

Implementation and Evaluation of Movie

Recommender Systems Using Collaborative

Filtering

Salam Salloum and Dananjaya Rajamanthri
Department of Computer Science, California State Polytechnic University, Pomona, CA, USA

Email: ssalloum@cpp.edu

Abstract—Recommender systems have been utilized in

several e-commerce applications. There are three types of

recommender systems: content based filtering, collaborative

filtering, and hybrid recommender systems. In this paper,

two types of collaborative filtering techniques are evaluated

using the Movielens dataset, which contains 1 million

ratings. These two types are matrix factorization and user

based collaborative filtering with cosine similarity function.

The evaluation of the two types is based on the Root Mean

Square Error (RMSE) of the complete dataset and different

partitions of the complete dataset. The partitions are

determined by age, genre, or date of rating. For both types,

the results show that the RMSE of the complete dataset is

less than that of each partition. Also, in this thesis, we

introduce a new hybrid technique which integrates age,

genre, and date into the definition of cosine similarity

function. The new technique is evaluated using two

Movielens datasets of different sizes: 100,000 ratings and 1

million ratings. For both datasets, the evaluation results

show that the RMSE of the new hybrid technique is less

than that of the user based collaborative filtering with

traditional cosine function. For the dataset containing

100,000 ratings, the evaluation results show that the RMSE

of the new technique is lower than that of matrix

factorization for small training sets and higher for large

training sets.

Index Terms—content based filtering, collaborative filtering,

hybrid recommender systems, cosine similarity

I. INTRODUCTION

Data mining can be defined as discovering models and

patterns in large datasets [1], [2]. Recommender systems

are one of the data mining applications that are used to

predict user responses to options [2]. Recommender

systems are classified as follows:

• Content based filtering: Recommending items

with similar content to the items the user preferred.

• Collaborative filtering: Recommending items

preferred by similar users.

• Hybrid approaches: combining content-based and

collaborative-filtering methods in several different

ways [3]-[8].

Manuscript received November 30, 2020; revised April 4, 2021.

A. Utility Matrix

In recommender systems, users' preferences for items

are called ratings. Usually a rating is an integer. The

entity which maps users to ratings is called the utility

matrix [2]. All the recommender systems are based on the

utility matrix. In a utility matrix, the rows represent the

users and the columns represent the items.

There are two ways of populating a utility matrix. The

first way is asking users to rate items. For example,

Netflix asks users to rate movies. Almost all the

applications of recommender systems utilize this

approach. Another approach is deriving the ratings based

on user behavior. These derived ratings are typically

Boolean values. For example, in a movie application, if a

user watches a movie, we can assume that the user likes

that movie. But we don't know to what extent the user

likes the movie. That's why the predicted ratings based on

user behavior are usually given in Boolean values.

The goal of a recommender system is predicting the

missing elements or blanks of the utility matrix. We

know that a utility matrix is populated by asking ratings

from users. It is clear that the user is not going to rate all

the items. So, each user has more blanks than filled

elements in the utility matrix. The goal of a recommender

system is predicting those blanks. In most cases,

predicting blanks which would be rated highly by users is

sufficient.

B. Content Based Filtering (CBF)

In content-based filtering, the utility u(c,s) of items for

user c is estimated based on the utilities u(c,si) assigned

by user c to items si Є S that are “similar” to s [9]-[11]. In

another words, content based filtering is recommending

similar items to items preferred by a user. Content based

filtering incorporates three entities: utility matrix, item

profile, and user profile. Previously, we discussed about

utility matrix. Next, let's take a look at item profile and

user profile.

Finally, in this section, we'll discuss the algorithm of

content based filtering.

Item Profile: An item profile is a record of all the

features of items. An item profile is populated by the

application developers. Application developers have to

analyze the items and try to extract the important

characteristics of them. In content based filtering, this

189© 2021 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 12, No. 3, August 2021

doi: 10.12720/jait.12.3.189-196

process is critical because the performance of the system

depends on how well the item profile is defined. For

example, movies can have the following features:

• Genre

• Stars

• Director

• Year

• Language

This information can be easily extracted from the

description of the movies. Genre is a vague concept. The

best place to find the movie genre is the Internet Movie

Database (IMDB). IMDB assigns a genre to every movie.

Similarly, books can have the following features:

• Authors

• Subject

• Year

• Language

• Publisher

These features can also be extracted from the

descriptions of the books.

User Profile: A user profile is a record of features a

user prefers and how much the user prefers each feature.

All of the features used in the item profile have to be used

in the user profile too. We can also consider each row of

the item profile and the user profile is a vector of which

the components are the features. The user profile is an

aggregation of the utility matrix and the item profile.

After generating the user profile, recommendations are

generated based on the user profile and the item profile.

Algorithm of Content Based Filtering: Pseudo code for

algorithm of content based filtering is as follows:

//calculate user profile

for each user u

 userProfile[u] = r(u,i) * itemProfile[i] + userProfile[u]

 for each item i

 userProfile[u] = (r(u,i) * itemProfile[i] +

userProfile[u]) /2

//generate recommendations

for each user profile u

 for each item profile i of which item was

 not rated by u

 compute a similarity s between u and i retain the top

items ranked by similarity

return top items.

In the above algorithm, userProfile[i] is a vector which

represents the ith row of the user profile. itemProfile[i] is

a vector which represents the ith row of the item profile.

r(u,i) is the rating of user u for item i. First, the algorithm

calculates the user profile aggregating the utility matrix

and the item profile. Then, it generates recommendations

based on the user profile and the item profile. For

measuring similarity, distance measure such as cosine

distance can be used.

C. Collaborative Filtering (CF)

In general, collaborative filtering is the process of

filtering for information or patterns using techniques

involving collaboration among multiple data sources.

There are two main types of collaborative filtering

techniques: user based collaborative filtering and matrix

factorization.

User Based Collaborative Filtering (UBCF): In user

based collaborative filtering, the utility r(u, i) of item i for

user u is estimated based on the utilities r(uj, i) assigned

to item i by those users uj є U who are “similar” to user u

[9]. The following is the algorithm of user based

collaborative filtering for recommending items for user u:

for every other user w

 compute a similarity s between u and w,

retain the top users, ranked by similarity as the

neighborhood n,

for every item i that some user in n has a preference for,

but that u has no preference for yet

for every other user v in n that has a preference for i

incorporate v's preference for i into a running average

return the top items, ranked by weighted average [12].

According to the above algorithm, the first for loop

calculates a set of similar users n which is called the

neighborhood. The second for loop predicts ratings of the

items which user u hasn't rated yet. To measure the

similarity between two users, a distance measure such as

cosine distance can be used.

There are two types of neighborhoods: fixed size

neighborhood and threshold based neighborhood [11].

Fixed size neighborhood consists of n most similar users.

Usually, when n increases, the accuracy of

recommendation increases simply because there are more

similar users. Threshold based neighborhood consists of

similar users whose similarity measure is greater than

value t where -1 < t < 1. Usually, when the threshold

increases, the accuracy of the recommendation decreases

simply because too few similar users end up in the

neighborhood.

Matrix Factorization (MF): In matrix factorization,

both users and items are mapped into a latent factor space

such that user-item interactions are modeled as inner

products in that space [13]. Each item i is associated with

a vector 𝑞𝑖 ∈ R and each user u is associated with a

vector 𝑝𝑢 ∈ R. The rating of the user u rating for item i is

denoted by 𝑟𝑢𝑖 which is estimated as follows:

𝑟𝑢𝑖 = 𝑞𝑖
𝑇𝑝𝑢

For a given item i, the elements of 𝑞𝑖 measures the

extent to which the item possesses those factors. For a

given user u, the elements of 𝑝𝑢 measures the extent of

interest a user has in factors. The dot product 𝑞𝑖
𝑇𝑝𝑢

measures the user u's interest in item i. In another words,

the dot product 𝑞𝑖
𝑇𝑝𝑢 estimates the rating of user u rating

for item i. The challenge is calculating the mapping of

each item and user to the factor vectors 𝑝𝑢 and 𝑞𝑖.

One popular way to find 𝑝𝑢 and 𝑞𝑖 by using gradient

descent. In gradient descent, 𝑝𝑢 and 𝑞𝑖 is initialized with

some value. Then, regularized squared error is calculated

between the 𝑝𝑢 𝑞𝑖 product and known rating 𝑟𝑢𝑖 . Then,

𝑝𝑢 and 𝑞𝑖 are adjusted such that the regularized squared

error is minimum. This is done iteratively. Regularized

squared error is defined as follows:

190© 2021 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 12, No. 3, August 2021

𝑒𝑖𝑢
2 = ∑ (𝑟𝑢𝑖 − 𝑞𝑖

𝑇𝑝𝑢)2 + 𝜆(‖𝑞𝑖‖
2 + ‖𝑝𝑢‖2)

(𝑢,𝑖)Є𝑘

𝑝𝑢 and 𝑞𝑖 can be adjusted as follows:

𝑞𝑖 = 𝑞𝑖 + 𝛾
𝜕 𝑒𝑖𝑢

2

𝜕𝑞𝑖

𝑝𝑢 = 𝑝𝑢 + 𝛾
𝜕 𝑒𝑖𝑢

2

𝜕𝑝𝑢

Or

𝑞𝑖 = 𝑞𝑖 + 𝛾(𝑒𝑢𝑖 ∗ 𝑝𝑢 − 𝜆 ∗ 𝑞𝑖)

𝑝𝑢 = 𝑝𝑢 + 𝛾(𝑒𝑢𝑖 ∗ 𝑞𝑖 − 𝜆 ∗ 𝑝𝑢)

Hybrid Recommender Systems: Hybrid recommender

systems combine two or more recommender systems to

minimize the drawbacks of any individual recommender

system [3]-[8]. Based on combination techniques, hybrid

recommender systems can be categorized into five main

categories: weighted, switching, mixed, feature

combination, and cascade.

Weighted hybrid recommender systems estimate

ratings based on the ratings estimated by multiple

recommender systems [4]. For example, ratings estimated

by collaborative filtering and content based filtering can

be linearly combined to produce a hybrid recommender.

Weighted hybrid recommender systems bring the power

of multiple recommender systems together in a simple

manner. One recommender system can be added or

removed easily from the system.

Switching hybrid recommender systems alternate

between two or more recommender systems based on

some criterion [4]. Unlike weighted hybrid recommender

systems, switching hybrid recommender systems do not

combine the results of multiple recommender systems to

produce the final result. For example, content based

filtering and collaborative filtering can be combined to

produce a switching hybrid recommender system which

will then generate recommendations with content based

filtering and switch to collaborative filtering if it fails.

Switching recommender systems are more complex due

to criterion based switching.

Mix hybrid recommender systems combine

recommendations generated from multiple recommender

systems [4]-[8]. This kind of recommender systems are

used when large numbers of recommendations are

presented to the user. For example, we can combine

recommendations from the content based filtering and

collaborative filtering to produce a mix hybrid system. In

combining, some kind of aggregation technique has to be

used.

The feature combination hybrid recommender systems

consider user ratings as additional feature information

and run content-based filtering on the augmented data set

[5]. The cascade hybrid recommender systems generate

recommendations using a recommendation technique and

use another recommendation technique to rank the

recommendations of the first one. Thus, this technique

consists of two stages.

Similarity Distance Function: User based collaborative

filtering uses a similarity function to measure similarity

between two users. Next, we'll investigate similarity

functions.

Pearson correlation-Based Similarity: The Pearson

correlation measures the tendency of two series of

numbers, paired up one-to-one, to move together [11].

Pearson correlation can be calculated as follows:

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑠𝑖𝑚(𝑥, 𝑦)

=
∑ (𝑅𝑥,𝑐 − 𝑅𝑥

̅̅ ̅) × (𝑅𝑦,𝑐 − 𝑅𝑦
̅̅̅̅)𝑐 ∈𝐿𝑥𝑦

√∑ (𝑅𝑥,𝑐 − 𝑅𝑥
̅̅ ̅)𝑐 ∈𝐿𝑥

× √∑ (𝑅𝑦,𝑐 − 𝑅𝑦
̅̅̅̅)𝑐 ∈𝐿𝑦

where 𝑅𝑥,𝑐 refers to the rating of user x for item c, 𝐿𝑥𝑦

denates the set of items that rated by both user x and y,

𝑅𝑥
̅̅ ̅ and 𝑅𝑦

̅̅̅̅ are the average rating of user x and y

respectively. Pearson similarity is a number between -1

and 1.

Euclidean Similarity: Euclidean similarity measures

how close two points are in Euclidean n-space.

Euclidean similarity is defined as follows:

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑠𝑖𝑚 (𝑥, 𝑦)

=
1

1 + 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥, 𝑦)

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

where x and y refers to two points. Euclidean similarity is

a value between 0 and 1.

Cosine Similarity: Cosine similarity measures how

close two vectors are. Cosine similarity can be defined as

follows:

𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚(𝑥, 𝑦) =
∑ 𝑥𝑖 ∗ 𝑦𝑖

𝑛
𝑖=1

√∑ 𝑥𝑖
2𝑛

𝑖=1 ∗ √∑ 𝑦𝑖
2𝑛

𝑖=1

where x and y are two vectors. Cosine similarity is a

number between -1 and 1.

Spearman Correlation Similarity: Spearman

correlation is a variant of Pearson correlation. Instead of

using the actual preferences, in Spearman correlation,

ranked preferences are used to calculate the correlation

[11]. Spearman correlation is useful when the intervals

between preferences are problematic.

Tanimoto coefficient: Tanimoto coefficient is used to

measure the similarity between two sets when the

elements of each set are binary. Tanimoto coefficiennt is

also called Jaccard coefficient. Tanimoto coefficient is

defined as the size of intersection divided by the size of

the union [11] and can be represented by the following

equation.

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|

where both A and B are sets with binary elements. When

A and B are both empty, J(A,B) = 1. Thus,

0 ≤ 𝐽(𝐴, 𝐵) ≤ 1

191© 2021 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 12, No. 3, August 2021

II. EVALUATING USER BASED COLLABORATIVE

FILTERING WITH COSINE FUNCTION

The goal of this research is to improve user based

collaborative filtering with cosine similarity. Our first

attempt was to partition a dataset and check whether each

partition would produce better recommendations. For

evaluation, we used the Movielens dataset which contains

one million ratings. We used the following procedure to

evaluate a recommender algorithm.

• Split the dataset in to training set and probe set.

• Use recommender algorithm and predict the probe

set using the training set.

• Use root mean square error (RMSE) to calculate

the error between the real probe set and predicted

probe set.

Root mean square error (RMSE) = √
∑ (𝑅𝑖−𝑟𝑖)2𝑛

𝑖=1

𝑛

In the above equation, 𝑅𝑖 refers to the real rating, 𝑟𝑖

refers to the calculated rating which corresponds to 𝑅𝑖 ,

and 𝑛 refers to the total number of real ratings.

A. Partitions Based on Age

We partitioned ratings based on age and calculated the

error of user based collaborative filtering with cosine

function while changing the percentage of the training

dataset. Table I and Fig. 1 show the results.

TABLE I. RMSES OF UBCF WITH COSINE ON COMPLETE SET OF 1

MILLION RATINGS AND PARTITIONS BASED ON AGE

Figure 1. Plot of RMSEs of UBCF with cosine on complete set of 1
million ratings and partitions based on age.

From Table I and Fig. 1, we can see that error of user

based collaborative filtering with cosine function on

complete dataset is lower than the error of that on

partitions.

B. Partitions Based on Genre

We partitioned ratings based on genre and calculated

the error of user based collaborative filtering with cosine

function while changing the percentage of the training

dataset. Table II and Fig. 2 show the results.

TABLE II. RMSES OF UBCF WITH COSINE ON COMPLETE SET OF 1

MILLION RATINGS AND PARTITIONS BASED ON GENRE

Figure 2. Plot of RMSEs of UBCF with cosine on complete set of 1
million ratings and partitions based on genre.

From Table II and Fig. 2, we can see that error of user

base collaborative filtering with cosine function on

complete dataset is lower than the error of that on

partitions.

C. Partitions Based on Date

We partitioned ratings based on time of rating and

calculated the error of user based collaborative filtering

with cosine while changing the percentage of the training

dataset. Table III and Fig. 3 show the results.

TABLE III. RMSES OF UBCF WITH COSINE ON COMPLETE SET OF 1

MILLION RATINGS AND PARTITIONS BASED ON DATE

Figure 3. Plot of RMSEs of UBCF with cosine on complete set of 1
million ratings and partitions based on date.

From Table III and Fig. 3, we can see that the error of

user based collaborative filtering with cosine function on

complete dataset is lower than the error of that on

partitions.

training

percentage
All 1 18 25 35 45 50 56

70 0.990715 1.355665 1.048646 0.987586 1.011545 1.078242 1.088309 1.253861

80 0.984574 1.302618 1.04177 0.977757 0.989276 1.040835 1.051507 1.198311

90 0.980789 1.269022 1.028613 0.973787 0.985838 1.033054 1.027331 1.164181

training

percentage
All genre 1 genre 2 genre 3 genre 4 genre 5

70 0.990715 0.987934 1.012781 1.148127 1.119669 1.046123

80 0.984574 0.987934 0.998815 1.148127 1.084554 1.03291

90 0.980789 0.981574 0.998669 1.148127 1.073493 1.020698

training

percentage
All 2000 2001 2002 2003

70 0.990715 1.002803 1.223215 1.450935 1.507215

80 0.984574 0.992762 1.171007 1.403151 1.510001

90 0.980789 0.986636 1.13869 1.394571 1.528393

192© 2021 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 12, No. 3, August 2021

III. EVALUATING USER BASED COLLABORATIVE

FILTERING WITH MODIFIED COSINE FUNCTION

The goal of this research is to improve user based

collaborative filtering where the similarity function used

is the cosine function. As we discussed in Section II, we

tried to achieve that by partitioning the dataset based on

age, genre, or date, which was not successful. Next, we

tried to achieve our goal by modifying the cosine

similarity. In this chapter, we are going to discuss

modified cosine similarity and compare RMSEs of user

based collaborative filtering with the original and

modified cosine functions. For evaluation, we used two

Movielens datasets which contain 100,000 ratings and 1

million ratings.

A. Original Cosine Similarity

Original cosine similarity is defined as follows:

∑ 𝑟𝑎𝑡𝑖𝑛𝑔𝑎𝑖 ∗ 𝑟𝑎𝑡𝑖𝑛𝑔𝑏𝑖
𝑛
𝑖=1

√∑ 𝑟𝑎𝑡𝑖𝑛𝑔𝑎𝑖
2𝑛

𝑖=1 ∗ √∑ 𝑟𝑎𝑡𝑖𝑛𝑔𝑏𝑖
2𝑛

𝑖=1

where 𝑟𝑎𝑡𝑖𝑛𝑔𝑎𝑖 refers to the rating user a gave for movie

i and 𝑟𝑎𝑡𝑖𝑛𝑔𝑏𝑖 refers to the rating user b gave for movie i.

B. Modified Cosine Similarity

We modified the cosine similarity with the following

assumptions:

• The users with similar age are more similar than

the rest of the users.

• The users who are interested in the same genre are

more similar than the rest of the users.

• The ratings given during the same time period are

more similar than the rest of the ratings.

Modified cosine similarity is as follows:

∑ 𝑤𝑡 ∗ 𝑟𝑎𝑡𝑖𝑛𝑔𝑎𝑖 ∗ 𝑟𝑎𝑡𝑖𝑛𝑔𝑏𝑖
𝑛
𝑖=1

√∑ 𝑟𝑎𝑡𝑖𝑛𝑔𝑎𝑖
2𝑛

𝑖=1 ∗ √∑ 𝑟𝑎𝑡𝑖𝑛𝑔𝑏𝑖
2𝑛

𝑖=1

+ 𝑤𝑎 + 𝑤𝑔

where 𝑟𝑎𝑡𝑖𝑛𝑔𝑎𝑖 refers to the rating user a gave for movie

i and 𝑟𝑎𝑡𝑖𝑛𝑔𝑏𝑖 refers to the rating user b gave for movie i.

𝑤𝑎 refers to the age weight and can be calculated as

follows:
|𝑎𝑔𝑒𝑎 − 𝑎𝑔𝑒𝑏| ≤ 𝐿𝑎 => 𝑤𝑎 = 𝑐𝑎

|𝑎𝑔𝑒𝑎 − 𝑎𝑔𝑒𝑏| > 𝐿𝑎 => 𝑤𝑎 = 0

𝐿𝑎 = 5, 𝑐𝑎 = 0.5

𝑤𝑡 refers to the time weight and can be calculated as

follows (assume time is in years):

|𝑡𝑖𝑚𝑒𝑎𝑖 − 𝑡𝑖𝑚𝑒𝑏𝑖| ≤ 𝐿𝑡 => 𝑤𝑡 = 𝑐𝑡

|𝑡𝑖𝑚𝑒𝑎𝑖 − 𝑡𝑖𝑚𝑒𝑏𝑖| > 𝐿𝑡 => 𝑤𝑡 = 1

𝐿𝑡 = 1, 𝑐𝑡 = 2𝑤𝑔 refers to the genre weight and

calculated as follows:

𝐺𝑒𝑛𝑟𝑒𝑠 𝑎 𝑣𝑒𝑖𝑤𝑒𝑑 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡
∩ 𝐺𝑒𝑛𝑟𝑒𝑠 𝑏 𝑣𝑒𝑖𝑤𝑒𝑑 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 ≠ ∅

=> 𝑤𝑔 = 𝑐𝑔

𝐺𝑒𝑛𝑟𝑒𝑠 𝑎 𝑣𝑒𝑖𝑤𝑒𝑑 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡
∩ 𝐺𝑒𝑛𝑟𝑒𝑠 𝑏 𝑣𝑒𝑖𝑤𝑒𝑑 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 = ∅

=> 𝑤𝑔 = 0

𝑐𝑔 = 0.5

For implementation, we used Mahout recommender

framework. Mahout is an open source machine learning

library from apache. The current version of Mahout

implements machine learning algorithms belonging to

three categories: recommendation, classification, and

clustering. It is aimed to be used by applications with data

that is too large for a single computer to process. To

achieve the scalability, it is built on top of Apache

Hadoop which is a distributed computing system. It is

implemented in Java.

Table IV and Fig. 4 compare the RMSEs of user based

collaborative filtering with original and modified cosine

functions on the dataset containing 100,000 ratings.

TABLE IV. RMSES OF UBCF WITH ORIGINAL AND MODIFIED COSINE

ON COMPLETE SET OF 100, 000 RATINGS

Figure 4. Plot of RMSEs of UBCF with original and modified cosine
on complete set of 100,000 ratings.

From Table IV and Fig. 4, we can see that the RMSE

of user based collaborative filtering with modified cosine

function is lower than the original one. We also

calculated RMSEs of user based collaborative filtering

with original and modified cosine functions on Movielens

dataset containing 1 million ratings for 90 percent

training set. The results were consistent with the previous

results.

IV. EVALUATING FACTORIZATION METHODS

We calculated RMSE of matrix factorization on age,

genre, and date partitions of Movielens dataset containing

one million ratings. The first three subsections of this

section are devoted to present the results of that

experiment. At the end of this section, we are going to

compare RMSE of matrix factorization to RMSE of user

based collaborative filtering with modified cosine on the

Movielens dataset containing 100,000 ratings.

training

percentage
RMSE of Original UBCF RMSE of Midified UBCF

70 1.097501426 0.992585309

80 1.062239766 0.986342565

90 1.056571337 0.990040666

193© 2021 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 12, No. 3, August 2021

A. Partitions Based on Age

We partitioned ratings based on age and calculated

error of matrix factorization while changing the

percentage of the training dataset. Table V and Fig. 5

show the results.

TABLE V. RMSES OF MF ON COMPLETE SET OF 1 MILLION RATINGS

AND PARTITIONS BASED ON AGE

Figure 5. Plot of RMSEs of MF on complete set of 1 mllion ratings

and partitions based on age.

From Table V and Fig. 5 we can see that the error of

matrix factorization on complete dataset is lower than the

error of that on partitions.

B. Partitions Based on Genre

We partitioned ratings based on genre and calculated

the error of matrix factorization while changing the

percentage of the training dataset. Table VI and Fig. 6

show the results.

TABLE VI. RMSES OF MF ON COMPLETE SET OF 1 MILLION RATINGS

AND PARTITIONS BASED ON GENRE

Figure 6. Plot of RMSEs of MF on complete set of 1 million ratings

and partitions based on genre

From Table VI and Fig. 6, we can see that the error of

matrix factorization on complete dataset is lower than the

error of that on partitions.

C. Partitions Based on Date

We partitioned ratings based on date and calculated the

error of matrix factorization while changing the

percentage of the training dataset. Table VII and Fig. 7

show the results.

TABLE VII. RMSES OF MF ON COMPLETE SET OF 1 MILLION RATINGS

AND PARTITIONS BASED ON DATE

Figure 7. Plot of RMSEs of MF on complete set of 1 million ratings
and partitions based on date.

From Table VII and Fig. 7, we can see that the error of

matrix factorization on complete dataset is lower than the

error of that on partitions.

These results are consistent with the results of the

collaborative filtering in Section II.

D. Comparing RMSE of Matrix Factorization with

RMSE of User Based Collaborative Filtering with

Modified Cosine Function

In Section III, we measured the RMSE of modified

user based collaborative filtering. We noticed that the

RMSE of user based collaborative filtering with modified

cosine function was lower than the RMSE of user based

collaborative filtering with original cosine function. In

this subsection, we are going to compare the RMSE of

matrix factorization to that of user based collaborative

filtering with modified cosine function. Table VIII and

Fig. 8 show RMSEs for both methods.

TABLE VIII. RMSES OF UBCF, UBCF WITH MODIFIED COSINE, AND

MF ON COMPLETE SET OF 100,000 RATINGS

training

percentage
All 1 18 25 35 45 50 56

70 0.866632 1.229243 0.960782 0.888546 0.910918 0.983122 0.991166 1.076821

80 0.861228 1.206244 0.937142 0.877081 0.901742 0.96026 0.977943 1.046889

90 0.854716 1.176732 0.927782 0.867745 0.88919 0.917808 0.95727 1.022675

training

percentage
All genre 1 genre 2 genre 3 genre 4 genre 5

70 0.866632 0.880333 0.932697 0.967414 0.946097 0.910816

80 0.861228 0.873504 0.921348 0.939902 0.927442 0.903401

90 0.854716 0.857486 0.899124 0.936145 0.910057 0.892047

training

percentage
All 2000 2001 2002 2003

70 0.866632 0.873139 1.024393 1.182956 1.489212

80 0.861228 0.86434 1.007889 1.162301 1.506717

90 0.854716 0.859452 0.984957 1.08671 1.467378

training

percentage
RMSE of UBCF

RMSE of Midified

UBCF

RMSE of

MF

70 1.097501426 0.992585309 0.997306

80 1.062239766 0.986342565 0.978038

90 1.056571337 0.990040666 0.946081

194© 2021 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 12, No. 3, August 2021

Figure 8. Plot of RMSEs of UBCF, UBCF with modified cosine, and
MF on complete set of 100, 000 ratings.

From Table VIII and Fig. 8, we can see that the

original user based collaborative filtering has the highest

RMSE. The RMSE of user based collaborative filtering

with modified cosine function is lower than that of matrix

factorization for small training sets and greater for large

training sets.

V. CONCLUSION

Recommender systems have been utilized in several e-

commerce applications, such as Amazon and Netflix.

There are three types of recommender systems: content

based filtering, collaborative filtering, and hybrid

techniques. In this thesis, two types of collaborative

filtering techniques were evaluated using the Movielens

dataset containing one million ratings. These two types

were matrix factorization and user based collaborative

filtering with cosine similarity function. The evaluation

of the two types was based on RMSE of complete dataset

and different partitions of complete dataset. The

partitions were determined by age, genre, and time. For

both techniques, the results showed that the RMSE of the

complete set is less than that of each partition. The reason

why we got more error in partitioning is that the attributes

of movies in one partition is dependent on the attributes

of the movies in other partitions. In partitioning, we

maximize the contribution of one partition while ignoring

the contribution of the other partitions. Thus, this method

is subtractive. What we need is an additive method in

which we maximize the contribution of each partition,

while keeping the contribution of the other partitions.

Also in this paper, we introduced a new hybrid

technique by integrating age, genre, and date in to the

definition of cosine similarity function. The new

technique was evaluated using the Movielens dataset

containing 100,000 ratings. The evaluation results

showed that the RMSE of the new technique is less than

that of the user based collaborative filtering with

traditional cosine function. We also calculated RMSEs of

user based collaborative filtering with original and

modified cosine functions on the Movielens dataset

containing 1 million ratings for 90 percent training set.

The results were consistent with the previous results. The

reason for this is that the new technique maximizes the

contribution of each partition without ignoring the

contribution of the other partitions. Thus, this method is

an additive method.

We also compared the RMSEs of matrix factorization

to that of user based collaborative filtering with modified

cosine functions on the Movielens dataset containing

100,000 ratings. The RMSE of the new technique is

lower than that of matrix factorization for small training

sets and higher for large training sets.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

This manuscript is a product of Dananjaya

Rajamanthri’s Master thesis research under the

supervision and guidance of Dr. Salam Salloum.

REFERENCES

[1] U. Panniello and M. Gorgoglione, “A contextual modeling

approach to context-aware recommender systems,” in Proc. the
3rd Workshop on Context-Aware Recommender Systems, October

2013.

[2] A. Rajaraman, J. Leskovec, and J. D. Ullman, “Recommendation
systems,” in Mining of Massive Datasets, Cambridge University

Press, 2012, pp. 303-323.

[3] G. Badaro, H. Hajj, W. El-Hajj, and L. Nachman, “A hybrid
approach with collaborative filtering for recommender systems,”

in Proc. 9th International Wireless Communications and Mobile

Computing Conference, 2013, pp. 349-354.
[4] R. Burke, “Hybrid recommender systems: Survey and

experiments,” User Modeling and User-Adapted Interaction, vol.

12, no. 4, pp. 331-370, November 2002.
[5] J. Fan, W. Pan, and L. Jiang, “An improved collaborative filtering

algorithm combining content-based algorithm and user activity,”

in Proc. International Conference on Big Data and Smart
Computing, 2014, pp. 88-91.

[6] F. Fouss and M. Saerens, “Evaluating performance of

recommender systems: An experimental comparison,” presented at
the IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology, 2008.

[7] H. Ji, J. Li, C. Ren, and M. He, “Hybrid collaborative filtering
model for improved recommendation,” in Proc. IEEE

International Conference on Service Operations and Logistics,

and Informatics, 2013, pp. 142-145.
[8] K. Jia and Z. Yi, “Context-aware recommender systems in mobile

applications,” presented at the 6th International Conference on

Information Management, Innovation Management and Industrial
Engineering, 2013.

[9] G. Adomavicius and A. Tuzhilin, “Toward the next generation of

recommender systems,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 6, pp. 734-749, June 2005.

[10] G. Adomavicius, B. Mobasher, F. Ricci, and A. Tuzhilin,

“Context-Aware recommender systems,” AI Mag., vol. 32, pp. 67-
80, 2011.

[11] G. Adomavicius and Y. Kwon, “New recommendation techniques

for multimedia rating systems,” IEEE Intelligent Systems, pp. 48-
55, 2007.

[12] S. Owen, R. Anil, T. Dunning, and E. Friedman,

“Recommendations,” in Mahout in Action, Manning Publications
Co, 2012, pp. 2-114.

[13] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization

techniques for recommender systems,” Computer, vol. 42, pp. 30-
37, 2009.

Copyright © 2021 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

195© 2021 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 12, No. 3, August 2021

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Salam S. Salloum received a Ph.D. in computer science from the

University of Southern California (USC), Los Angeles U.S.A in June

1979. He also recieved an M.S. in computer Science, an M.S. in applied
mathematics and an M.S. in electrical engineering from University of

Southern California (USC) in 1974, 1977, and 1980, respectively. Dr.

Salloum’s research spans the fields of algorithms, database and data
mining, software testing, fault tolerant computing, and residue number

system.

He was a faculty member at several univeristies in the Middle East and
was the founding chair of the Computer Science Department in the

Univeristy of Baghdad, Iraq. He is currently a Professor of computer

science at California State Polytechnic University, Pomona U.S.A.

Dananjaya Rajamanthri received his M.S. in computer scinece from

Califoronia State Polytechnic University, Pomona U.S.A. in 2014. He

has been working as software enguneer in PSC Biotech Corporation
located Pomona, U.S.A.

196© 2021 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 12, No. 3, August 2021

