi-criteria review-based

recommender system-The state of the art,” IEEE Access, vol. 7, pp.

169446-169468, 2019.

[3] A. Omnicore. (2020). Twitter-statistics. [Online]. Available:

https://www.omnicoreagency.com/twitter-statistics/

[4] A. Çelebi and A. Özgür, “Segmenting hashtags and analyzing their

grammatical structure,” J. Assoc. Inf. Sci. Technol., vol. 69, no. 5,

pp. 675-686, 2018.

[5] I. Alfina, D. Sigmawaty, F. Nurhidayati, and A. N. Hidayanto,

“Utilizing hashtags for sentiment analysis of tweets in the political

domain,” in Proc. 9th Int. Conf. Mach. Learn. Comput., 2017, pp.

43-47.

[6] B. Belainine, A. Fonseca, and F. Sadat, “Named entity recognition

and hashtag decomposition to improve the classification of

tweets,” in Proc. 2nd Work. Noisy User-generated Text, 2016, pp.

102-111.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 317

[7] C. Simeon, H. J. Hamilton, and R. J. Hilderman, “Word

segmentation algorithms with lexical resources for hashtag

classification,” in Proc. IEEE Int. Conf. Data Sci. Adv. Anal.,

IEEE, 2016, pp. 743-751.

[8] D. G. Maynard and M. A. Greenwood, “Who cares about sarcastic

tweets ? Investigating the impact of sarcasm on sentiment

analysis,” in Lr. 2014 Proceedings, ELRA, 2014, pp. 4238-4243.

[9] A. Celebi and A. Özgür, “Segmenting hashtags using

automatically created training data,” in Proc. Tenth Int. Conf.

Lang. Resour. Eval., 2016, pp. 2981-2985.

[10] P. Bansal, R. Bansal, and V. Varma, “Towards deep semantic

analysis of hashtags,” in Proc. Eur. Conf. Inf. Retr., Springer,

Cham., 2015, pp. 453-464, 2015.

[11] D. Cai and H. Zhao, “Neural word segmentation learning for

chinese,” arXiv Prepr. arXiv1606.04300, 2016.

[12] J. Ma, K. Ganchev, and D. Weiss, “State-of-the-Art Chinese word

segmentation with Bi-LSTMs,” arXiv Prepr. arXiv1808.06511,

2018.

[13] X. Li, Y. Meng, X. Sun, Q. Han, A. Yuan, and J. Li, “Is word

segmentation necessary for deep learning of Chinese,” arXiv Prepr.

arXiv1905.05526, 2019.

[14] T. Declerck and P. Lendvai, “Processing and normalizing

hashtags,” in Proc. Int. Conf. Recent Adv. Nat. Lang. Process.,

2015, pp. 104-109.

[15] P. Bansal, S. Jain, and V. Varma, “Towards semantic retrieval of

hashtags in microblogs,” in Proc. 24th Int. Conf. World Wide Web,

2015, pp. 7-8.

[16] J. Reuter, J. Pereira-Martins, and J. Kalita, “Segmenting Twitter

hashtags,” Intl. J. Nat. Lang. Comput., vol. 5, no. 4, pp. 23-36,

2016.

[17] G. Peng, P. Yu, H. Li, and L. He, “Text line segmentation using

Viterbi algorithm for the palm leaf manuscripts of Dai,” in Proc.

Int. Conf. Audio, Lang. Image Process, IEEE, 2016, pp. 336-340.

[18] S. P. Sharmila and P. K. Sujatha, “Segmentation based

representation for tweet hashtag,” in Proc. Seventh Int. Conf. Adv.

Comput., IEEE, 2016, pp. 1-7.

[19] C. Baziotis, N. Pelekis, and C. Doulkeridis, “Datastories at

semeval-2017 task 4: Deep lstm with attention for message-level

and topic-based sentiment analysis,” in Proc. 11th Int. Work.

Semant. Eval., 2017, pp. 747-754.

[20] M. Maddela, W. Xu, and D. Preoţiuc-Pietro, “Multi-task pairwise

neural ranking for hashtag segmentation,” arXiv Prepr.

arXiv1906.00790, pp. 2538-2549, 2019.

[21] T. Glushkova and E. Artemova, “Char-RNN and active learning

for hashtag segmentation,” arXiv Prepr. arXiv1911.03270, pp. 1-

15, 2019.

[22] Y. Doval and C. Gómez‐Rodríguez, “Comparing neural- and n-

gram-based language models for word segmentation,” J. Assoc. Inf.

Sci. Technol., vol. 70, no. 2, pp. 187-197, 2019.

[23] K. Heafield, “KenLM : Faster and smaller language model

queries,” in Proc. Sixth Work. Stat. Mach. Transl., 2011, no. 2009,

pp. 187-197.

[24] A. Stolcke, “SRILM - An extensible language modeling toolkit,”

in Proc. 7th Int. Conf. Spok. Lang. Process, 2002, pp. 901-904.

Copyright © 2021 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Samia F. Abd-hood received her BSc degree in Computer Science

from Hadhramout University, Hadhramout, Yemen in 2011. She has

completed her MSc in Information Science from Universiti Kebangsaan

Malaysia (UKM). Her major field in natural language processing and

machine learning. She is an assistant lecturer at Hadhramout University,

Yemen.

Nazlia Omar is currently an Associate

Professor at the Center for AI Technology

(CAIT), Faculty of Information Science and

Technology (FTSM), Universiti Kebangsaan

Malaysia (UKM). She holds her PhD from the

University of Ulster, UK. Her main research

interest is in the area of Natural Language

Processing and Computational Linguistics. She

is a member of the Asian Language Processing

Lab (ASLAN) at CAIT, FTSM, UKM.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 318

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

