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Abstract—Predicting protein functions is a challenging task 

in bioinformatics, different machine learning algorithms 

have been used for this task. In this paper, we investigate 

the effect of applying clustering and ensembles of classifiers 

to improve the performance of the prediction. Two 

approaches are proposed, the first approach depends on 

clustering to build an ensemble of classifiers, while the 

second approach uses the clustering to break down the 

complex dataset into sub-datasets, then an ensemble of 

different classifiers train inside each sub-dataset. We 

observed that this combination of clustering and 

classifications improved the performance of prediction in 

the most cases. 

 

Index Terms—protein function classification, clustering, 

stacking, diverse classifiers 
  

I. INTRODUCTION 

Technological advances have increased the rate at with 

new protein sequences are discovered. As a consequence, 

it has become necessary to identify protein functions 

accurately in a cost-effective manner. However, 

determining the functions experimentally is expensive 

and time consuming, so researchers depended on 

computational approach to predict the function of 

proteins from the sequences [1]. 

Most of the computational methods for protein 

prediction are based on classification algorithms. 

However, in some cases it is difficult to achieve the 

desired performance using classification alone. Some 

approaches attempt to improve the performance of 

classification by combining one or more different 

classifier algorithms into an ensemble of classifiers [2], 

[3]. The diversity of classifiers can be enriched by 

varying the parameters of the classifier [4]. These 

methods lead to Ensemble learning. Many studies proved 

that ensembles of diverse classifiers improve 

classification accuracy of a single classifier [5]-[7]. 

The most popular methods to ensemble predictions 

from different models are bagging, boosting and stacking. 

With bagging, multiple models are built from different 

sub-samples of the training set [8]. Boosting generates a 

sequence of models, each of which  learns to fix the 
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prediction errors of the previous models in the chain [9]. 

Stacking combines the prediction results of base models, 

which can be different types of models, using a meta-

classifier (supervisor model), which learns how to best 

combine the predictions of the base models [10]. 

Another way to improve performance is to combine 

structural information extracted from clustering with the 

classification in different ways. Previous works showed 

that using clustering with classification can improve the 

performance in different applications; such as disease 

diagnosis [11], network traffic classification [12], and 

activity recognition within smart environments [13]. One 

motivation for combining clustering with classification is 

to reduce the heterogeneity of the dataset by breaking 

down a complex classification problem into simpler 

problems using clustering, then training a single classifier 

on each cluster [14], [15]. Other approaches focused 

primarily on using clustering to increase the number of 

classes and the classifier trained to distinguish between 

these new classes [16]. 

Since both ensembles and clustering have the potential 

to improve classification performance of protein 

sequence prediction, combining the two techniques is a 

promising approach. In this work we systematically 

investigate two ways to combine ensemble learning and 

clustering. 

Combinations of ensemble learning and clustering are 

not entirely new. Some researches improved the 

classification by  combining an ensemble of classifiers 

(one or more classifiers) with the information from an 

ensemble of clusters (one or more clusters) to get new 

properties for improving the prediction of new data [17]-

[19]. Acharya et al. combined ensembles of classifiers 

and ensembles of clusters to generate a consolidated 

classification. In their work, an ensemble of classifiers is 

first learned on the labeled training dataset to get initial 

class probability distributions, these probabilities 

represent unlabeled data for the next step. Then, a cluster 

ensemble is applied to the probabilities data to get a 

similarity matrix that is used to update the initial class 

probability distributions obtained from the classifier 

ensemble [17]. Others applied clustering on the training 

set to generate a set of diverse classifiers. Trivedi et al. 

applied k-means to group the training data into clusters. 

They varied the number of clusters to get different sets of 
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clusters. Linear regression was used inside clusters and 

averaged the results. They applied this approach on 

different regression problems, and the results showed a 

significant improvement in datasets with a cluster 

structure [20]. 

As far as we know, the combination of ensemble 

learning and clustering to improve the performance of 

prediction for protein functions has not yet been studied. 

This research uses clustering and ensembles of classifiers 

to improve the performance of the prediction for protein 

functions. We investigate two approaches to improve the 

performance: 

1) The first approach uses stacking globally, at the 

level of the full dataset. It depends on clustering to 

build an ensemble of diverse classifiers. The 

outputs of these classifiers are fed into the meta-

classifier to find the best combination for the final 

prediction. 

2) The second approach uses stacking locally, at the 

level of individual clusters. We use clustering to 

break down the complex dataset into 

homogeneous groups (sub-datasets), and handle 

each sub-dataset as a small problem inside the 

complex dataset. We train an ensemble of diverse 

classifiers inside each sub-dataset to get a more 

powerful and robust model. To help weak clusters, 

we always include a model trained on the whole 

dataset in the ensemble. 

We evaluate proposed approaches on six protein 

function prediction problems. Our results show that both 

proposed approaches improve the performance of 

prediction in the most cases. 

The reminder of the paper is organized as follows: 

Section II describes the proposed approaches in detail. 

Section III briefly introduces the benchmarks of this 

study. In Section IV, we present experimental results and 

discuss the findings. The last is the conclusions of the 

work. 

II. THE PROPOSED APPROACHES 

We propose two approaches to improve the 

performance of classifying protein functions based on 

combinations of ensemble learning and clustering. In all 

cases, our processing chain involves the following steps: 

• We first need to represent protein sequences in a 

form that can be easily handled by classification 

and clustering algorithms. This means in particular 

that variable length sequences need to be 

represented by fixed-length feature vectors. In this 

study we use Chou’s Pseudo Amino Acid 

Composition (PseAAC) descriptor [21], which is 

widely used in previous researches [22], [23]. A 

sequence is represented by 20 + 𝜆 numerical 

features. The first 20 features are the frequencies 

of the 20 amino acids. The remaining 𝜆 descriptors 

represent the sequence order. For a detailed 

description of PseAAC please refer to [21], [24]. 

PseAAC depends on Physico-Chemical Properties 

(PCPs) of the amino acids. In this work we use 

two standard sets of PCPs. The first set consists of 

three PCPs used in Chou’s work [21]: 

hydrophobicity, hydrophilicity, and side chain 

mass. The other set contains fifty non-redundant 

PCPs of amino acids proposed by Georgiev [25]. 

• We always train a classifier on the whole dataset, 

called Full Dataset Classifier (FDC). In this study 

we train different classifiers on the protein 

sequences represented by PseAAC descriptors 

using 50 PCPs and 3 PCPs. The experiments 

showed that Support vector Machine (SVM) [26] 

is the best choice in most datasets using 50 PCPs, 

while Random Forest (RF) [27] is the best when 

using 3 PCPs. Therefore, in this research we use 

SVM and RF classifiers on the corresponding 

feature sets. 

• We cluster the dataset into groups (sub-datasets) 

with the k-means algorithm. K-means is a simple 

and easy-to-implement algorithm. It is widely used 

in bioinformatics researches [28], [29]. For more 

details on k-means please refer to [30]. We vary 

the number of clusters (𝑘) to obtain diverse 

subsets and subclassifiers. In our experience, the 

use of alternative clustering algorithms does not 

change the results significantly. 

In the following two sections we describe our 

approaches to combining ensembles (stacking) and 

clustering in detail. 

A. Combining Cluster Predictions Approach 

This approach uses clustering to obtain a diverse set of 

FDC classifiers, which are then stacked. Fig. 1 illustrates 

the proposed approach. 

For each value of 𝑘, the dataset is split into 𝑘 clusters 

or subdataset. A separate classifier is trained on each sub-

dataset, including tuning of its hyperparameters. The 𝑘 

local classifiers are combined into a FDC by directing 

each test point to its cluster and predicting its label with 

the corresponding local classifier. Each local classifier 

delivers class probabilities for further processing. We 

used SVM and RF models for the sub-datasets. 

In order to obtain diverse predictions, we vary the 

parameter 𝑘 of k-means from 1 to some 𝑛, where 𝑘 = 1 

represents the whole dataset. We collect the prediction 

probabilities generated from different values of 𝑘 and 

treat them as new features. 

These predictions (features) can be combined in 

different ways to get the final prediction, such as 

(weighted) averaging [20]. In this study we handle these 

new features as a new data set. The final predictions are 

generated by training a new classifier on this set, called 

meta-classifier. This is similar to the second layer in 

stacking approaches, where the meta-classifier is trained 

to ideally combine the model predictions to get the final 

predictions [10]. 
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Figure 1.  Combining cluster predictions approach. 

Different classifier types were studied as a meta-

classifier, and we found the logistic regression [31] 

outperformed the other classifiers in most cases. That is 

because there is almost a linear relationship between the 

probabilistic outputs in the new training set. We therefore 

restrict ourselves to logistic regression in the following. 

B. Inter-Cluster Stacking Approach 

Our second approach relies on breaking down a 

complex classification problem into simpler and more 

homogeneous problems using clustering. We then employ 

stacking inside each cluster. The processing logic is 

illustrated in Fig. 2. 

After applying K-Means, we apply stacking inside 

each cluster by using an ensemble of classifiers instead of 

a single classifier. The ensemble shall improve and 

stabilize the performance of prediction inside each cluster. 

The success of stacking relies on applying diverse models 

in the clusters. Therefore, we train an ensemble of linear 

and non-linear models as base classifiers for stacking 

inside the clusters: SVM, RF, Artificial Neural Network 

(ANN), eXtreme Gradient Boosting (xGBoost), logistic 

regression, and K-Nearest Neighbors (KNN). For a 

detailed description of these algorithms we refer to [26], 

[27], [31]-[34], respectively. During the training we take 

into consideration tuning the hyper-parameter for these 

classifiers. 

The predictions generated from the base classifiers are 

used as inputs to the meta-classifiers in each cluster. 

Different classifiers are tested as a meta-classifier, and as 

in the first approach, logistic regression was found to be 

superior to other classifiers in the most cases. 
In some cases, the performance of the individual 

classifiers is not good based on specific criteria (such as 

accuracy) compared to the performance of the FDC on 

the same region. In this case, Fradkin proposed an option 

to return back to the FDC [16]. However, there is no 

optimal criterion that can be used to determine when to 

use FDC or cluster classifier for a specific region. So, to 

avoid the decision problem we combined the probabilistic 

outputs generated by FDC for the samples in each cluster 

with the outputs of base classifiers trained on the same 

cluster, as shown in Fig. 2, and leave the decision to the 

stacking layer. This soft combination approach also bears 

the potential to outperform a hard decision. Furthermore, 

some clusters suffer from a lack of sufficient data to train 

classifiers locally, resulting in severe overfitting. In such 

cases we use FDC only to get the predictions for the 

samples belong to these small clusters. 

III. BENCHMARK DATASETS 

To evaluate the performance of the proposed 

approaches, we have used six datasets, three of which are 

peptide sequences: Caspase 3 human substrates, 

Antimicrobial peptides (AMP), and Major 

Histocompatability Complex II (MHCII), the other three 

datasets are long sequences: DNA-binding proteins, 

Antioxidant proteins, and RNA-binding proteins. Table I 

summarizes the datasets. For more details please refer to 

[35]-[40], respectively. We have split each dataset into a 

training and a testing set. 
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Figure 2.  Inter-Cluster stacking approach. 

TABLE I.  DATASETS USED FOR THE APPROACH EVALUATION 

Dataset # of Positives # of Negatives 

DNA-binding proteins 523 binding proteins 543 non-binding proteins 

Antioxidant proteins 250 antioxidants 1547 non-antioxidant 

RNA-binding proteins 2780 binding proteins 7077 non-binding proteins 

AMP 869 AMPs 2405 non-AMPs 

Caspase 3 human substrates 247 cleaved peptides 247 non-cleaved peptides 

MHCII 3510 binding peptides 1656 non-binding peptides 

 

IV. EXPERIMENTS AND RESULTS 

To evaluate the efficacy of the proposed approaches, 

we compared the performance of these approaches with 

the FDC (either SVM based on 50 PCPs or RF based on 3 

PCPs), which is a natural baseline. 

In our experiments, sequences were encoded using 

PseAAC method as described in Section II using the 

following parameters: The weight of the features 

representing sequence order was set to 𝑤 = 1/2. The 

length of the shortest sequence was set to 𝜆 = 7 for 

peptides and to 𝜆 = 30 for long protein sequences. These 

settings result in 27 and 50 features, respectively. 

The number of clusters 𝑘 was varies as follows. For 

small datasets (Caspase-3, DNA-binding, and 

Antioxidant proteins) 𝑘 is varied in the range from 2 to 7 

with a step size of 1, and for the other datasets 𝑘 is varied 

in the range from 5 to 30 with a step size of 5.  

We have tuned the hyper-parameters of all classifiers 

(FDC, base classifiers, meta-classifiers) using 5-fold 

cross-validation repeated 3 times.  

To evaluate the performance of our approaches we rely 

on sensitivity (SN), specificity (SP), and Matthew’s 

Correlation Coefficient (MCC) [41]. In addition, we 

considered the area under the Receiver Operating 

Characteristics (ROC) curve, or area under the ROC 

curve (AUC) for short [42]. All reported values are 

computed on independent test sets. 

We present different types of results. Fig. 3, 4, 5, and 6 

focus on the effect of varying the number of clusters 𝑘 for 

the proposed approaches, for SVM classifiers on the 

sequences encoded using 50 PCPs. Table II compares our 

two approaches to the baseline. It shows the best results 

we have achieved for both using SVM and RF, as well as 

the results corresponding to the hyperparameters that 

yield the best validation errors, and which are hence be 

selected by a standard model selection procedure. 
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TABLE II.  COMPARISON BETWEEN APPLYING FDC ONLY, COMBINING PREDICTIONS OBTAINED BY VARYING 𝑘 VALUE, AND STACKING INSIDES 

CLUSTERS FOR 6 BENCHMARKS. THE RESULTS REPRESENT THE BEST VALUE OF 𝑘 BASED ON THE VALIDATION (VALID.) AND THE CORRESPONDING 

TEST RESULTS (TEST) 

Method 
SVM RF 

k Set AUC SEN SPE MCC k Set AUC SEN SPE MCC 

DNA-binding proteins 

- FDC only 

(the baseline) 
- - 0.8033 0.7769 0.6963 0.4744 - - 0.7899 0.6692 0.7556 0.4266 

- Combining 

cluster 

predictions 

1,2,3,

4 

(Valid.) 0.8307 0.7634 0.7525 0.5157 
1,2 

(Valid.) 0.8003 0.8203 0.7841 0.5037 

(Test) 0.8256 0.7538 0.7481 0.5019 (Test) 0.7978 0.6769 0.8074 0.489 

- Inter-cluster 

stacking 
4 

(Valid.) 0.8406 0.7888 0.75 0.5389 
6 

(Valid.) 0.8058 0.6743 0.8333 0.5149 

(Test) 0.8252 0.7769 0.7481 0.5251 (Test) 0.8025 0.6692 0.8148 0.4899 

Antioxidant proteins 

- FDC only 

(the baseline) 
- - 

0.8405 0.68 0.8987 0.5193 
- - 

0.8493 0.7419 0.8627 0.5032 

- Combining 

cluster 

predictions 

- 
- 

no improvement achieved 1,2,3 
(Valid.) 0.8692 0.7872 0.8765 0.5587 

- (Test) 0.8528 0.7581 0.8679 0.5228 

- Inter-cluster 

stacking 
2 

(Valid.) 0.8565 0.8085 0.8398 0.5181 
7 

(Valid.) 0.9006 0.7713 0.9208 0.6298 

(Test) 0.8547 0.7903 0.8161 0.4728 (Test) 0.8877 0.7581 0.9197 0.6172 

RNA-binding proteins 

- FDC only 

(the baseline) 
- - 

0.903 0.6331 0.9582 0.6548 
- - 

0.9053 0.636 0.9661 0.6727 

- Combining 

cluster 

predictions 

1,5,10 
(Valid.) 0.9348 0.742 0.9432 0.712 

1,5 
(Valid.) 0.9088 0.6803 0.9655 0.7053 

(Test) 0.9286 0.7252 0.9435 0.6995 (Test) 0.9075 0.6691 0.957 0.6806 

- Inter-cluster 

stacking 
10 

(Valid.) 0.9284 0.7463 0.9495 0.7263 
5 

(Valid.) 0.9378 0.7254 0.9642 0.7371 

(Test) 0.9278 0.7324 0.948 0.7129 (Test) 0.9339 0.7151 0.9559 0.7139 

AMP peptides 

- FDC only 

(the baseline) 
- - 

0.9552 0.765 0.9418 0.7247 
- - 

0.9624 0.7926 0.9484 0.7574 

- Combining 

cluster 

predictions 

1,5 
(Valid.) 0.9936 0.9064 0.9119 0.7846 

1,5,10 
(Valid.) 1 0.8466 0.9483 0.7975 

(Test) 0.9729 0.8986 0.9068 0.771 (Test) 0.9867 0.8341 0.9384 0.7714 

- Inter-cluster 

stacking 
5 

(Valid.) 0.9638 0.7055 0.9202 0.6416 
15 

(Valid.) 0.9668 0.8333 0.9583 0.791 

(Test) 0.9638 0.6959 0.9185 0.631 (Test) 0.9648 0.8111 0.9517 0.7771 

Caspase 3 peptides 

- FDC only 

(the baseline) 
- - 0.7487 0.623 0.7541 0.3803 - - 

0.7263 0.7377 0.5246 0.2685 

- Combining 

cluster 

predictions 

1,2 
(Valid.) 0.7756 0.7276 0.7276 0.4552 

1,2,3 
(Valid.) 0.7344 0.6057 0.767 0.3777 

(Test) 0.7617 0.6885 0.7541 0.4436 (Test) 0.7329 0.7541 0.5902 0.349 

- Inter-cluster 

stacking 
3 

(Valid.) 0.7701 0.7273 0.6935 0.4208 
7 

(Valid.) 0.7727 0.7727 0.6452 0.4206 

(Test) 0.7525 0.6885 0.7213 0.4101 (Test) 0.7603 0.7705 0.6393 0.4134 

MHCII peptides 

- FDC only 

(the baseline) 
- - 0.8034 0.7605 0.6981 0.4396 - - 

0.7909 0.7571 0.7029 0.4401 

- Combining 

cluster 

predictions 

1,5 
(Valid.) 0.8244 0.8297 0.6656 0.492 

- 
(Valid.) 

no improvement achieved 
(Test) 0.8241 0.8119 0.6739 0.4773 (Test) 

- Inter-cluster 

stacking 
20 

(Valid.) 0.8152 0.7976 0.7552 0.5316 
20 

(Valid.) 0.811 0.771 0.7287 0.4782 

(Test) 0.8019 0.7834 0.7464 0.5077 (Test) 0.7919 0.764 0.7222 0.4648 

 

A. Impact of Combining Predictions Obtained by 

Varying (𝑘) Value 

We ran two sets of experiments to study the effect of 

the approach proposed in Section II.A to improve the 

performance of protein predictions, using 1) SVM 

classifiers and 2) RF classifiers. The results show clearly 

that the proposed approach improves upon the FDC 

performance, especially when the sequence is encoded 

using 50 PCPs and SVMs are trained within the clusters. 

Fig. 3 and 4 show a comparison between using FDC 

only (baseline, 𝑘 = 1), and combining of different cluster 

predictions, where SVMs are used. Fig. 3 shows AUC 

values of the models, and Fig. 4 shows the corresponding 
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MCC values. The vertical axis represents the models 

combined to generate a single model. We displayed the 

results of combining up to 𝑘 = 5 models for small 

datasets and up to 𝑘 = 20 models for the other datasets, 

since there is no improvement achieved when combining 

more models. 

We observed that in most cases combining diverse 

models improves the performance over using FDC only, 

except for the Antioxidant proteins, where adding models 

to the FDC reduced the performance when SVM is used 

inside the clusters (see Fig. 3 and 4). Training RF inside 

the clusters, and combining FDC with models generated 

from 𝑘 = 2 and 𝑘 = 3 improved the performance of 

Antioxidant proteins very slightly (1% improvement in 

the AUC value and 2% improvement in MCC, see Table 

II). 

Applying the proposed approach improved the AUC 

by about 2% for all datasets except Antioxidant, while for 

MCC we improved upon the baseline by about 3% to 6%. 

The best results for peptide datasets (Caspase 3, AMP, 

and MHCII) are achieved by combining predictions of 

two models. One of them is the FDC model, while for 

long protein sequences (RNA-binding, and DNA-binding) 

it is required to combine three or four models to achieve 

the best results. Adding more models does not improve 

performance further, but rather reduces the performance 

of the combined model. This is because at high value of 𝑘 

we did not get a good structure for some clusters due to a 

lack of data, which leads to adding noise to the combined 

model. 

Table II shows that applying RF inside the clusters 

improves the performance for most datasets except for 

MHCII peptides. For all datasets the improvement in the 

AUC is small (about 1%). However, we have achieved a 

significant improvement for the other metrics. For the 

DNA-binding dataset we achieved an improvement of 6% 

for MCC by combining the predictions of FDC with 

models generated from 𝑘 = 2. For Caspase 3 and 

Antioxidant we have achieved the best results (8%, and 

2% for MCC respectively) by combining FDC with 

models generated from 𝑘 = 2 and 𝑘 = 3. For RNA-

binding and AMP the improvement is about 2% in MCC.  

 

Figure 3.  Comparison between AUC values for the FDC and combining predictions obtained by varying (𝑘) value. 

 

Figure 4.  Comparison between MCC values for the FDC and combining predictions obtained by Varying (𝑘) value. 
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B. Impact of Applying Stacking within the Clusters

We ran similar experiments to study the effect of the

approach proposed in Section II.B. The results indicate 

that the proposed approach significantly improved the 

performance over the FDC especially when RF is used, 

see Table II. 

Fig. 5 and 6 show a comparison between using FDC 

only (baseline, 𝑘 = 1), and clustering with stacking inside 

the clusters at different values of 𝑘, where SVM is used 

for FDC. These figures indicate that we could not 

improve the performance at high value of 𝑘, where some 

clusters suffer from poor structure. The improvement of 

AUC for all datasets is about 1% - 2%, while we have 

achieved a significant improvement in MCC except for 

Antioxidant and AMP peptides, for which applying the 

proposed approach reduced the MCC compared to FDC 

only. 

For DNA-binding we obtained the best result by 

grouping the dataset into 4 clusters (2% for AUC, and 5% 

for MCC). For RNA binding proteins we have achieved 

2% for AUC and 6% for MCC. On the other hand, for 

MHCII peptides, while the approach did not improve the 

overall AUC of the classifier, is yields a good 

improvement in the MCC value (about 7%). 

Table II shows that using RF, the baseline results 

significantly improved in both AUC and MCC. For the 

DNA-binding dataset we achieved an improvement of 2% 

for AUC and 6% for MCC by splitting the dataset into 6 

clusters and applying stacking inside each cluster. For 

Antioxidant we have achieved 4% improvement for AUC 

and 11% for MCC. For RNA-binding we have achieved 

3% and 4% improvement for AUC and MCC by grouping 

the dataset into 5 clusters. 

For AMP and MHCII, we did not improve the overall 

AUC of the classifier, while we achieved 2% 

improvement in MCC. The best result is obtained for 

Caspase: 4% and 15% improvement for the AUC and 

MCC values, by grouping the dataset into 7 clusters. 

V. DISCUSSION

In the most cases, applying the proposed approaches 

improves the performance over baseline. This is achieved 

by the combination of extracting structurally meaningful 

cluster information with the power of ensemble learning. 

Both approaches showed that for small values of 𝑘 we 

can gain useful information about the structure of the data, 

which improve the prediction performance. For high 

value of 𝑘, especially for small dataset, clusters tend to be 

small, so classifiers are easily prone to overfitting. This 

finding supports the common sense to use only few small 

values for 𝑘 (and hence for 𝑛). 

We have found that in both of our approaches a linear 

model is sufficient for combining class probabilities in 

the meta classifier stage. This makes logistic regression 

applicable, which is beneficial since it does not require 

hyperparameter tuning. In any case, we believe that 

applying a meta-classifier is generally superior to 

heuristic decision rules and to manual tuning of weights 

when combining the outputs of multiple classifiers. 

The encoding method of representing the protein 

sequences naturally affects the performance of the 

proposed approaches. This is because the performance of 

this kind of approaches depends on the clusterability of 

the protein datasets depends on the encoding method. 

Figure 5.  Comparison between AUC values for the FDC and stacking insides clusters at different values of 𝑘.

203© 2021 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 12, No. 3, August 2021



Figure 6.  Comparison between MCC values for the FDC and stacking insides clusters at different values of 𝑘.

The results on Table II showed that the both 

approaches improve the performance of the baseline. The 

main differences between the two approaches that affect 

performance are: 

• The first approach depends on combining the

predictions of different values of 𝑘, while the

second approach depends on finding the best

performance at specific value of 𝑘. Therefore, the

weak clusters may affect the performance of the

first approach more than the second approach.

• For the first approach, the meta-classifier was

trained on the predictions obtained from the first

level for all training data, so all training data share

in finding the best hyper-parameter for the meta-

classifier, while in the second approach, we

trained meta-classifier in each cluster by handling

each cluster as a simple problem inside a complex

dataset.

We used RF as one of our base classifiers. RF is 

already an ensemble methods in itself. Our results show 

that its performance can be improved further by also 

incorporating structural information extracted in the 

clustering stage. 

VI. CONCLUSION

We have studied the combined effect of improving 

protein sequence classifiers with clustering and ensemble 

learning. Clustering approaches can extract valuable 

structure information from protein data, while ensembles 

can stabilize and even boost prediction performance 

given a diverse set of base classifiers. To this end we 

have explored two routes. In our first approach we use 

clustering to generate diverse classifiers for stacking, 

while in the second approach we apply stacking inside 

each cluster, which we think of as a homogeneous sub-

dataset.  

We have evaluated the performance of the proposed 

approaches on six protein sequence datasets. The 

performance of the proposed approaches depends on the 

clusterability of the dataset, the encoding method, and the 

number of clusters. Our results show that combining 

structural information of the data obtained by clustering 

with ensemble classification improves the results in the 

most cases. We can therefore recommend our 

methodology for protein function prediction. 
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