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Abstract—Recommender systems have been utilized in 

several e-commerce applications. There are three types of 

recommender systems: content based filtering, collaborative 

filtering, and hybrid recommender systems. In this paper, 

two types of collaborative filtering techniques are evaluated 

using the Movielens dataset, which contains 1 million 

ratings. These two types are matrix factorization and user 

based collaborative filtering with cosine similarity function. 

The evaluation of the two types is based on the Root Mean 

Square Error (RMSE) of the complete dataset and different 

partitions of the complete dataset. The partitions are 

determined by age, genre, or date of rating. For both types, 

the results show that the RMSE of the complete dataset is 

less than that of each partition. Also, in this thesis, we 

introduce a new hybrid technique which integrates age, 

genre, and date into the definition of cosine similarity 

function. The new technique is evaluated using two 

Movielens datasets of different sizes: 100,000 ratings and 1 

million ratings. For both datasets, the evaluation results 

show that the RMSE of the new hybrid technique is less 

than that of the user based collaborative filtering with 

traditional cosine function. For the dataset containing 

100,000 ratings, the evaluation results show that the RMSE 

of the new technique is lower than that of matrix 

factorization for small training sets and higher for large 

training sets.  

 

Index Terms—content based filtering, collaborative filtering, 

hybrid recommender systems, cosine similarity 
  

I. INTRODUCTION 

Data mining can be defined as discovering models and 

patterns in large datasets [1], [2]. Recommender systems 

are one of the data mining applications that are used to 

predict user responses to options [2]. Recommender 

systems are classified as follows:  

• Content based filtering: Recommending items 

with similar content to the items the user preferred. 

• Collaborative filtering: Recommending items 

preferred by similar users.  

• Hybrid approaches: combining content-based and 

collaborative-filtering methods in several different 

ways [3]-[8]. 
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A. Utility Matrix 

In recommender systems, users' preferences for items 

are called ratings. Usually a rating is an integer. The 

entity which maps users to ratings is called the utility 

matrix [2]. All the recommender systems are based on the 

utility matrix. In a utility matrix, the rows represent the 

users and the columns represent the items.  

There are two ways of populating a utility matrix. The 

first way is asking users to rate items. For example, 

Netflix asks users to rate movies. Almost all the 

applications of recommender systems utilize this 

approach. Another approach is deriving the ratings based 

on user behavior. These derived ratings are typically 

Boolean values. For example, in a movie application, if a 

user watches a movie, we can assume that the user likes 

that movie. But we don't know to what extent the user 

likes the movie. That's why the predicted ratings based on 

user behavior are usually given in Boolean values.   

The goal of a recommender system is predicting the 

missing elements or blanks of the utility matrix. We 

know that a utility matrix is populated by asking ratings 

from users. It is clear that the user is not going to rate all 

the items. So, each user has more blanks than filled 

elements in the utility matrix. The goal of a recommender 

system is predicting those blanks. In most cases, 

predicting blanks which would be rated highly by users is 

sufficient.  

B. Content Based Filtering (CBF) 

In content-based filtering, the utility u(c,s) of items for 

user c is estimated based on the utilities u(c,si) assigned 

by user c to items si Є S that are “similar” to s [9]-[11]. In 

another words, content based filtering is recommending 

similar items to items preferred by a user. Content based 

filtering incorporates three entities: utility matrix, item 

profile, and user profile. Previously, we discussed about 

utility matrix. Next, let's take a look at item profile and 

user profile.  

Finally, in this section, we'll discuss the algorithm of 

content based filtering.  

Item Profile: An item profile is a record of all the 

features of items. An item profile is populated by the 

application developers. Application developers have to 

analyze the items and try to extract the important 

characteristics of them. In content based filtering, this 
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process is critical because the performance of the system 

depends on how well the item profile is defined. For 

example, movies can have the following features: 

• Genre 

• Stars 

• Director 

• Year 

• Language  

This information can be easily extracted from the 

description of the movies. Genre is a vague concept. The 

best place to find the movie genre is the Internet Movie 

Database (IMDB). IMDB assigns a genre to every movie. 

Similarly, books can have the following features:  

• Authors 

• Subject 

• Year 

• Language  

• Publisher  

These features can also be extracted from the 

descriptions of the books.  

User Profile: A user profile is a record of features a 

user prefers and how much the user prefers each feature. 

All of the features used in the item profile have to be used 

in the user profile too. We can also consider each row of 

the item profile and the user profile is a vector of which 

the components are the features. The user profile is an 

aggregation of the utility matrix and the item profile. 

After generating the user profile, recommendations are 

generated based on the user profile and the item profile.  

Algorithm of Content Based Filtering: Pseudo code for 

algorithm of content based filtering is as follows: 

//calculate user profile 

for each user u 

  userProfile[u] = r(u,i) * itemProfile[i] + userProfile[u] 

    for each item i 

 userProfile[u] = (r(u,i) * itemProfile[i] + 

userProfile[u]) /2 

 

//generate recommendations 

for each user profile u 

  for each item profile i of which item was 

  not rated by u      

    compute a similarity s between u and i  retain the top 

items ranked by similarity 

return top items.  

In the above algorithm, userProfile[i] is a vector which 

represents the ith row of the user profile. itemProfile[i] is 

a vector which represents the ith row of the item profile. 

r(u,i) is the rating of user u for item i. First, the algorithm 

calculates the user profile aggregating the utility matrix 

and the item profile. Then, it generates recommendations 

based on the user profile and the item profile. For 

measuring similarity, distance measure such as cosine 

distance can be used.  

C. Collaborative Filtering (CF) 

In general, collaborative filtering is the process of 

filtering for information or patterns using techniques 

involving collaboration among multiple data sources. 

There are two main types of collaborative filtering 

techniques: user based collaborative filtering and matrix 

factorization.  

User Based Collaborative Filtering (UBCF): In user 

based collaborative filtering, the utility r(u, i) of item i for 

user u is estimated based on the utilities r(uj, i) assigned 

to item i by those users uj є U who are “similar” to user u 

[9]. The following is the algorithm of user based 

collaborative filtering for recommending items for user u:   

for every other user w 

  compute a similarity s between u and w, 

retain the top users, ranked by similarity as the 

neighborhood n, 

for every item i that some user in n has a preference for, 

but that u has no preference for yet 

for every other user v in n that has a preference for i 

incorporate v's preference for i into a running average 

return the top items, ranked by weighted average [12]. 

According to the above algorithm, the first for loop 

calculates a set of similar users n which is called the 

neighborhood. The second for loop predicts ratings of the 

items which user u hasn't rated yet. To measure the 

similarity between two users, a distance measure such as 

cosine distance can be used.  

There are two types of neighborhoods: fixed size 

neighborhood and threshold based neighborhood [11]. 

Fixed size neighborhood consists of n most similar users. 

Usually, when n increases, the accuracy of 

recommendation increases simply because there are more 

similar users. Threshold based neighborhood consists of 

similar users whose similarity measure is greater than 

value t where -1 < t < 1. Usually, when the threshold 

increases, the accuracy of the recommendation decreases 

simply because too few similar users end up in the 

neighborhood.  

Matrix Factorization (MF): In matrix factorization, 

both users and items are mapped into a latent factor space 

such that user-item interactions are modeled as inner 

products in that space [13]. Each item i is associated with 

a vector 𝑞𝑖  ∈ R and each user u is associated with a 

vector 𝑝𝑢 ∈ R. The rating of the user u rating for item i is 

denoted by 𝑟𝑢𝑖 which is estimated as follows: 

𝑟𝑢𝑖 = 𝑞𝑖
𝑇𝑝𝑢 

For a given item i, the elements of 𝑞𝑖  measures the 

extent to which the item possesses those factors. For a 

given user u, the elements of 𝑝𝑢 measures the extent of 

interest a user has in factors. The dot product 𝑞𝑖
𝑇𝑝𝑢 

measures the user u's interest in item i. In another words, 

the dot product 𝑞𝑖
𝑇𝑝𝑢 estimates the rating of user u rating 

for item i. The challenge is calculating the mapping of 

each item and user to the factor vectors 𝑝𝑢 and 𝑞𝑖. 

One popular way to find 𝑝𝑢  and 𝑞𝑖 by using gradient 

descent. In gradient descent, 𝑝𝑢 and 𝑞𝑖 is initialized with 

some value. Then, regularized squared error is calculated 

between the 𝑝𝑢  𝑞𝑖  product and known rating 𝑟𝑢𝑖 . Then, 

𝑝𝑢 and 𝑞𝑖  are adjusted such that the regularized squared 

error is minimum. This is done iteratively. Regularized 

squared error is defined as follows: 
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𝑒𝑖𝑢
2 = ∑ (𝑟𝑢𝑖 − 𝑞𝑖

𝑇𝑝𝑢)2 + 𝜆(‖𝑞𝑖‖
2 + ‖𝑝𝑢‖2)

(𝑢,𝑖)Є𝑘

 

𝑝𝑢 and 𝑞𝑖 can be adjusted as follows: 

𝑞𝑖 = 𝑞𝑖 + 𝛾
𝜕 𝑒𝑖𝑢

2

𝜕𝑞𝑖

 

𝑝𝑢 = 𝑝𝑢 + 𝛾
𝜕 𝑒𝑖𝑢

2

𝜕𝑝𝑢

 

Or 

𝑞𝑖 = 𝑞𝑖 + 𝛾(𝑒𝑢𝑖 ∗ 𝑝𝑢 − 𝜆 ∗ 𝑞𝑖) 

𝑝𝑢 = 𝑝𝑢 + 𝛾(𝑒𝑢𝑖 ∗ 𝑞𝑖 − 𝜆 ∗ 𝑝𝑢) 

Hybrid Recommender Systems: Hybrid recommender 

systems combine two or more recommender systems to 

minimize the drawbacks of any individual recommender 

system [3]-[8]. Based on combination techniques, hybrid 

recommender systems can be categorized into five main 

categories: weighted, switching, mixed, feature 

combination, and cascade.  

Weighted hybrid recommender systems estimate 

ratings based on the ratings estimated by multiple 

recommender systems [4]. For example, ratings estimated 

by collaborative filtering and content based filtering can 

be linearly combined to produce a hybrid recommender. 

Weighted hybrid recommender systems bring the power 

of multiple recommender systems together in a simple 

manner. One recommender system can be added or 

removed easily from the system.   

Switching hybrid recommender systems alternate 

between two or more recommender systems based on 

some criterion [4]. Unlike weighted hybrid recommender 

systems, switching hybrid recommender systems do not 

combine the results of multiple recommender systems to 

produce the final result. For example, content based 

filtering and collaborative filtering can be combined to 

produce a switching hybrid recommender system which 

will then generate recommendations with content based 

filtering and switch to collaborative filtering if it fails. 

Switching recommender systems are more complex due 

to criterion based switching.  

Mix hybrid recommender systems combine 

recommendations generated from multiple recommender 

systems [4]-[8]. This kind of recommender systems are 

used when large numbers of recommendations are 

presented to the user. For example, we can combine 

recommendations from the content based filtering and 

collaborative filtering to produce a mix hybrid system. In 

combining, some kind of aggregation technique has to be 

used.  

The feature combination hybrid recommender systems 

consider user ratings as additional feature information 

and run content-based filtering on the augmented data set 

[5]. The cascade hybrid recommender systems generate 

recommendations using a recommendation technique and 

use another recommendation technique to rank the 

recommendations of the first one. Thus, this technique 

consists of two stages.  

Similarity Distance Function: User based collaborative 

filtering uses a similarity function to measure similarity 

between two users. Next, we'll investigate similarity 

functions.  

Pearson correlation-Based Similarity: The Pearson 

correlation measures the tendency of two series of 

numbers, paired up one-to-one, to move together [11]. 

Pearson correlation can be calculated as follows: 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑠𝑖𝑚(𝑥, 𝑦)

=  
∑ (𝑅𝑥,𝑐 − 𝑅𝑥

̅̅ ̅) × (𝑅𝑦,𝑐 − 𝑅𝑦
̅̅̅̅ )𝑐 ∈𝐿𝑥𝑦

√∑ (𝑅𝑥,𝑐 − 𝑅𝑥
̅̅ ̅)𝑐 ∈𝐿𝑥

× √∑ (𝑅𝑦,𝑐 − 𝑅𝑦
̅̅̅̅ )𝑐 ∈𝐿𝑦

  

where 𝑅𝑥,𝑐  refers to the rating of user x for item c, 𝐿𝑥𝑦  

denates the set of items that rated by both user x and y, 

𝑅𝑥
̅̅ ̅  and 𝑅𝑦

̅̅̅̅  are the average rating of user x and y 

respectively. Pearson similarity is a number between -1 

and 1.  

Euclidean Similarity: Euclidean similarity measures 

how close two points are in Euclidean n-space.  

Euclidean similarity is defined as follows: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑠𝑖𝑚 (𝑥, 𝑦)

=  
1

1 + 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥, 𝑦)
 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

where x and y refers to two points. Euclidean similarity is 

a value between 0 and 1.  

Cosine Similarity: Cosine similarity measures how 

close two vectors are. Cosine similarity can be defined as 

follows: 

𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚(𝑥, 𝑦) =
∑ 𝑥𝑖 ∗ 𝑦𝑖

𝑛
𝑖=1

√∑ 𝑥𝑖
2𝑛

𝑖=1 ∗ √∑ 𝑦𝑖
2𝑛

𝑖=1

 

where x and y are two vectors. Cosine similarity is a 

number between -1 and 1.  

Spearman Correlation Similarity: Spearman 

correlation is a variant of Pearson correlation. Instead of 

using the actual preferences, in Spearman correlation, 

ranked preferences are used to calculate the correlation 

[11]. Spearman correlation is useful when the intervals 

between preferences are problematic.  

Tanimoto coefficient: Tanimoto coefficient is used to 

measure the similarity between two sets when the 

elements of each set are binary. Tanimoto coefficiennt is 

also called Jaccard coefficient. Tanimoto coefficient is 

defined as the size of intersection divided by the size of 

the union [11] and can be represented by the following 

equation.  

𝐽(𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

where both A and B are sets with binary elements. When 

A and B are both empty, J(A,B) = 1. Thus,  

0 ≤ 𝐽(𝐴, 𝐵) ≤ 1  
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II. EVALUATING USER BASED COLLABORATIVE 

FILTERING WITH COSINE FUNCTION 

The goal of this research is to improve user based 

collaborative filtering with cosine similarity. Our first 

attempt was to partition a dataset and check whether each 

partition would produce better recommendations. For 

evaluation, we used the Movielens dataset which contains 

one million ratings. We used the following procedure to 

evaluate a recommender algorithm.  

• Split the dataset in to training set and probe set.  

• Use recommender algorithm and predict the probe 

set using the training set.  

• Use root mean square error (RMSE) to calculate 

the error between the real probe set and predicted 

probe set.  

Root mean square error (RMSE)  = √
∑ (𝑅𝑖−𝑟𝑖)2𝑛

𝑖=1

𝑛
  

In the above equation, 𝑅𝑖  refers to the real rating, 𝑟𝑖 

refers to the calculated rating which corresponds to 𝑅𝑖 , 

and 𝑛 refers to the total number of real ratings. 

A. Partitions Based on Age 

We partitioned ratings based on age and calculated the 

error of user based collaborative filtering with cosine 

function while changing the percentage of the training 

dataset. Table I and Fig. 1 show the results.  

TABLE I.  RMSES OF UBCF WITH COSINE ON COMPLETE SET OF 1 

MILLION RATINGS AND PARTITIONS BASED ON AGE  

 
 

 

Figure 1. Plot of RMSEs of UBCF with cosine on complete set of 1 
million ratings and partitions based on age. 

From Table I and Fig. 1, we can see that error of user 

based collaborative filtering with cosine function on 

complete dataset is lower than the error of that on 

partitions.  

B. Partitions Based on Genre 

We partitioned ratings based on genre and calculated 

the error of user based collaborative filtering with cosine 

function while changing the percentage of the training 

dataset. Table II and Fig. 2 show the results.  

TABLE II.  RMSES OF UBCF WITH COSINE ON COMPLETE SET OF 1 

MILLION RATINGS AND PARTITIONS BASED ON GENRE  

 
 

 

Figure 2. Plot of RMSEs of UBCF with cosine on complete set of 1 
million ratings and partitions based on genre. 

From Table II and Fig. 2, we can see that error of user 

base collaborative filtering with cosine function on 

complete dataset is lower than the error of that on 

partitions.  

C. Partitions Based on Date 

We partitioned ratings based on time of rating and 

calculated the error of user based collaborative filtering 

with cosine while changing the percentage of the training 

dataset. Table III and Fig. 3 show the results.  

TABLE III.  RMSES OF UBCF WITH COSINE ON COMPLETE SET OF 1 

MILLION RATINGS AND PARTITIONS BASED ON DATE  

 
 

 

Figure 3. Plot of RMSEs of UBCF with cosine on complete set of 1 
million ratings and partitions based on date. 

From Table III and Fig. 3, we can see that the error of 

user based collaborative filtering with cosine function on 

complete dataset is lower than the error of that on 

partitions.  

training 

percentage
All 1 18 25 35 45 50 56

70 0.990715 1.355665 1.048646 0.987586 1.011545 1.078242 1.088309 1.253861

80 0.984574 1.302618 1.04177 0.977757 0.989276 1.040835 1.051507 1.198311

90 0.980789 1.269022 1.028613 0.973787 0.985838 1.033054 1.027331 1.164181

training 

percentage
All genre 1 genre 2 genre 3 genre 4 genre 5

70 0.990715 0.987934 1.012781 1.148127 1.119669 1.046123

80 0.984574 0.987934 0.998815 1.148127 1.084554 1.03291

90 0.980789 0.981574 0.998669 1.148127 1.073493 1.020698

training 

percentage
All 2000 2001 2002 2003

70 0.990715 1.002803 1.223215 1.450935 1.507215

80 0.984574 0.992762 1.171007 1.403151 1.510001

90 0.980789 0.986636 1.13869 1.394571 1.528393
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III. EVALUATING USER BASED COLLABORATIVE 

FILTERING WITH MODIFIED COSINE FUNCTION 

The goal of this research is to improve user based 

collaborative filtering where the similarity function used 

is the cosine function. As we discussed in Section II, we 

tried to achieve that by partitioning the dataset based on 

age, genre, or date, which was not successful. Next, we 

tried to achieve our goal by modifying the cosine 

similarity. In this chapter, we are going to discuss 

modified cosine similarity and compare RMSEs of user 

based collaborative filtering with the original and 

modified cosine functions. For evaluation, we used two 

Movielens datasets which contain 100,000 ratings and 1 

million ratings.  

A. Original Cosine Similarity  

Original cosine similarity is defined as follows: 

∑ 𝑟𝑎𝑡𝑖𝑛𝑔𝑎𝑖 ∗ 𝑟𝑎𝑡𝑖𝑛𝑔𝑏𝑖
𝑛
𝑖=1

√∑ 𝑟𝑎𝑡𝑖𝑛𝑔𝑎𝑖
2𝑛

𝑖=1 ∗ √∑ 𝑟𝑎𝑡𝑖𝑛𝑔𝑏𝑖
2𝑛

𝑖=1

 

where 𝑟𝑎𝑡𝑖𝑛𝑔𝑎𝑖  refers to the rating user a gave for movie 

i and 𝑟𝑎𝑡𝑖𝑛𝑔𝑏𝑖  refers to the rating user b gave for movie i.  

B. Modified Cosine Similarity  

We modified the cosine similarity with the following 

assumptions:  

• The users with similar age are more similar than 

the rest of the users.  

• The users who are interested in the same genre are 

more similar than the rest of the users. 

• The ratings given during the same time period are 

more similar than the rest of the ratings.  

Modified cosine similarity is as follows:  

∑ 𝑤𝑡 ∗ 𝑟𝑎𝑡𝑖𝑛𝑔𝑎𝑖 ∗ 𝑟𝑎𝑡𝑖𝑛𝑔𝑏𝑖
𝑛
𝑖=1

√∑ 𝑟𝑎𝑡𝑖𝑛𝑔𝑎𝑖
2𝑛

𝑖=1 ∗ √∑ 𝑟𝑎𝑡𝑖𝑛𝑔𝑏𝑖
2𝑛

𝑖=1

+ 𝑤𝑎 + 𝑤𝑔 

where 𝑟𝑎𝑡𝑖𝑛𝑔𝑎𝑖  refers to the rating user a gave for movie 

i and 𝑟𝑎𝑡𝑖𝑛𝑔𝑏𝑖  refers to the rating user b gave for movie i.  

𝑤𝑎  refers to the age weight and can be calculated as 

follows: 
|𝑎𝑔𝑒𝑎 − 𝑎𝑔𝑒𝑏| ≤ 𝐿𝑎 => 𝑤𝑎 = 𝑐𝑎 

|𝑎𝑔𝑒𝑎 − 𝑎𝑔𝑒𝑏| > 𝐿𝑎 => 𝑤𝑎 = 0 

𝐿𝑎 = 5, 𝑐𝑎 = 0.5 

𝑤𝑡  refers to the time weight and can be calculated as 

follows (assume time is in years):  

|𝑡𝑖𝑚𝑒𝑎𝑖 − 𝑡𝑖𝑚𝑒𝑏𝑖| ≤ 𝐿𝑡 => 𝑤𝑡 = 𝑐𝑡 

|𝑡𝑖𝑚𝑒𝑎𝑖 − 𝑡𝑖𝑚𝑒𝑏𝑖| > 𝐿𝑡 => 𝑤𝑡 = 1 

𝐿𝑡 = 1, 𝑐𝑡 = 2𝑤𝑔 refers to the genre weight and 

calculated as follows: 

𝐺𝑒𝑛𝑟𝑒𝑠 𝑎 𝑣𝑒𝑖𝑤𝑒𝑑 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 
∩ 𝐺𝑒𝑛𝑟𝑒𝑠 𝑏 𝑣𝑒𝑖𝑤𝑒𝑑 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 ≠ ∅ 

=> 𝑤𝑔 = 𝑐𝑔 

𝐺𝑒𝑛𝑟𝑒𝑠 𝑎 𝑣𝑒𝑖𝑤𝑒𝑑 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡
∩ 𝐺𝑒𝑛𝑟𝑒𝑠 𝑏 𝑣𝑒𝑖𝑤𝑒𝑑 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 = ∅ 

=> 𝑤𝑔 = 0  

𝑐𝑔 = 0.5 

For implementation, we used Mahout recommender 

framework. Mahout is an open source machine learning 

library from apache. The current version of Mahout 

implements machine learning algorithms belonging to 

three categories: recommendation, classification, and 

clustering. It is aimed to be used by applications with data 

that is too large for a single computer to process. To 

achieve the scalability, it is built on top of Apache 

Hadoop which is a distributed computing system. It is 

implemented in Java.  

Table IV and Fig. 4 compare the RMSEs of user based 

collaborative filtering with original and modified cosine 

functions on the dataset containing 100,000 ratings.  

TABLE IV.  RMSES OF UBCF WITH ORIGINAL AND MODIFIED COSINE 

ON COMPLETE SET OF 100, 000 RATINGS  

 
 

 

Figure 4. Plot of RMSEs of UBCF with original and modified cosine 
on complete set of 100,000 ratings. 

From Table IV and Fig. 4, we can see that the RMSE 

of user based collaborative filtering with modified cosine 

function is lower than the original one. We also 

calculated RMSEs of user based collaborative filtering 

with original and modified cosine functions on Movielens 

dataset containing 1 million ratings for 90 percent 

training set. The results were consistent with the previous 

results.  

IV. EVALUATING FACTORIZATION METHODS 

We calculated RMSE of matrix factorization on age, 

genre, and date partitions of Movielens dataset containing 

one million ratings. The first three subsections of this 

section are devoted to present the results of that 

experiment. At the end of this section, we are going to 

compare RMSE of matrix factorization to RMSE of user 

based collaborative filtering with modified cosine on the 

Movielens dataset containing 100,000 ratings.  

training 

percentage
RMSE of Original UBCF RMSE of Midified UBCF

70 1.097501426 0.992585309

80 1.062239766 0.986342565

90 1.056571337 0.990040666
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A. Partitions Based on Age 

We partitioned ratings based on age and calculated 

error of matrix factorization while changing the 

percentage of the training dataset. Table V and Fig. 5 

show the results. 

TABLE V.  RMSES OF MF ON COMPLETE SET OF 1 MILLION RATINGS 

AND PARTITIONS BASED ON AGE  

 
 

 

Figure 5. Plot of RMSEs of MF on complete set of 1 mllion ratings 

and partitions based on age.  

From Table V and Fig. 5 we can see that the error of 

matrix factorization on complete dataset is lower than the 

error of that on partitions.  

B. Partitions Based on Genre 

We partitioned ratings based on genre and calculated 

the error of matrix factorization while changing the 

percentage of the training dataset. Table VI and Fig. 6 

show the results.  

TABLE VI.  RMSES OF MF ON COMPLETE SET OF 1 MILLION RATINGS 

AND PARTITIONS BASED ON GENRE  

 
 

 

Figure 6. Plot of RMSEs of MF on complete set of 1 million ratings 

and partitions based on genre 

From Table VI and Fig. 6, we can see that the error of 

matrix factorization on complete dataset is lower than the 

error of that on partitions.  

C. Partitions Based on Date 

We partitioned ratings based on date and calculated the 

error of matrix factorization while changing the 

percentage of the training dataset. Table VII and Fig. 7 

show the results.  

TABLE VII.  RMSES OF MF ON COMPLETE SET OF 1 MILLION RATINGS 

AND PARTITIONS BASED ON DATE  

 
 

 

Figure 7. Plot of RMSEs of MF on complete set of 1 million ratings 
and partitions based on date. 

From Table VII and Fig. 7, we can see that the error of 

matrix factorization on complete dataset is lower than the 

error of that on partitions.  

These results are consistent with the results of the 

collaborative filtering in Section II.  

D. Comparing RMSE of Matrix Factorization with 

RMSE of User Based Collaborative Filtering with 

Modified Cosine Function 

In Section III, we measured the RMSE of modified 

user based collaborative filtering. We noticed that the 

RMSE of user based collaborative filtering with modified 

cosine function was lower than the RMSE of user based 

collaborative filtering with original cosine function. In 

this subsection, we are going to compare the RMSE of 

matrix factorization to that of user based collaborative 

filtering with modified cosine function. Table VIII and 

Fig. 8 show  RMSEs for both methods. 

TABLE VIII.  RMSES OF UBCF, UBCF WITH MODIFIED COSINE, AND 

MF ON COMPLETE SET OF 100,000 RATINGS  

 
 

training 

percentage
All 1 18 25 35 45 50 56

70 0.866632 1.229243 0.960782 0.888546 0.910918 0.983122 0.991166 1.076821

80 0.861228 1.206244 0.937142 0.877081 0.901742 0.96026 0.977943 1.046889

90 0.854716 1.176732 0.927782 0.867745 0.88919 0.917808 0.95727 1.022675

training 

percentage
All genre 1 genre 2 genre 3 genre 4 genre 5

70 0.866632 0.880333 0.932697 0.967414 0.946097 0.910816

80 0.861228 0.873504 0.921348 0.939902 0.927442 0.903401

90 0.854716 0.857486 0.899124 0.936145 0.910057 0.892047

training 

percentage
All 2000 2001 2002 2003

70 0.866632 0.873139 1.024393 1.182956 1.489212

80 0.861228 0.86434 1.007889 1.162301 1.506717

90 0.854716 0.859452 0.984957 1.08671 1.467378

training 

percentage
RMSE of UBCF 

RMSE of Midified 

UBCF

RMSE of  

MF

70 1.097501426 0.992585309 0.997306

80 1.062239766 0.986342565 0.978038

90 1.056571337 0.990040666 0.946081
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Figure 8. Plot of RMSEs of UBCF, UBCF with modified cosine, and 
MF on complete set of 100, 000 ratings.  

From Table VIII and Fig. 8, we can see that the 

original user based collaborative filtering has the highest 

RMSE. The RMSE of user based collaborative filtering 

with modified cosine function is lower than that of matrix 

factorization for small training sets and greater for large 

training sets. 

V. CONCLUSION  

Recommender systems have been utilized in several e-

commerce applications, such as Amazon and Netflix. 

There are three types of recommender systems: content 

based filtering, collaborative filtering, and hybrid 

techniques. In this thesis, two types of collaborative 

filtering techniques were evaluated using the Movielens 

dataset containing one million ratings. These two types 

were matrix factorization and user based collaborative 

filtering with cosine similarity function. The evaluation 

of the two types was based on RMSE of complete dataset 

and different partitions of complete dataset. The 

partitions were determined by age, genre, and time. For 

both techniques, the results showed that the RMSE of the 

complete set is less than that of each partition. The reason 

why we got more error in partitioning is that the attributes 

of movies in one partition is dependent on the attributes 

of the movies in other partitions. In partitioning, we 

maximize the contribution of one partition while ignoring 

the contribution of the other partitions. Thus, this method 

is subtractive. What we need is an additive method in 

which we maximize the contribution of each partition, 

while keeping the contribution of the other partitions.  

Also in this paper, we introduced a new hybrid 

technique by integrating age, genre, and date in to the 

definition of cosine similarity function. The new 

technique was evaluated using the Movielens dataset 

containing 100,000 ratings. The evaluation results 

showed that the RMSE of the new technique is less than 

that of the user based collaborative filtering with 

traditional cosine function. We also calculated RMSEs of 

user based collaborative filtering with original and 

modified cosine functions on the Movielens dataset 

containing 1 million ratings for 90 percent training set. 

The results were consistent with the previous results. The 

reason for this is that the new technique maximizes the 

contribution of each partition without ignoring the 

contribution of the other partitions. Thus, this method is 

an additive method.  

We also compared the RMSEs of matrix factorization 

to that of user based collaborative filtering with modified 

cosine functions on the Movielens dataset containing 

100,000 ratings. The RMSE of the new technique is 

lower than that of matrix factorization for small training 

sets and higher for large training sets.  
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