
Deep Learning Based Goods Management in

Supermarkets

Huu-Thieu Do and Viet-Cuong Pham
Ho Chi Minh City University of Technology, VNU-HCM, Vietnam

Email: huuthieucqt@gmail.com, pvcuong@hcmut.edu.vn

Abstract—Goods management in supermarkets is a simple

yet time and effort consuming task. To mitigate the problem,

we propose a computer vision based goods management

system for supermarkets using Tiny YOLOv3 model,

Convolutional Neural Network and Keras. The system, with

a moving camera, can detect supermarket products such as

cans, bottles, bags, etc. as well as their corresponding prices

and barcodes thus allowing inventory management, empty

shelves and mispricing detection, etc. The system was

trained on our own dataset (object detection, 16 classes,

using transfer training) and the SVHN dataset (digit

recognition). Experiment results show that the system works

well with 92.81% mAP (mean Average Precision) for object

detection and 92.28% of accuracy for digit recognition.

Index Terms—object detection, digit recognition, Tiny

YOLOv3, CNN, goods management

I. INTRODUCTION

As one of fundamental computer vision problems,

object detection is able to provide valuable information

about images and videos, and is commonly used in many

systems such as image classification [1], [2], human

behavior analysis [3], face recognition [4] and self-

driving car [5].

In daily life, there are many simple but repeated tasks

that lead to a lot of effort to perform. Managing goods in

the supermarket is one of them, with a large number of

products on the shelves, it takes a long time to check and

arrange goods. It is necessary to devise an automated

system to do this. Robots with visual systems are good

options. The problem is that robots must have good visual

systems to be able to perform monitoring and inspection

tasks with fast response time (almost real-time) and high

accuracy. In this paper, we focus on building a visual

algorithm that meets the above requirements to cater to

robots. The project consists of two main parts: First

products in the supermarket will be identified by Tiny-

YOLOv3 network, then the price and barcode of the

products will be extracted from the price tags.

II. BACKGROUND

A. Object Detection Methods

Modern methods of object detection can be divided

into two types: One inherits traditional object detection

Manuscript received August 28, 2020; revised February 5, 2021.

pipeline, generating region proposals at first and then

classifying each proposal into different object classes

using Deep Learning networks. Meanwhile, the other

considers the object detection problem as a regression or

classification problem, through a single network and a

unified training function to achieve the final result

directly (object categories and object locations).

The region proposal based methods include R-CNN [6],

SPP-net [7], Fast R-CNN [8], Faster R-CNN [9] and

Mask R-CNN [10], some of which are correlated with

each other (e.g. SPP-net modifies RCNN with a SPP

layer). The regression/classification based methods

mainly include MultiBox [11], AttentionNet [12], G-

CNN [13], YOLO [14], SSD [15], YOLOv2 [16],

YOLOv3 [17], [18]. Especially, both types are related

when approaching the use of anchor boxes introduced in

Faster R-CNN. Comparing the above methods about

mAP (mean Average Precision) and fps (frame per

second) on the MS-COCO dataset [19], [20], we can see

that YOLOv3 model has a high mAP while the frame rate

of model is the highest of the methods (90fps). Therefore

this model is very suitable with real-time applications that

require fast response speed.

B. YOLOv3

J. Redmon and A. Farhadi proposed a new version of

YOLO [14] and YOLOv2 [16] called YOLOv3 [17],

using all of the high level features of the feature maps to

predict both scores of object categories and the bounding

boxes. YOLOv3 divides the input image into an S × S

grid and each grid cell is responsible for predicting the

object if the object bounding box center is in that grid.

Each grid cell predicts B bounding boxes and their

corresponding confidence scores. In the same time, C- -

conditional class probabilities is predicted in each

bounding box. It should be noted that only the

contribution from the grid containing the object is

calculated.

Comparing to YOLO, YOLOv3 has additional

techniques to improve mAP and fps as well as make

training process more stable. Such techniques are Batch

Normalization, anchor boxes, dimension clusters, direct

location prediction and Feature Pyramid Networks (FPN)

[21].

C. Tiny-YOLOv3

The backbone network of YOLOv3 uses the Darknet-

53 network [17]. The network is too complex and

Journal of Advances in Information Technology Vol. 12, No. 2, May 2021

© 2021 J. Adv. Inf. Technol. 164
doi: 10.12720/jait.12.2.164-168

Journal of Advances in Information Technology Vol. 12, No. 2, May 2021

© 2021 J. Adv. Inf. Technol. 165

requires very strong computational power of hardware.

This result in the detection speed is greatly affected.

Tiny-YOLOv3 is a simplified version of YOLOv3. The

backbone network of Tiny-YOLOv3 has only 13

convolutional layers and 6 pooling layers. The pooling

layers in Tiny-YOLOv3 are used to replace YOLOv3’s

stride 2 convolutional layers, which aim to reduce the

size of feature maps and not to make the network too

complicated (because pooling has no learning weights).

The simplified network improves the detection speed, but

it also loses some of the detection accuracy. However,

with its compact network and acceptable accuracy, Tiny-

YOLOv3 is very suitable with real-time applications.

III. PRODUCTS DETECTION IN SUPERMARKETS USING

TINY-YOLOV3 MODEL

A. Data Preparation

Images were collected from the internet as well as

photographed by the authors. The training set has 5352

images, including 16 classes. The test set consists of 1077

images divided into 16 classes. The classes include Coca

Cola, Mirinda, Sting, Fanta, Redbull, Saigon Special,

Tiger, Highland Coffee, Aquafina, Romano bottles, Oishi

Pillow bags, Hao Hao instant noodles, TH milk bags,

product price area and barcode area. All data are self-

labeled by the author. The training set is divided into two

sets: training set and validation set with a 80:20 ratio.

B. Data Augmentation

To avoid overfitting, images will be augmented by

changing the color values in the HSV color space. Call H’,

S’, V’ as the values in the color space after augmentation,

these values are determined as follows:

 H'=random(0.9*H,1.1*H) (1)

S’ = random(S,1.5*S) or S’ = S/random(1,1.5) (2)

V’ = random(V,1.5*V) or V’ = V/random(1,1.5) (3)

Images are also augmented by flipping horizontally,

cropping in the information area and shifting. The images

are resized to size of 416 pixels × 416 pixels.

C. Training

In training process, we use these techniques:

Parallel training: Using CPU to process data (data

augmentation and normalization), GPU to train data.

Training in mini-batch mode with batch_size = 32.

Transfer learning: Using pre-trained model Tiny-

YOLOv3 for COCO dataset. Using transfer learning

helps to save training time.

Bottleneck-training: Freezing the whole network and

training only the last two layers. Firstly, the data will be

passed through the network until they arrive the last two

layers. Then these feature maps will be saved and taken

as inputs for the last two layers. Finally, we just need to

train with two saved inputs. If the training process is not

good, we will gradually unfreeze and train the upper

layers.

Optimizer: Using Adam optimization algorithm. The

learning rate is adjusted by Plateau function with base 10.

Regularization: Using L2 regularization to avoid

overfitting.

Using Early Stopping to stop training model with

patient epochs = 10. It means if the loss value on

validation set doesn’t decrease after 10 epochs, training

process will be stopped. We also use checkpoint to save

the model weights at the lowest validation loss.

IV. DETECTING PRODUCT PRICE AND BARCODE IN

PRICE TAG

A. Detecting Price Area and Barcode Area on Price

Tag

We still use Tiny-YOLOv3 model for detecting

product price areas because of general characteristics as

well as algorithm optimization. We will treat price and

barcode areas as training classes, then all objects will be

detect only once when we feed input image through

network.

B. Extracting the Numeric Area in Price Area

Product price area after being extracted is as follows

(Fig. 1):

Figure 1. Price area after being cropped.

Using classical image processing techniques such as

thresholding and filtering to enhance the image quality

after cropping. Then the contours will be got from this

image. The numeric areas will be chosen from these

contours as follows:

 Rearrange these contours from left to right

position.

 Select contours whose height is 0.3 times greater

than the height of the image.

 Select contours whose height is 1.2 times greater

than the width of this contour.

C. Digit Recognition Using CNN

We use CNN for building a digit recognition model.

The model includes 5 convolutional layers, 4 max

pooling layers and 2 Fully Connected layers. Dropout is

used to avoid overfitting with a dropout rate of 0.25.

Model was trained on SVHN dataset includes 33404

training images and 13070 test images. After training, the

accuracy of model on validation set is 95.02%. Training

our model on SVHN dataset make it more general and

able to recognize the digit with different fonts.

D. Detecting and Reading the Barcode on Price Tag

Similar to the way to detect price areas, barcode areas

are also cropped from the price tags by using Tiny-

YOLOv3. The barcode after cropping out is pre-

processed using median filter, Otsu thresholding [22] and

de-skewed to make barcode area straight. The code will

then be read by pyzbar library.

After detecting information of products, product prices

and barcode information from shelves, we combine all of

them into a goods management algorithm. The algorithm

includes the following tasks:

 Pairing the price tags with its products.

 Determining whether the price and barcode

information match the product and whether the

product is in shelves.

 Provide right shelf information by reading barcode.

The algorithm works as follows: First, the center

coordinates of the price areas on price tags will be

collected. Next, the algorithm will scan the coordinates of

the products in the image (under the price tags). If the

position of the product compared to a price area is less

than 200 pixels: the product information, the price area

and the barcode area under it will be paired. From the

matching pairs, we will first check if there is a product in

the shelf. Next, the barcode will be read to get

information about the product, this information will be

checked with the existing product. If the barcode is too

small or dim and the system cannot read, we will

continue to check by considering whether the product

matches the price. A shelf has wrong arrangement if there

are no products on shelf or products do not match with

the barcode information and the product prices. Error

shelves will be notified and right information of these

shelves will be read and saved.

V. EXPERIMENT RESULTS

The entire experimental platform configuration in this

paper is shown in Table I.

TABLE I. EXPERIMENTAL PLATFORM CONFIGURATION

Names Related configuration

Operating system Windows

CPU/GHz Intel Core i5-5200/2.2

RAM/GB 8

GPU NVIDIA GeForce 830M

GPU acceleration library CUDA 10.0, CUDNN 7.4

A. Object Detection

Result of classification (Fig. 2):

Figure 2. The accuracy of classes prediction.

Result of bounding boxes detection and mean average

precision with threshold of 0.7 are shown in Table II.

TABLE II. RESULTS OF IOU AND MAP

Class IoU Average Precision

Coca Cola (can) 86.81% 97.68%

Mirinda (can) 85.88% 98.02%

Sting (can) 87.43% 94.03%

Fanta (can) 86.68% 92.53%

Product Price area 80.09% 82.54%

Redbull (can) 89.15% 97.13%

Saigon Special (can) 87.76% 97.53%

Tiger (can) 89.20% 98.23%

Aquafina (bottle) 80.05% 80.16%

Highland Coffee (can) 88.65% 97.14%

Hao Hao instant noodle (bag) 85.92% 95.27%

Oishi Pillow (bag) 86.04% 97.26%

Pepsi (can) 83.45% 93.22%

TH true milk (bag) 84.49% 84.62%

Romano (bottle) 85.50% 87.76%

Barcode area 82.91% 91.90%

Mean IoU = 85.63%.
Mean Average Precision: 92.81%

Result of frame speed: 8-9 fps when running on GPU

B. Digit Recognition

Accuracy of price tags recognition: 92.28%

Accuracy of each digit recognition (Fig. 3):

Figure 3. Result of digit recognition.

Speed of prediction: 0.02 - 0.04s per image.

Remark: The model works well in many different

environmental conditions (in term of brightness, image

quality, noise, etc.). Model is highly effective when the

digit size is large enough (nearly 60 pixels × 30 pixels). It

has a high speed of prediction.

C. Barcode Detection

Accuracy: 90.02%

Journal of Advances in Information Technology Vol. 12, No. 2, May 2021

© 2021 J. Adv. Inf. Technol. 166

Journal of Advances in Information Technology Vol. 12, No. 2, May 2021

© 2021 J. Adv. Inf. Technol. 167

Speed of prediction: 0.012s per image

Remark:

 Reading barcode is sensitive to environmental

conditions such as image brightness, noise,…

 The speed of prediction is high and suitable with

real-time system.

D. Result of Pairing Products and Price Tags

Case 1: There are no products on shelves. When there

are no products on the shelf, the algorithm will notify No

object at this shelf. In the Fig. 4(a) below, there are no

products on shelves (shelves 0 and 1), so the No Object

notification is at position 0,1.

Case 2: Product does not match price or barcode

information. When the product do not match the barcode

information (or do not match the price of the product), the

system will notify Not Match at that location. In the Fig.

4(b) below, Sting costs VND 11,000 equivalent to the

price and matches the information on the barcode so the

system will not report an error.

(a)

(b)

Figure 4. Result of pairing algorithm (a) case 1 (b) case 2

The information about the date, time, the error shelf

and the correct product of that shelf will be saved to an

Excel file for monitoring.

VI. CONCLUSION

We proposed a deep learning based computer vision

system for goods management in supermarkets which is

capable of detecting goods (14 classes) on shelves as well

as their corresponding prices and barcodes. The system,

using Tiny YOLOv3 model, Convolutional Neural

Network and Keras, can efficiently support inventory

management, detection of empty shelves and mispricing,

etc. Experiment results show that the proposed system

works well with a high accuracy and an acceptable

running time. Further investigations are in progress

implementing an end-to-end system combining the whole

process, improving the system performance, and

incorporating a mobile system to obtain a truly

autonomous operation.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Viet-Cuong Pham designed and directed the project.

Huu-Thieu Do conducted the experiment and analyzed

the data. Both authors discussed the results and

contributed to the final manuscript.

REFERENCES

[1] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proc. the 22nd ACM International

Conference on Multimedia, 2014.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” Advances

in Neural Information Processing Systems, vol. 25, pp. 1097-1105,

2012.

[3] Z. Cao, T. Simon, S. E. Wei, and Y. Sheikh, “Realtime multi-

person 2d pose estimation using part affinity fields,” in Proc.

IEEE Conference on Computer Vision and Pattern Recognition,

2017.

[4] Z. Yang and R. Nevatia, “A multi-scale cascade fully

convolutional network face detector,” in Proc. the IEEE

Conference on Computer Vision and Pattern Recognition, 2017.

[5] C. Chen, A. Seff, A. L. Kornhauser, and J. Xiao, “Deepdriving:

Learning affordance for direct perception in autonomous driving,”

in Proc. the IEEE International Conference on Computer Vision,
2015.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature

hierarchies for accurate object detection and semantic

segmentation,” in Proc. the IEEE Conference on Computer Vision
and Pattern Recognition, 2014

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in

deep convolutional networks for visual recognition,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1904-1916, 2015.

[8] R. Girshick, “Fast R-CNN,” in Proc. the IEEE International

Conference on Computer Vision, 2015.

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
realtime object detection with region proposal networks,” in Proc.

the 28th International Conference on Neural Information

Processing Systems, 2015, pp. 91-99.

[10] K. He, G. Gkioxari, P. Dollar, and R. B. Girshick, “Mask R-
CNN,” in Proc. the IEEE International Conference on Computer

Vision, 2017.

[11] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable

object detection using deep neural networks,” in Proc. the IEEE
Conference on Computer Vision and Pattern Recognition, 2014.

[12] D. Yoo, S. Park, J. Y. Lee, A. S. Paek, and I. So Kweon,

“Attentionnet: Aggregating weak directions for accurate object

detection,” in Proc. the IEEE International Conference on
Computer Vision, 2015.

[13] M. Najibi, M. Rastegari, and L. S. Davis, “G-CNN: An iterative

grid based object detector,” in Proc. the IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only

look once: Unified, real-time object detection,” in Proc. the IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

Journal of Advances in Information Technology Vol. 12, No. 2, May 2021

© 2021 J. Adv. Inf. Technol. 168

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu,

and A. C. Berg, “SSD: Single shot multibox detector,” in Proc.
European Conference on Computer Vision, 2016.

[16] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,”

arXiv:1612.08242, 2016.

[17] J. Redmon and A. Farhadi, “YOLOv3: An incremental

improvement,” arXiv preprint arXiv:1804.02767, 2018.

[18] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object detection with deep

learning: A review,” arXiv:1807.05511, 2019.

[19] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft coco: Common objects in

context,” in Proc. European Conference on Computer Vision,

2014.

[20] J. Hui. (2018). Object detection: Speed and accuracy comparison

(Faster R-CNN, R-FCN, SSD, FPN, RetinaNet and YOLOv3).

[Online]. Available: http://medium.com

[21] T. Y. Lin, P. Dollar, R. B. Girshick, K. He, B. Hariharan, and S.

J.Belongie, “Feature pyramid networks for object detection,” in

Proc. the IEEE Conference on Computer Vision and Pattern

Recognition, 2017.

[22] N. Otsu, “A threshold selection method from gray-level

histograms,” IEEE Trans. Sys. Man. Cyber, vol. 9, no. 1, pp. 62-66,

1979.

Copyright © 2021 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

Huu-Thieu Do received the B.Eng in Automation and Control

Engineering from Ho Chi Minh City University of Technology, VNU-

HCM, Vietnam in 2020. He currently works as AI Engineer at Emage
Development VietNam. His research interests include computer vision,

machine learning, robotics and their applications.

Viet-Cuong Pham received his B.E. and M.E. degrees from Ho Chi

Minh City University of Technology (HCMUT), VNU-HCM, Vietnam,

in 2001 and 2003, respectively, and Ph.D. degree in electrical
engineering from National Cheng Kung University, Taiwan, in 2013.

From 2013 to 2015 he worked as postdoctoral researcher at National

Cheng Kung University, Taiwan. Since 2015 he has been a faculty
member of Department of Control Engineering and Automation,

HCMUT, VNU-HCM, Vietnam. His research interests include

computer vision, machine learning, deep learning, mobile robot
exploration, localization and mapping.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

