
Document-Oriented Data Organization for

Unmanned Aerial Vehicle Outputs

Suhaibah Azri, Uznir Ujang, and Wan Afifah Wan Embong
3D GIS Research Lab, Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia,

Malaysia

Email: {suhaibah, mduznir}@utm.my, wanafifah41@yahoo.com

Miguel Gonzalez Cuetara and Guillermo Miguel
Ecapture Research and Development S.L., Badajoz, Spain

Email: miguelgonzalezcuetara@gmail.com, guillermo@ecapture3d.com

Abstract—Three-Dimensional (3D) point cloud is considered

an important geospatial resource for a vast range of

applications. This is due to the rapid technology on data

acquisition, such as Unmanned Aerial Vehicle (UAV),

Mobile Laser Scanning, and Terrestrial Laser Scanning

(TLS). Yet efforts to exploit the use of these datasets are

increasingly threatened by the massive dataset, data density,

and data complexity. Traditional Relational Database

Management System (RDBMS) existed years ago, but the

capability of relational databases in handling these issues is

questionable due to several drawbacks and limitations. To

address these challenges, effective storage, querying, and

organization is required. Document-oriented databases are

becoming more prominent compared to relational database,

since it is capable of handling petabytes of data emerging

from the Big Data scheme. Thus, this study investigates the

capability of the document-oriented database in organizing

UAV outputs, such as images and point clouds, via a NoSQL

database. There are 103,996,984-point clouds generated

from UAV images and stored in the database. Several tests,

such as time analysis, insert operation, and storage

consumption, are performed and compared with the

RDBMS. The results show that the document-oriented

database outperforms the relational database during data

retrieval, where the document-oriented database response is

37% faster than the relational database. Meanwhile for data

updating, the document-oriented database response is 30%

faster than a relational database. To retrieve the stored

point cloud in the database, the Potree viewer is used to

render the data on the web browser. Based on the result, the

point cloud data is successfully rendered and can be

manipulated for future applications.

Index Terms—relational database, document-oriented

database, point cloud, unmanned aerial vehicle

I. INTRODUCTION

Point clouds are datasets that represent objects or space.

Each single points represent the X, Y, and Z coordinates

an underlying sampled surface. Point clouds are a means

of collating a large number of single spatial

measurements into a dataset that can then represent a

Manuscript received May 19, 2021; revised September 1, 2021.

whole object or space. Point clouds are most commonly

generated using 3D laser scanners and LiDAR (Light

Detection and Ranging) technology and techniques. Here,

each point represents a single laser scan measurement.

These scans are then stitched together, creating a

complete capture of a scene, using a process called

“registration”. Nowadays, the application of point cloud

data has increased dramatically due to the increasing

number of data acquisition technologies, such as airborne

LiDAR, Mobile Laser Scanning (MLS), Terrestrial Laser

Scanning (TLS), Unmanned Aerial Vehicle (UAV),

drones and photogrammetry image processing (see [1]-

[3]). Using these technologies, discrete and massive point

cloud data are recorded, and enormous computing power

is required to process the data [4].

The latest standard of inspection embraces drones that

master the art of data collection efficiently. UAV

technology has encouraged industries in diverse practices.

UAVs are utilized in numerous occurrences due to their

advancement in safety. With their remote-control abilities,

drones can monitor locations, communicate possible

hazards, and notify threatening conditions. As a drone's

applicability becomes more extensive, their prices also

drive towards being more pocket-friendly compared to

other devices, such as TLS and MLS. Besides that, a

UAV is embedded with high-resolution cameras

furnished with top-notch sensors, which means UAVs

can take excellent aerial photographs, aerial videos and

accumulate large volumes of accurate data. However,

these images need to be pre-processed and transformed

into a point cloud dataset. Vast amounts of point cloud

dataset will be produced and can be up to terabyte and

petabyte size. In order to make use of these point clouds,

an efficient storage and retrieval system is therefore

needed.

Relational Database Management System (RDBMS)

stores data in tables and uses Structured Query Language

(SQL) for data retrieval. In relational databases, the

database schema is defined, and rules are set up to control

the relationship between fields. The data may be stored in

separate tables but associated using a join function.

According to [5], the traditional relational database is

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 267
doi: 10.12720/jait.12.4.267-278

somehow relatively inefficient in handling and processing

massive spatial data. It has been proven that relational

databases are inadequate to deal with the immense

volume of data and would cause delay during data

transformation and retrieval. However, even though SQL

server and relational databases are considered popular

databases, it could not cater to present-day processing

needs. Thus, document-oriented databases are highly

recommended by developers and users due to their ability

to store unstructured and heterogeneous data [6].

This study proposes the point cloud dataset set to be

organized using a document-oriented database. The main

concept of a document-oriented database is formed from

the notion of a document. Documents in a document-

oriented storage are roughly equivalent to the

programming concept of an object. They are not required

to adhere to a standard schema, nor will they have all the

same sections, slots, parts, or keys. This concept seems to

be in line with the point cloud attributes, which are

unstructured and scattered. Thus, the aim of this paper is

to test the efficiency of a document-oriented database in

handling a point cloud dataset. The rest of this paper is

organized as follows. Section II describes related

literature review and studies related to a document-

oriented database. Section III discusses the methodology

of point cloud data acquisition using UAV images and

photogrammetry technique and data organization in a

document-oriented database. The results and discussions

are discussed in Section IV.

II. RELATIONAL DATABASE AND DOCUMENT-

ORIENTED DATABASE

Relational databases have been around for over 30

years. They have stable and richly functional software

compared to a document-oriented database [7]. However,

several drawbacks have been identified and these explain

why the relational database is not always the best choice.

Some issues that have been raised by the researcher is

that the relational database is not compelling, flexible,

and expensive to purchase [8], [9]. Compared to a

document-oriented database, most of the packages are

open source and free [10]. The open-source nature offers

opportunities for researchers to investigate and enhance

the database features. This effort provides cheaper

storage for users that cannot afford proprietary database

models. Another limitation of relational databases is the

architecture is usually scaled up. This means that the

server hardware must be upgraded to make it more

efficient, and this causes the amount of administrator’s

effort to increase [7]. It will be more challenging if the

hardware is fixed by design and cannot be altered. For

example, some hardware manufacturers have fixed the

amount of the maximum Random-Access Memory (RAM)

and it cannot be modified. This situation shows that

relational databases are able to scale up, but subject to

hardware’s restrictions. Meanwhile, document-oriented

databases, such as NoSQL, scale the hardware

horizontally and are not significantly affected by

hardware limitations because smaller, cheaper, and less

powerful server machines can be combined to offer

higher levels of scalability, instead of having one

expensive server [11], [12]. This ability gives advantages

to the document-oriented database as commodity servers

in scenarios where actual hardware cannot be acquired

and at the same time, avoids degrading the database

performance. With the current social media trend, high

levels of scalability are required, and this is not well

addressed in relational databases but in document-

oriented databases [13].

In addition, the main drawback of a relational database

is handling massive datasets, especially for enormous

data from the web, where the growth of data was almost

25 times from the year 2007 to 2010 [14]. On the off

chance the data need to be connected and the columns on

the table need to be expanded, this would prompt small

table relationships to be more complex in relational

databases. According to [15], volumes of data from

internet applications that need to be handled by databases

have increased. The emergence of Web 2.0 and 3.0 has

increased the volume and variety of data that need to be

stored. However, internet data has failed to be handled by

relational databases due to the large volumes of data

coming from these sources. Several companies, such as

Google, Facebook, and Yahoo, have migrated to

document-oriented databases (NoSQL), and have shown

that this database excels at handling large volumes of data

[16], [17]. Several studies proved that a document-

oriented data organization database is efficient at

handling big data. [18], reported that they had stored

various sorts of information in document-oriented

databases, such as collect weather information, digital

images and videos, transaction information, and others.

The size of stored information is almost 2.5 quintillion

bytes of data. Furthermore, document-oriented data

organization is important for Content Management

Systems (CMS), web analytics, e-commerce applications,

and real-time analytics. Today, document-oriented

databases are increasingly popular, especially for massive

data applications and real-time web applications.

The document-oriented data organization stores data

differently from the relational database. The database

does not require any kind of fixed table schemas, unlike

the SQL databases. Other than that, document-oriented

data organization can be referred to as structured storage

that consists of a relational database as the subset, and it

generally scales horizontally and avoids major join

operations on the data. According to [19], [20],

document-oriented data organization has overcome the

limitations of relational databases. Relational databases

store and retrieve data from interrelated tables, while

document-oriented databases can store an entire object in

a single JSON document, making it faster to retrieve. In

comparison with relational databases, document

databases support the addition of fields to JSON

documents. This means the user does not need to define

changes at the initial stage. Besides that, these databases

support dynamic data that can be changed at any time.

There are several databases that are categorized as

document-oriented data organization (NoSQL), such as

MongoDB, CouchDB, and ArangoDB. However, this

study specifically chose to organize the UAV outputs in

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 268

MongoDB. Despite its popularity and stability,

MongoDB performed better in terms of performance for

queries Create Read Delete Update (CRUD). According

to [21], ArangoDB performed better when creating data

but performed worse when reading, updating, and

deleting data. Besides, [21] also reported that MongoDB

had the lowest average query response time for the read

and delete operations compared to ArangoDB and

CouchDB. To compare the MongoDB database with

relational databases, this study used PostgreSQL.

Compared to other relational databases, such as MySQL,

SQL server, and SQLite, PostgreSQL is truly open-

sourced and community-driven. Meanwhile, MySQL

requires licensing for database operations. MySQL moves

old data to a separate area called rollback segments,

which will cause performance deteriorations during bulk

insertion. Since this study will apply point cloud bulk

insertion, MySQL seems to be the less suitable choice,

and this is where PostgreSQL shines. Besides that,

MySQL does not work well with long-running selections,

and it is best suited to smaller selections, especially the

ones covering clustered indexes. Some of the other

disadvantages include a lack of full-text search and slow

concurrent read-writes. A study by [22] shows a

comparison of insert operation between PostgreSQL and

SQLite. The study concluded that PostgreSQL is the best

competitor of SQLite and it was ahead of SQLite during

the insert operation. Another drawback of SQLite is its

handling of writes operations, which are serialized. This

can be a major bottleneck for applications that require

concurrency. As SQLite is a file-based DBMS, it can

cause performance issues with larger datasets because of

file system limitations. Thus, in this study, MongoDB

and PostgreSQL are chosen to represent document-

oriented data organization and relational database for

UAV output, respectively. The differences between

document-oriented data organization (NoSQL) and

relational database (PostgreSQL) are summarized in the

following Table I based on data storage, schemas,

scalability, and integrity compliance.

TABLE I. OVERVIEW OF DIFFERENCES BETWEEN A RELATIONAL

DATABASE (POSTGRESQL) AND DOCUMENT-ORIENTED DATABASE

(M)

Characteristic Relational Database

(PostgreSQL)

NoSQL (MongoDB)

Data storage Store information in the

forms of tables. Each row

has information about one

specific entity and column

store separate data items.

Stored in different

formats in various

databases.

Schemas Creation of table based on

schemas and it complex to

alter the schema once it

defines.

Schema is dynamic and

information can be

changes easily. It very

flexible compared to

relational database.

Scalability Scaling is vertical. It

possible to scale a RDBMS

across multiple servers and

it also difficult and time-

consuming process.

Scaling is horizontal.

More servers can be

added to increase the

performance.

Cost Expensive approach for

data storage

Cheaper as it is open

source and inexpensive

upgrade

III. METHODOLOGY

This section describes the methodology for this

research. The methodology is divided into several

sections, which are Section A. UAV Data Acquisition,

Section B. Data Processing, Section C. Data Organization,

Section D. Data Rendering and Section E. Measuring the

Performance.

A. UAV Data Acquisition

The Unmanned Aerial Vehicle (UAV), DJI Phantom 4

(see Fig. 1), is utilized to capture images of ground

surfaces. The study area for this study is around

Lingkaran Ilmu, Universiti Teknologi Malaysia. The

UAV is flown at a flight altitude of 150 meters. Prior to

flying, the study areas are divided into ten small areas.

Fig. 2 shows the study area and the ten boundaries of the

study areas. Each study area must be overlapped with the

neighboring boundaries. The percentage of overlapping

must be between 60% to 80% of area (see Fig. 2). The

UAV flew area by area to make sure all areas are covered

and images from the same areas can be stitched together

during data processing. Each area may have more than 50

images and every area covers around eight to ten minutes

of every flight. Later, these images are processed batch

by batch to produce 3D point clouds. Then, these outputs

are stored and organized in the database.

Figure 1. DJI Phantom 4 and flight plan.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 269

ONGODB

Figure 2. Ten boundary areas with 60% overlap between images.

B. Image Processing

The main output from UAV are images. These images

need to be processed to produce 3D point clouds.

According to the photogrammetry concept, to produce 3D

point clouds from images, three orientations need to be

determined, which are interior, relative, and absolute

orientation. In the interior orientation, several parameters

are needed, which are the coordinates of image center,

focal length, and image frame resolution. Objects are

referenced to an image coordinate system. At least two

images are needed to transform into model coordinates.

With the absolute orientation, model coordinates can be

transformed into any exterior reference system, such as

Universal Transverse Mercator (UTM). In this study, we

used the World Geodetic System 1984 (WGS84) as a

coordinate system.

The relative orientation creates a stereo model that

contains 3D information with local coordinates. Relative

orientation can be achieved when the images are taken on

a perfect line of flight direction or y-parallax is equal to

zero. To calculate the y-parallax, Py = y’ – y”, which

indicates the difference between the feature position and

the flight direction. However, in real practice, the zero y-

parallax is never a case of reality. Thus, relative

orientation is needed. To calculate the orientation, [23]

suggested using rotation matrices. The following Fig. 3

shows the two vectors (O1, P) and (O2, P). When two

images are intersected with each other, it means that the

y-parallax is zero. Small errors will occur on the x-

parallax, and it will affect the stereo model’s height.

Based on this, the coordinates can be obtained by using

the trigonometry calculations as follows.

 (1)

 (2)

 (3)

Since
' ''

xP x x= − then:

Substituiting z in Equations (1) and (2) gives:

Based on the equation, camera constant c represents z

coordinate and variable b is the distance from each

camera center (see Fig. 3).

In this study, the commercialized cloud system,

eyesCloud3D, is used to process the images and turn

them into 3D point clouds. eyesCloud3D is a cloud

server-based system that processes images and videos

using the photogrammetry concept to produce 3D point

clouds automatically. The result is highly accurate and

can be used in various applications. A study by [24]

shows that eyesCloud3D can be used with various

devices and mobile phone models.

Figure 3. Orientation of two images [23].

The study produced a comparative analysis using

various tools to produce 3D models. The following Fig. 4

shows the web interface of eyesCloud3D. Since the cloud

server could only produce 50 images at a time, the images

are processed batch by batch for all ten areas. It took less

than 24 hours to complete the process. There are ten

groups of outputs produced by eyesCloud3D. These

outputs need to be merged and require further processing,

such as noise removal, classification, and segmentation

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 270

for analyses. However, this study only focuses on

organizing these datasets in the database. Fig. 5 shows the

output (point clouds) from the processed images. Each

area produced a different number of point clouds. The

generated number of point clouds depends on the number

of images, quality of the image, size of the area, and

overlap percentage. For example, Area 3 and Area 10

(see Fig. 5) produced the highest number of point clouds

due to the size area and total number of images produced

by the UAV. For Area 3, 115 images are captured and for

Area 10, 121 images are captured. The total generated

point clouds for the whole study area are 103,996,984

points.

Figure 4. eyesCloud3D web interface.

C. Populating Data into Document-Oriented Database

In this study, there are two types of data stored in the

document-oriented database, which are images and 3D

point clouds. These datasets are stored in MongoDB, one

of the popular document-oriented databases. Images and

point clouds are stored differently in MongoDB. The

images are stored using programmatic access due to the

maximum file limit by MongoDB, which is 255 kB for

each file size. Thus, the GridFS function is used to store

bigger file sizes. The files will be divided into chunks and

each chunk is stored separately. Each chunk is limited to

255 kB in size. This means that the last chunk is normally

either equal to or less than 255 kB. When reading from

GridFS, the driver reassembles all the chunks needed.

This means that sections of a file can be read as per query

range. The scenario is more or less like listening to a

segment of an audio file or fetching a section of a video

file. Meanwhile, for the point cloud dataset, data has been

added using Mongo Compass Community. Using

MongoDB Compass, the data can be added into a

document or file. It also can be used to create a new

database and collection. Using MongoDB compass, the

data can be in JSON or CSV format. In this study, point

cloud data are converted into CSV format and can be

viewed directly. The following code shows the python

code for programmatic access using GridFS and the

following Fig. 6 shows stored point cloud in MongoDB.

D. Data Rendering

In this study, stored point clouds in the database are

rendered using the Potree web platform. Potree is a free

open-source WebGL plugin based on a point cloud

renderer [25]. Point clouds need to be converted into an

octree structure for rendering the point cloud within

Potree. The converter converter.sln needs to be compiled

the with Visual Studio and run to generate the output file.

It will generate three output files, including octree.bin,

metadata.json, and hierarchy.bin.

Area 1: 7,782,979 Area 2: 11,201,161 Area 3: 15,551,544

Area 4: 11,296,495 Area 5: 10,889,656 Area 6: 8,585,099

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 271

Area 7: 11,411,183 Area 8: 8,690,508 Area 9: 11,254,312

Area 10: 15,623,594 Merge Area 1 to Area 10: 103,996,984

Figure 5. Generated point clouds from the image.

From pymongo import MongoClient

Import gridfs

#connect to database

Client = MongoClient (‘mongodb://localhost:27017’)

Db = client.data_psm

Print (“connected to MongoDB successfully!”)

#create a new gridfs object

Fs = gridfs.GridFS(db, collection = ‘uavimg’)

{“_id”:ObjectId(“6091f834bd2f50f0fee2b2db”),

 “geometry”: {

 “type”: “Point”,

 “coordinates”: [

 101.43946226515568,

 3.048990563388066,

 6.048990563388066

]

 }

Figure 6. Stored point clouds in MongoDB.

To render the point cloud in a web-based platform, a

connection to the database needs to be established using

Node.js. A build server with Node.js is used to initiate the

Potree renderer on the localhost by uploading the Potree

folder with all point clouds and HTML files to the web

server. Some other JavaScript libraries or API are also

imported through Node.js with the command “npm i” to

achieve the function. The node module or JavaScript

library, express, ejs, mongoose, multer, multer-gridfs-

storage, gridfs-stream, methode-override, bodyparser.

The overall framework between Potree, Node.js, and

MongoDB can be described in the following Fig. 7.

Figure 7. Node.js, MongoDB and Potree framework.

E. Measuring the Performance

Measuring the performance of databases is important

to determine its stability, speed, and responsiveness.

NoSQL is known as a cross-platform, document-oriented

database that provides high performance, high availability,

and easy scalability. NoSQL works on the concept of

collection and document. Thus, it is important to identify

its ability in handling UAV outputs. In this study, the

Apache JMeter application is used to record the execution

time for each comparison. JMeter is an open-source

software. It is developed 100% based on the Java

application platform and it is designed to load test

Potree

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 272

functional behaviors and measure database performance.

Originally, it was designed for testing web applications,

but has since expanded to other test functions. The

following code shows the test plan script to connect

JMeter and MongoDB and Fig. 8 shows the example of

application performance index by JMeter and the test

plan.

import com.mongodb.*

import com.mongodb.client.MongoClients;

import com.mongodb.client.MongoClient;

import com.mongodb.MongoClientSettings;

import com.mongodb.ServerAddress;

import com.mongodb.client.MongoCollection;

import com.mongodb.client.MongoDatabase;

import org.bson.Document;

import java.util.Arrays;try {

 MongoClientSettings settings =

MongoClientSettings.builder()

 .applyToClusterSettings {builder ->

 builder.hosts(Arrays.asList(new

ServerAddress(vars.get(“mongoHost”),vars.get(“mongoP

ort”).toInteger())))}

 .build();

 MongoClient mongoClient =

MongoClients.create(settings);

 MongoDatabase database =

mongoClient.getDatabase(vars.get(“databaseName”));

 MongoCollection<Document> collection =

database.getCollection(vars.get(“collectionName”));

 vars.putObject(“collection”, collection);

 return “Connected to “ + vars.get(“collectionName”);

}

catch (Exception e) {

 SampleResult.setSuccessful(false);

 SampleResult.setResponseCode(“500”);

 SampleResult.setResponseMessage(“Exception: “ + e);

}

There are three metrics used in this study to measure

the database performance, which are storage comparison,

update, and insert operations. These metrics are important

for point cloud data organization. The insert operation

performance is measured to see how the database

responds to any updates. For example, in certain cases,

the size of the study area will be changed for certain

reasons, and it requires an additional UAV flight plan.

This additional output from the UAV needs to be updated

in the database. Thus, by having an insight into insert and

update operations, expected specifications on the

hardware can be made prior to the project development.

These steps are important to reduce additional costs and

at the same time, it may help identify problems during

development. The same reason is applied to storage

comparison. It is important to identify which database

offers minimal and cost-effective data storage. Massive

point cloud datasets require efficient storage space. Thus,

in this study three metrics are used to compare the

database performance efficiency between NoSQL

database (MongoDB) and relational database

(PostgreSQL). The following Section IV describes each

test and the results.

Figure 8. MongoDB test plan and application performance index.

IV. RESUTS AND DISCUSSION

To analyze the efficiency of the document-oriented

database in handling outputs from the UAV, such as

images and point clouds, data are also stored in the

relational database, PostgreSQL, for comparison purposes.

Further analysis on data updating, such as insertion and

data retrieval, is analyzed to measure the performance of

both databases in handling UAV outputs, including the

storage capacity.

A. Data Updating - Insert Operation

To test the time complexity on data updating for both

databases, this study has performed an experiment based

on data updating. By using ten groups of data (from Fig.

5), the execution time for the insert operation is recorded.

The first group of point clouds (7,782,979 number of

points) is stored in the NoSQL (MongoDB) and relational

database (PostgreSQL). The execution times for both

databases are recorded. Then, the second group of data,

which is 11,201,161 points, is inserted into both

databases and the times are recorded. This step is

repeated for all ten groups of datasets.

To compare the execution time for each group and

database, the results are profiled in Fig. 9. From the

figure, it is observed that both the NoSQL and relational

databases show an increasing trend of time execution for

the insert operation. This is due to the number of data

increasing for each cycle of operation. It is also identified

from the profile that major spikes happen during the

insertion of Group 3 and Group 10 for the relational

database. The spikes happen due to the high number of

point clouds loading to the database, which are

15,551,544 for Group 3 and 15,623,594 for Group 10.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 273

MongoDB, by design, tries to keep all of its data in

memory and relies on the Operating System (OS) to swap

the memory-mapped files. Thus, when large documents

are stored in NoSQL, it will occupy more memory and

affect the time performance. However, NoSQL profiling

shows that the trend is increasingly proportional, even

though a high number of points are loaded for Group 3

and Group 10. Based on these findings, it is believed that

this situation happened due to a non-schematic procedure

offered by the document-oriented database (NoSQL).

Meanwhile, for the relational database (PostgreSQL),

operations such as data insertions consume more time due

to schematic rules and conditions. Data need to be

organized based on structures such as tables, key

identification, and other table condition. Users also tend

to get some errors due to unmatched data types in the

same field. This explains why schematic structure applied

by relational database consume more time compared to

document-oriented database. Without schematic structure

data are dumped into document-oriented database as a

file and document.

In terms of time efficiency for data updating, the

results indicate that NoSQL (MongoDB) is more

timesaving compared to the relational database

(PostgreSQL). From Fig. 8, the result shows that even

though NoSQL and relational databases are loaded with

the same number of point clouds, the execution time for

the NoSQL database is lower than the relational database.

NoSQL has better performance in terms of time for insert

operation, where the insertion time is 30% faster than the

relational database. Thus, it can be concluded that

NoSQL has better performance for point cloud data

updating. This is an important key point in organizing

UAV outputs since huge data will be produced, especially

for large scale projects.

Figure 9. Comparison of insert operation speed (millisecond).

Figure 10. Comparison of query operation speed (millisecond).

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 274

B. Query Operation

To analyze the efficiency of both databases in

retrieving point clouds, this study performs a comparative

analysis for query performance speed. All datasets from

Group 1 to Group 10 are loaded into the NoSQL and

relational databases. The total number of point clouds

loaded in the databases is 103,996,984. Several samples

of point clouds are retrieved from the database and the

response time is recorded. There are seven samples with

different numbers of point queries used in this experiment,

which are 50, 500, 1,000, 5,000, 10,000, 20,000 and

25,000. Each sample is queried explicitly for each

database and the response time is recorded.

To compare the response time for each sample, the

response times are plotted in Fig. 10. From the figure, it

is shown that the trend of response time for the NoSQL

database and the relational database are increasing

proportionally to the number of point queries. However,

in terms of performance, NoSQL outperforms the

relational database, where the response time is 37% faster.

Even when the size of data increases, NoSQL maintains

its performance. This is happening due to the information

processing of a relational database. Relational databases

require much more time to process information, which

causes slow data retrieval. The performance of NoSQL

improves further since the data is directly retrieved from

volatile memory, unlike relational databases that retrieve

data from non-volatile memory. By design, volatile

memory is faster than non-volatile memory. This explains

the results of query performance for both databases.

Even though the relational database could not offer

better performance than NoSQL, it is identified in this

study that the relational database has a strong foundation

on the query language, which is Structured Query

Languages (SQL). SQL is the only data manipulation

language that is widely used in all relational databases.

On the other hand, this foundation still lacks in NoSQL,

as it relies on object-oriented API for data manipulation.

Thus, it is important to know what kind of query that

needs to be performed on the UAV outputs before

organizing the data in specific databases.

C. Storage Comparison

Another factor that needs to be considered in handling

UAV outputs is storage consumption since the device

produces large data sizes. As mentioned previously,

NoSQL limits the file size for storing the files. The limit

is 16 MB of storage file. In this study, point cloud data

with the images are stored in the database and require a

larger size than 16 MB. Thus, the GridFS function is used

to overcome the limitations. By using GridFS, the data

can be stored in several files as required. Moreover, it is

possible to retrieve a particular information from massive

data files without necessarily loading huge documents in

the memory. The image data is stored using GridFS and

divided into chunks. All the chunks are stored in a

separate document with a maximum of 255 kB from the

last chunk. For relational databases, issues in storing

point clouds are manageable, but for UAV images,

storage is limited to 1 GB.

To compare the response time for each sample, the

response times are plotted in Fig. 10. From the figure, it

is shown that the trend of response time for the NoSQL

database and the relational database are increasing

proportionally to the number of point queries. However,

in terms of performance, NoSQL outperforms the

relational database, where the response time is 37% faster.

Even when the size of data increases, NoSQL maintains

its performance. This is happening due to the information

processing of a relational database. Relational databases

require much more time to process information, which

causes slow data retrieval. The performance of NoSQL

improves further since the data is directly retrieved from

volatile memory, unlike relational databases that retrieve

data from non-volatile memory. By design, volatile

memory is faster than non-volatile memory. This explains

the results of query performance for both databases.

Even though the relational database could not offer

better performance than NoSQL, it is identified in this

study that the relational database has a strong foundation

on the query language, which is Structured Query

Languages (SQL). SQL is the only data manipulation

language that is widely used in all relational databases.

On the other hand, this foundation still lacks in NoSQL,

as it relies on object-oriented API for data manipulation.

Thus, it is important to know what kind of query that

needs to be performed on the UAV outputs before

organizing the data in specific databases.

D. Storage Comparison

Another factor that needs to be considered in handling

UAV outputs is storage consumption since the device

produces large data sizes. As mentioned previously,

NoSQL limits the file size for storing the files. The limit

is 16 MB of storage file. In this study, point cloud data

with the images are stored in the database and require a

larger size than 16 MB. Thus, the GridFS function is used

to overcome the limitations. By using GridFS, the data

can be stored in several files as required. Moreover, it is

possible to retrieve a particular information from massive

data files without necessarily loading huge documents in

the memory. The image data is stored using GridFS and

divided into chunks. All the chunks are stored in a

separate document with a maximum of 255 kB from the

last chunk. For relational databases, issues in storing

point clouds are manageable, but for UAV images,

storage is limited to 1 GB.

To test the storage consumption for point clouds, the

disk size is assessed for each group of data (Group 1 until

Group 10). Fig. 11 shows the comparison of storage sizes

between the relational database and NoSQL (MongoDB).

Based on the results in Fig. 11, NoSQL (MongoDB)

consumes larger storage size compared to the relational

database. The reason for this behavior is that the data

stored in NoSQL (MongoDB) are in GeoJSON format

and each record consists of many extra characters and an

auto-generated unique id. Compared to the relational

database, the data stored are in CSV format, which is

smaller than GeoJSON. However, the difference in size

consumption between these two databases is very small

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 275

and can be considered as the same size in the storage

consumption.

Figure 11. Comparison of storage size.

E. Visualization of Point Clouds

Standard visualization tools or viewers provided by the

document-oriented database (NoSQL) are not capable of

visualizing the 3D objects or dataset. Therefore, this

study utilized a free open-source WebGL plugin based on

a point cloud renderer called Potree. The data

organization has been modified from the beginning until

the latest, but based on Modifiable Nested Octree (MNO),

which is a hierarchical model that supports level-of-detail

rendering and improves rendering performance

effectively. Several rendering techniques, including

WebGL, node.js, cesium.js, and three.js, are applied with

Potree to develop the rendering tool. Document-oriented

databases serve as a database server to store and manage

point cloud data. With WebGL and three.js, Potree

viewer can successfully render the point cloud. Point

cloud data is read and piped with the

gfs.createReadStream function to a url. The following Fig.

12 shows the result of point cloud rendering in the Potree

viewer. The available viewer comes with several features

for point cloud manipulation. Users are also allowed to

do some customization according to their needs. Based on

the available features, direct measurements such as area

and distance, can be performed on the rendered point

cloud. However, direct query from the viewer to the

database is not performed in this study. The query has to

be performed on the document-oriented database. Further

application customization is required to process this

operation.

Figure 12. Point cloud rendering on the web browser.

V. CONCLUSION

In conclusion, the Relational Database (RDBMS)

technique used in most database systems is seen as

inadequate in terms of its implementation for point cloud

and image data from a UAV. In any relational database,

the database schema must be created first before inserting

the data into the database system. For example, tuples

need to be constructed to classify the ID, X coordinate, Y

coordinate, Z coordinate, as well as the RGBD

information for the point cloud. Next, these tuples need to

establish their relationship with other tuples in other

tables. Based on the point cloud data characteristics, this

is seen as unnecessary because the point cloud data are

massive. It does not require any relationship with other

tables or tuples. Besides that, the performance of query

operation using NoSQL (MongoDB) database

outperforms the relational database (PostgreSQL). This is

proof that document-oriented databases retrieve data

efficiently using document storage styles. It is proven fast,

effortless, and more practical in executing data updating

and data queries without affecting the storage size of the

data used. Even though it consumes more data storage

than the relational database (PostgreSQL), the percentage

is still relatively small, which is around 2% to 3% storage

size. Therefore, the document-oriented data organization

technique described in this study clearly provides an

advantage in addressing this weakness. For future

recommendations, we propose to manipulate the UAV

outputs for further analysis, such as neighboring analysis,

and organize the outputs based on NoSQL data model,

such as aggregation.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Suhaibah Azri, Uznir Ujang and Wan Afifah Wan

Embong contributed equally to the conceptualization of

the manuscript. Methodology and validation were

contributed by Suhaibah Azri and Wan Afifah Wan

Embong. Meanwhile, the formal analysis and

investigation section were contributed by Suhaibah Azri

and Uznir Ujang. The Original Draft Preparation was

prepared by Suhaibah Azri and writing continuation and

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 276

review was prepared by Uznir Ujang. Miguel Gonzalez

Cuetara and Guillermo Miguel provided the methodology

and tools for image processing.

ACKNOWLEDGEMENT

This research was partially funded by UTM Research

University Grant, Vot Q.J130000.3652.02M78 and Vot

Q.J130000.2652.15J95.

REFERENCES

[1] L. Hinge, J. Gundorph, U. Ujang, S. Azri, F. Anton, and A.

Rahman, “Comparative analysis of 3d photogrammetry modeling

software packages for drones survey,” International Archives of

the Photogrammetry, Remote Sensing and Spatial Information

Sciences, vol. XLII-4/W12, pp. 95-100, 2019.

[2] A. Hairuddin, S. Azri, U. Ujang, M. G. Cuétara, G. M. Retortillo,

and S. M. Salleh, “Development of 3D city model using

videogrammetry technique,” Int. Arch. Photogramm. Remote Sens.

Spatial Inf. Sci., vol. XLII-4/W16, pp. 221-228, 2019.

[3] S. Anuar, et al., “3D geometric extraction using segmentation for

asset management,” International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, vol. XLIV-

4/W3-2020, pp. 61-69, 2020.

[4] S. Azri, U. Ujang, F. Anton, D. Mioc, and A. Rahman, “Review of

spatial indexing techniques for large urban data management,” in

Proc. International Symposium & Exhibition on Geoinformation,

2013.

[5] X. Xudong and G. Rui, “Research on storage and processing of

mongodb for laser point cloud under distribution,” in Proc. the 3rd

International Conference on Materials Engineering,

Manufacturing Technology and Control, 2016.

[6] S. Agarwal and K. Rajan, “Analyzing the performance of NoSQL

vs. SQL databases for Spatial and Aggregate queries,” Free and

Open Source Software for Geospatial (FOSS4G) Conference

Proceedings, article 4, 2017.

[7] M. Abourezq and A. Idrissi, “Database-as-a-Service for big data:

An overview,” International Journal of Advanced Computer

Science and Applications, vol. 7, 2016.

[8] A. Zaki, “NoSQL databases: New millennium database for big

data, big users, cloud computing and its security challenges,”

International Journal of Research in Engineering and Technology,

vol. 3, pp. 403-409, 2014.

[9] W. Kim, “Web data stores (aka NoSQL databases): A data model

and data management perspective,” International Journal of Web

and Grid Services, vol. 10, pp. 100-110, 2014.

[10] H. Phiri and D. Kunda, “A comparative study of NoSQL and

relational database,” Zambia ICT Journal, vol. 1, pp. 1-4, 2017.

[11] A. Singh, “NoSQL: A new horizon in big data,” International

Journal of Scientific Research in Science, Engineering and

Technology, vol. 2, 2016.

[12] S. Sharma, R. Shandilya, S. Patnaik, and A. Mahapatra, “Leading

NoSQL models for handling big data: A brief review,”

International Journal of Business Information Systems, vol. 22, no.

1, pp. 1-25, 2016.

[13] J. Kepner, et al., “Associative array model of SQL, NoSQL, and

NewSQL databases,” in Proc. IEEE High Performance Extreme

Computing Conference (HPEC), Sept. 2016, pp. 1-9.

[14] C. Tauro, S. Aravindh, and A. B. Shreeharsha, “Comparative

study of the new generation, agile, scalable, high performance

NoSQL databases,” International Journal of Computer

Applications, vol. 48, pp. 1-4, 2012.

[15] A. B. M. Moniruzzaman and S. Hossain, “NoSQL database: New

era of databases for big data analytics - Classification,

characteristics and comparison,” Int. J. Database Theor. Appl., vol.

6, 2013.

[16] A. Nayak, A. Poriya, and D. Poojary, “Type of NOSQL databases

and its comparison with relational databases,” International

Journal of Applied Information Systems, vol. 5, pp. 16-19, 2013.

[17] Jatin and S. Batra, “MongoDB versus SQL: A case study on

electricity data,” in Emerging Research in Computing, Information,

Communication and Applications, Springer, 2016, pp. 297-308.

[18] R. Kumar, S. Charu, and S. Bansal, “Effective way to handling big

data problems using NoSQL database (MongoDB),” J. Adv.

Database Manag. Syst., vol. 2, pp. 42-48, 2015.

[19] G. Bathla, R. Rani, and H. Aggarwal, “Comparative study of

NoSQL databases for big data storage,” International Journal of

Engineering & Technology, vol. 7, 2018.

[20] W. Ali, M. Majeed, A. Raza, and M. U. Shafique, “Comparison

between SQL and NoSQL databases and their relationship with

big data analytics,” Asian Journal of Computer Science and

Information Technology, vol. 4, pp. 1-10, 2019.

[21] R. Gunawan, A. Rahmatulloh, and I. Darmawan, “Performance

evaluation of query response time in the document stored NoSQL

database,” in Proc. 16th International Conference on Quality in

Research (QIR): International Symposium on Electrical and

Computer Engineering, 2019.

[22] M. I. Hossain, S. Mahmud, and T. D. Santa, “Oracle, MySQL,

PostgreSQL, SQLite, SQL Server: Performance based competitive

analysis,” project report, Faculty of Information Technology,

Daffodil International University, 2019.

[23] A. Boberg, “Digital ‘height models’,” in Geodetic

Photogrammetric Measurement Calculation Technique,

Stockholm: Lanmäteriet, 2013, pp. 243-245. (In Swedish)

[24] N. Ahmad, S. Azri, U. Ujang, M. Cuétara, G. Retortillo, and S.

Salleh, “Comparative analysis of various camera input for

videogrammetry,” International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, vol. XLII-

4/W16, pp. 63-70, 2019.

[25] M. Schütz, “Potree: Rendering large point clouds in web

browsers,” doctoral dissertation, Technical University of Vienna,

Vienna, 2016.

Copyright © 2021 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Suhaibah Azri is currently a Senior Lecturer

at Geoinformation, Faculty of Built

Environment and Surveying, Universiti

Teknologi Malaysia (UTM). Prior to her

recent appointment at the UTM, she was a

post-doctoral researcher at Technical

University of Denmark (DTU). Dr. Suhaibah

Azri received her PhD in 3D GIS from UTM.

She is also an active member of International

Society of Photogrammetry and Remote

Sensing (ISPRS). Her research activities are

currently twofold: while the first research activity is set to explore the

other type from relational database to organize geospatial data; the

second major research theme that she is pursuing is focused on 3D GIS

and spatial analysis with various applications especially urban planning,

smart cities etc.

Uznir Ujang, Head of 3D GIS Research

Group, Faculty of Built Environment and

Surveying, Universiti Teknologi Malaysia

(UTM). Interest in 3D city modelling, 3D GIS,

topology, and Geographical Information

Science (GISc). He published more than 90

publications in international journals,

conferences, and books. Actively involved

with scientific committee activities all around

the globe and being acknowledged by having

more than 150 publications reviewed within

45 journals, books, and conferences worldwide. He is an active member

of the International Society for Photogrammetry and Remote Sensing

(ISPRS), the Royal Institutions of Surveyors Malaysia (RISM),

Institution of Geospatial and Remote Sensing Malaysia (IGRSM) and

Professional Technologist at Malaysia Board of Technologist.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 277

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Wan Nur Afifah Wan Embong is a GIS

Associates at private company in Malaysia.

She received her Undergraduate Degree in

GIS from Universiti Teknologi Malaysia

(UTM) in 2020 and her Diploma Degree in

Land Survey in 2017. Her research interest is

more on non-relational database and point

cloud data organization. She is also has been

involved with several industrial projects

related to GIS data management and analysis.

Miguel Gonzalez Cuetara is a CEO of the

eCapture3D company. He has a more than 20

years of professional experience in working

with different companies nationally and

internationally. Currently, eCapture focus on

their latest product eyescloud3D Web platform

for the automatic generation of 3D models

through photos and / or videos, from any

camera, including smartphones.

Guillermo Miguel Retortillo is a Technical

Director at eCapture3D, with studies in

Computer Engineering and in Management

and Direction of Technology-Based

Companies. He is also a technical coordinator

of R&D projects at regional, national and

European level, working with research centers

and public and private entities in areas

focused on 3D Technology, Computer Vision,

Artificial Intelligence, Web Technologies and

Cloud Computing.

Journal of Advances in Information Technology Vol. 12, No. 4, November 2021

© 2021 J. Adv. Inf. Technol. 278

