
Effects of EMD and Feature Extraction on EEG

Analysis

Phuong Huynh, Gregory Warner, and Hong Lin
Department of Computer Science and Engineering Technology, University of Houston Downtown, USA

Email: {huynhp17, warnerg1}@gator.uhd.edu, linh@uhd.edu

Abstracts—Brain-computer interfaces have been

investigated for more than 20 years and have great potential

to develop applications for physicians to diagnose diseases

or patients with severe neurologic disabilities to return to

interact with society. To gain those purposes requires

technics to analyze the EEG data as well as an algorithm to

train the model for identifying the patterns or controlling

the devices. TensorFlow is a machine learning developed by

Google team for internal use and was released for public use

in 2015. Since it can train and test on deep learning neural

network, it can be used for EEG data. This project used TF-

Keras and TensorFlow-DNN to train the models for

classifying brain states using EEG data. Neurosky

Mindwave Mobile headset and a new device developed from

Micro:bit were the recorders for EEG signals in the project.

Several technics such as min-max normalization, Ensemble

Empirical Mode Decomposition (EEMD), extraction were

applied to analyze the recorded EEG data. The results show

that the accuracies of TensorFlow-Keras and TensorFlow -

DNN models are 97% while the results from XGBoost is

98% when classifying the EEG data from Micro:bit device.

The result confirms the ability of application of TensorFlow

in identifying EEG data. The technics for processing data

contributed to the above results are min-max normalization

and data extraction. Moreover, we also verify that the low-

frequency drifts in the recorded data is essential to identify

the brain states using EEG data. The results also show the

application of IMFs generated from EEMD technic as

features to build the models for classifying brain states

using the EEG data.

Index Terms—TensorFlow, EEG, XGBoost, TensorFlow-

Keras (TF-Keras), TensorFlow-DNN (TF-DNN), Ensemble

Empirical Mode Decomposition (EEMD), Neurosky,

Micro:bit, Brain-C omputer Interface (BC I)


I. INTRODUCTION

Electroencephalography (EEG) is a measurement of

the human brain’s potentials emitted by electrical

activities from the brain. Galvani, the scientist and

philosopher, is remembered as the first person who

identified the electrical activity of a living organism in

the 18th century [1], and the first EEG recording machine

was introduced to the world by Hans Berger in 1929 [2].

EEG signals are recording using electrodes which are

placed in different locations on the surface of the scalp.

Its function is to detect tiny electrical changes that result

Manuscript received June 27, 2019; revised December 20, 2019.

from the activities of the brain cells. Each electrode

connected to an amplifier and an EEG recording machine.

Fig. 1 illustrates how electrodes placed on the scalp and

the display on a recording machine.

Depending on the procedure required, several

electrodes recorded in parallel can vary from 2 to 256

electrodes [2]. One pair of electrodes makes up a channel

which produces a signal during an EEG recording. The

amplitude of an EEG signal typically ranges from about 1

to 100 µV for an adult. Brain-Computer Interfaces (BCIs)

arise enhancing the applications of EEG data. BCI is a

computer-based system that records and analyzes brain

signals and generate a control signal(s) to the device

which performs the desired action(s). Fig. 2 illustrates the

general architecture of a BCI system.

Figure 1. An illustration of EEG recording (Ref. EEG Saint Luke's
Health System)

In the BCI architecture, pre-processing is to clean and

denoise data to enhance the proper information in the

EEG signal. Feature extraction is to transform an EEG

signal into features by extracting the most important

features from the signal and ensure the provision of

sufficient information for classification. Classification

assigns the label to each set of features of the EEG signal.

The BCI system was used to diagnose a disease, for

example, epilepsy or seizure. In a research, V. Srinivasan

et al. used 128 channel amplifier system to record EEG

signals [3]. Approximate entropy was used in extracting

features, and two neural networks, Elman network and

probabilistic neural network were trained to identify the

patterns with the disease. The result was reported as high

as 100%. Another application of BCI related to the

cognitive load assessment from the combination of EEG

data and EDA (electrodermal activity) resulted in high

prediction rate in which Random Forest was employed

© 2020 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 11, No. 1, February 2020

26
doi: 10.12720/jait.11.1.26-34

mailto:huynhp17@gator.uhd.edu
mailto:warnerg1%7D@gator.uhd.edu
mailto:linh@uhd.edu

[4]. The research aimed to develop a device to support

visually impaired mobility aids.

Many algorithms for classification are currently

utilized to identify EEG data. Among the algorithms

selected to classify a specific EEG data in an experiment

such as KNN, SVM, Random Forest, Bayes, and

Boosting, Random Forest was reported to provide the

highest accuracy while KNN and Boost made the second

grade in identifying correctly the EEG signals [1].

TensorFlow is a machine learning library for research

and production and surveying its performance in the

classification of EEG signals is important for the

extension of using EEG data in applications. TensorFlow

owns the ability to build a deep neural network and

therefore, it owns a potential to works well on large EEG

data.

Figure 2. The general architecture of a BCI system

TensorFlow was created by Google Brain team and the

version 1.0.0 was released in February 2017, for public

use and development. As stated in their official website,

“TensorFlow is an open source library for numerical

computation using data flow graphs”. In TensorFlow,

there are three models which are data model,

programming model and execution model. TensorFlow

data model consists of tensors which are an n-

dimensional collection of data. The programming model

consists of data flow graphs or computation graphs, and

the execution model is the implement of computation at

nodes in a sequence, starting from the initial nodes that

depend on the inputs. [5]. Fig. 3 shows a simple

TensorFlow graph which represents the data flow of the

computations. Dataflow graphs are the structures

describing how data moves through a graph or a series of

processing nodes and are created by users. Each node in

the graph represents a mathematical operation, and each

connection (also called edge) between nodes is a

multidimensional data array (also called tensor).

Figure 3. TensorFlow graph

In this project, we use TensorFlow to identify brain

states using EEG data. For comparison, XGBoost, a

scalable machine learning system for tree boosting, is

also selected to train, test models and compare its

performance with TensorFlow’s. XGBoost was

employed in 17/29 winning solutions published at

Kaggle’s blog in 2015 [6].

II. METHODS OF DATA PROCESSING APPLIED

A. Min-Max Normalization

Min-max normalization is used to rescale a feature so

that all the values in the feature are in a range between 0

and 1 [7].

 𝑋𝑛𝑒𝑤 =
𝑋−𝑚𝑖𝑛(𝑋)

𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋)
 (1)

where X is a feature to be normalized.

B. Power Spectral Intensity and Relative Intensity

Radio

To a time series [𝑥1, 𝑥2, … 𝑥𝑁], denote its Fast Fourier

Transformation (FFT) result as [𝑋1 𝑋2, … 𝑋𝑁] . A

continuous frequency band from flow to fup is sliced into K

bins and forms a vector 𝑏𝑎𝑛𝑑 = [𝑓1, 𝑓2, … , 𝑓𝐾] such that

the lower and upper frequencies of the 𝑖𝑡ℎ bin are 𝑓𝑖 𝑓𝑖+1,

respectively [8].

The Power Spectral Intensity (PSI) [9] of the 𝑘𝑡ℎ bin is

evaluated as

 𝑃𝑆𝐼𝑘 = ∑ |𝑋𝑖|, 𝑘 = 1,2, … , 𝐾 − 1
[𝑁(

𝑓𝑖+1
𝑓𝑠

⁄)]

𝑖=[
𝑓𝑘

𝑓𝑠
⁄]

 (2)

where 𝑓𝑠 is the sampling rate, and N is the series length.

Relative Intensity Radio (RIR) [9] is defined on top of

PSI.

 𝑅𝐼𝑅 =
𝑃𝑆𝐼𝑗

∑ 𝑃𝑆𝐼𝑘
𝐾−1
𝑘=1

, 𝑗 = 1, 2, … , 𝐾 − 1 (3)

PSI and RIR are both vector features.

C. Petrosian Fractal Dimension (PFD)

PFD [8], [10] is defined as

 PFD =
log10N

𝑙𝑜𝑔10𝑁+𝑙𝑜𝑔10(𝑁
(𝑁+0.4𝑁)⁄)

 (4)

where N is the number of samples in a segment, and 𝑁 is

the number of sign changes in the signal derivative. PFD

is a scalar feature.

D. Higuchi Fractal Dimension (HFD)

Higuchi’s algorithm [8] constructs k new series from

the original series by

 𝑥𝑚, 𝑥𝑚+𝑘, 𝑥𝑚+2𝑘, … , 𝑥𝑚+⌊𝑁−𝑚
𝑘⁄ ⌋𝑘 (5)

where m = 1, 2, …, k

For each time series constructed above, the length

𝐿(𝑚, 𝑘) is computed by

 𝐿(𝑚,𝑘) =
∑ |𝑥𝑚+𝑖𝑘−𝑥𝑚+(𝑖−1)𝑘|(𝑁−1)

⌊(𝑁−𝑚)/𝑘⌋
𝑖=2

⌊(𝑁−𝑚)/𝑘⌋𝑘
 (6)

The average length is computed as

 𝐿(𝑘) =
∑ 𝐿(𝑖,𝑘)𝑘

𝑖=1

𝑘

This procedure repeats 𝑘𝑚𝑎𝑥 times for each k from 1 to

𝑘𝑚𝑎𝑥 and then uses as a least-square method to determine

the slope of the line that best fit the curve of ln((k))

versus ln(1/k). The slope is the Higuchi Fractal

Dimension. HFD is a scalar feature.

© 2020 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 11, No. 1, February 2020

27

E. Hjorth Parameters

To a time series [𝑥1, 𝑥2, … 𝑥𝑁], the Hjorth mobility [8]

and complexity are, respectively, defined as

√𝑀2 𝑇𝑃⁄ (7)

and

 √(𝑀4. 𝑇𝑃) (𝑀2. 𝑀2)⁄ (8)

where 𝑇𝑃 = ∑
𝑥𝑖

𝑁
, 𝑀2 =

∑ 𝑑𝑖

𝑁
, 𝑀4 = √(𝑑𝑖 − 𝑑𝑖−1)2 𝑁⁄ ,

and 𝑑𝑖 = 𝑥𝑖 − 𝑥𝑖−1.

Hjorth mobility and complexity are both scalar

features.

F. The Spectral Entropy

The spectral entropy [8] is defined as follows

 𝐻 = −
𝑖

𝑙𝑜𝑔(𝐾)
∑ 𝑅𝐼𝑅𝑖𝑙𝑜𝑔𝑅𝐼𝑅𝑖

𝐾
𝑖=1 (9)

where RIRi and K are defined in (3). Spectral entropy is a

scalar feature.

G. SVD Entropy

SVD entropy [8] measures using Singular Value

Decomposition (SVD). Let the input signal be [𝑥1,
𝑥2, … 𝑥𝑁]. We construct the delay vectors as

 𝑦𝑖 = [𝑥𝑖 , 𝑥𝑖+𝜏 , … , 𝑥𝑖+(𝑑𝐸−1)𝜏] (10)

where τ is the delay and dE is the embedding dimension.

The embedding space is then constructed by

 𝑌 = [𝑦(1), 𝑦(2), … , 𝑦(𝑦𝑖+(𝑑𝐸−1)𝜏)]
𝑇
 (11)

The SVD is then performed on matrix Y to produce M

singular values, 𝜎1, 𝜎2 … , 𝜎𝑀 known as the singular

spectrum.

The SVD entropy is then defined as

 𝐻𝑆𝑉𝐷 = − ∑ 𝜎𝑖
𝑀
𝑖=1 𝑙𝑜𝑔2𝜎𝑖 (12)

where M is the number of singular values and 𝜎1, 𝜎2, … ,
𝜎𝑀 are normalized singular values such that 𝜎𝑖 =
 𝜎𝑖 ∑ 𝜎𝑗

𝑀
𝑗=1⁄ . SVD entropy is a scalar feature.

H. The Fisher Information

The Fisher information [8] can be defined in

normalized singular spectrum used in (10).

 𝐼 = ∑
(𝜎̅𝑖+1−𝜎̅𝑖)

𝜎̅𝑖

𝑀−1
𝑖=1 (13)

Fisher information is a scalar feature.

I. Approximate Entropy

Approximate entropy (ApEn) [8] is a statistical

parameter to quantify the regularity of a time series.

ApEn is computed by the following steps.

1) Let the input signal be [𝑥1, 𝑥2, … 𝑥𝑁]
2) Build subsequence 𝑥(𝑖, 𝑚) = [𝑥𝑖 , 𝑥𝑖+1,

… , 𝑥𝑖+𝑚−1] for 1 ≤ i ≤ N − m, where m is the length of

the subsequence. In [3], m = 1, 2, or 3.

3) Let r represent the noise filter level, defined as r = k

× SD for k = 0, 0.1, 0.2, …, 0.9.

4) Build a set of subsequences {x(j, m)} = {x(j, m) | j ∈

[1..N − m]}, where x(j, m) is defined in step 2.

5) For each x(i, m)∈{x(j, m)}, compute

 𝐶(𝑖, 𝑚) =
∑ 𝑘𝑗

𝑁−𝑚
𝑗=1

𝑁−𝑚
 (14)

where

 𝑘𝑗 = {
1 𝑖𝑓 |𝑥(𝑖, 𝑚) − 𝑥(𝑗, 𝑚)| < 𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

 (15)

 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =
1

𝑁−𝑀
[∑ 𝑙𝑛

𝐶(𝑖,𝑚)

𝐶(𝑖,𝑚+1)
𝑁−𝑚
𝑖=1] (16)

ApEn is a scalar feature.

J. Detrended Fluctuation Analysis (DFA)

The procedures to compute DFA of a time series

 [𝑥1, 𝑥2, … 𝑥𝑁] are as follows [8].

1) First integrate x into a new series 𝑦 =
[𝑦1 , 𝑦2, … 𝑦𝑁], where 𝑦(𝑘) = ∑ (𝑥𝑖 − 𝑥̅)𝑘

𝑖=1 and 𝑥̅ is the

average of [𝑥1, 𝑥2, … 𝑥𝑁].
2) The integrated series is then sliced into boxes of

equal length n. In each box of length n, a least-squares

line is fit to the data, representing the trend in that box.

The y coordinate on the straight-line segments is denoted

by 𝑦𝑛(𝑘).

3) The root-mean-square fluctuation of the integrated

series is calculated by

 𝐹(𝑛) = √(1/𝑁) ∑ [𝑦(𝑘) − 𝑦𝑛(𝑘)]2𝑁
𝑘=1

where the part y(k) − y n(k) is called detrending.

4) The fluctuation can be defined as the slope of the

line relating log F(n) to log n.

DFA is a scalar feature.

K. Hurst Exponent

Hurst exponent [8] is also called Rescaled Range

statistics (R/S). To calculate the Hurst exponent for time

series 𝑋 = [𝑥1, 𝑥2, … 𝑥𝑁], the first step is to calculate

the accumulated deviation from the mean of time series

within range T.

𝑋(𝑡, 𝑇) = ∑ (𝑥𝑖 − 𝑥̅)𝑡
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒 𝑥̅ =

1

𝑇
𝑥𝑖 , 𝑡[1. . 𝑁](17)

Then, R(T)/S(T) is calculated as

𝑅(𝑇)

𝑆(𝑇)
=

𝑚𝑎𝑥(𝑋(𝑡,𝑇))−𝑚𝑖𝑛(𝑋(𝑡,𝑇))

√(1/𝑇) ∑ [𝑥(𝑡)−𝑥̅]2𝑇
𝑡=1

 (18)

The Hurst Exponent is obtained by calculating the

slope of the line produced by ln (R(n)/S(n)) versus ln (n)

for n ∈ [2, N]. Hurst exponent is a scalar feature.

III. EEG DATA COLLECTION

The Neurosky Mindwave Mobile headset (Neurosky

headset) and a simple device developed from Micro:bit

(Micro:bit device) was used to record the EEG signals

from participants.

The Neurosky headset, a single-sensor EEG device

recorded the EEG signals from six persons. There was

one person wearing the headset to record the EEG signal

at a time. Each participant took three actions which are

© 2020 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 11, No. 1, February 2020

28

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070217/#EEq4

meditation, reading and watching a video. Each action

last 5 minutes ( 10s). The samples recorded from the

Neurosky are called Neurosky data.

Micro:bit device recorded the EEG signals from one

person who performs four actions which are controlling,

doing nothing, playing piano and reading. Each action

last 5 minutes ( 10s). The samples recorded from the

Micro:bit device are called Micro:bit data.

Fig. 4 shows the NeuroSky headset and the EEG

recording device made of Micro:bit.

IV. METHODS TO BUILD THE TENSORFLOW MODELS

USING NEUROSKY DATA

A. Primary Data Processing

Figure 4. NeuroSky headset (Left) and Micro:bit EEG recording
device (Right)

Figure 5. The processes to build models from Neurosky data

TABLE I. NEUROSKY BRAINWAVE FREQUENCY

Brainwave Type
Frequency Range

(Hz)

Delta 0.5 - 2.75

Theta 3.5 - 6.75

Low Alpha 7.5 - 9.25

High Alpha 10 - 11.75

Low Beta 13 - 16.75

High Beta 18 - 29.75

Low Gamma 31 - 39.75

Mid-range Gamma 41 - 49.75

The process to build the models from Neurosky data

are shown in Fig. 5. Neurosky data was preprocessed on

Neurosky device using its proprietary analysis.

Particularly, raw signals were first passed through a

band-pass filter to remove frequencies <0.5Hz

and >50Hz. They were then decomposed using Fast

Fourier Transform to obtain components with

frequencies of eight main brain wave bands as illustrated

in Table I.

The output from Neurosky for each person had 17

features and 04 features to eliminate are “timestamps”,

“poorSignal”, “tagEvent” and “location”. Therefore,

Neurosky EEG samples finally had 13 features. Fig. 6

displays the waveforms of Neurosky EEG data of

“meditation” state with different frequencies. EEG raw

value and EEG raw value volts had very high frequencies

comparing with other features. The features on the figure

are EEG raw value, EEG raw value volts, attention,

meditation, blink stretch, delta, theta, low alpha, high

alpha, low beta, high beta, low gamma, and mid-range

gamma.

B. Normalization and Model Building

Figure 6. Raw EGG data for meditation

Neurosky data were fed into the model using two

formats which were raw data and transformed data. In

transforming EEG data, min-max normalization was used

to rescale features.

We tested whether normalizing EEG data before

feeding to the model can improve the model accuracy

comparing with the raw data.

Case 1: From the Neurosky data of each person, 75%

of samples were used to train three models and 25% to

test the model accuracy in identifying new samples.

Case 2: The Neurosky data were transformed using

min-max normalization, and then 75% of data were used

to train the three models and 25% to test the model

accuracy in identifying new samples.

We utilize from TensorFlow two types of models

which are Keras model and deep learning neural network

(DNN) model. XGBoost models are also built for the

comparison of model accuracy in classification of EEG

data between models. Additionally, the results from

XGBoost model and DNN model are also combined for

further assessment.

V. METHODS TO BUILD THE TENSORFLOW MODELS

USING MICRO:BIT DATA

A. Primary Data Processing

Fig. 7 shows the waveform of EEG data from

Micro:bit device. The signals for 04 actions look

© 2020 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 11, No. 1, February 2020

29

distinguished. Micro:bit device did not have the function

to pre-process the EEG data recorded. Therefore, we

need to pre-process and extract the EEG data before

feeding them into the models.

Figure 7. EEG data from Micro:bit device

The raw data from Micro:bit proceeded as indicated in

Fig. 8. All the processes which were considered for this

experiment were decomposition, filter, extraction, and

normalization. Firstly, in data decomposition, Ensemble

Empirical Mode Decomposition (EEMD) was used to

determine Intrinsic Mode Functions (IMFs). EMD stands

for Empirical Mode Decomposition and EEMD is a

noise-assisted method to improve shifting and generate a

better EEG data from Micro:bit device set of IMFs [10],

[11]. Secondly, filtering process also used EEMD technic

to decompose the data so that the first IMF and 10% of

total IMFs with low frequency could be eliminated. We

then compute the summary of remaining IMFs as the

output of this process. Thirdly, data extraction was

computed based on an open source python module for

EEG feature extraction [8]. Particularly, Fast Fourier

transform was used to extract the PSI (2), such as delta

(0.5-4Hz), theta (4-7Hz), alpha (8-12Hz), beta (12-30Hz),

and gamma (30-100Hz). RIR (3) computed from PSIs

were deltaRIR, thetaRIR, alphaRIR, betaRIR, and

gammaRIR. Though Neurosky data also used Fast

Fourier transformation to transform its data, the range of

frequency is just in the interval [0.5Hz, 50Hz]. Other

features also extracted were PFD in (4), HFD, Hjorth

Parameters in (7) & (8), Spectral Entropy in (9), SDV

Entropy computed from (10), (11) & (12), Fisher

Information in (13), Approximate Entropy in (16),

Detrended Fluctuation Analysis, and Hurst Exponent

computed from (17) & (18). There were 20 features

extracted in total. One more datum transformation

technic is min-max normalization which is described in

(1). We processed EEG data through 8 cases. In case 1,

raw data were filtered, extracted and normalized prior to

being used to train the model; in case 2, raw data were

filtered and extracted prior to being used to train the

model; in case 3, raw data were extracted and normalized

prior to being used to train the model; in case 4, raw data

were extracted prior to being used to train the model; in

case 5, raw data were decomposed and normalized prior

to being used to train the model; in case 6, raw data were

decomposed prior to being used to train the model; in

case 7: raw data were used to train the model; finally, in

case 8, raw data were filtered and normalized before used

to train the model. The processed data was then divided

into train data (75%) and test data (25%).

Figure 8. Micro:bit data processing

VI. THE RESULTS RECORDED FROM THE MODELS OF

NEUROSKY EEG DATA

The TF-Keras model resulting in better accuracy in

classifying the data had 03 dense layers, and the output

shape for each dense layer was set at 50. The optimized

TF-DNN model also had 03 layers and each layer had 50

nodes.

Figure 9. The structure of node DNN in TF-DNN model. (subject 1

and extracted-normalized EEG data)

TensorFlow provides tensorboard which is a tool for

users to look inside the model. Fig. 9 displays the

structure of this deep neural network of 03 hidden layers.

This figure is a part in the general structure which is

generated by tensorboard and displays all activities in

training a deep learning model for subject 1. Similarly,

the graph of TF-Keras model is also exported from

tensorboard and is shown in Fig. 10. This model has 03

denses (layers) representing the fully connected nodes

between layers. The accuracy of the model at each

© 2020 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 11, No. 1, February 2020

30

iteration also recorded and shown as in Fig. 11. Though

DNN and Keras model, both has the same number of

layers, but their structures are different and so are their

results. The third model to compare with two TensorFlow

models is XGBoost and its tree is displayed in Fig. 12.

XGBoost algorithm is quite different from neural

network models since it is fitted based on the gradient of

loss generated from the previous step.

Figure 10. The graph of TF-Keras model. (subject 1 and extracted-

normalized EEG data)

Figure 11. The accuracy of TF-Keras model in training. (The model of

subject1)

Figure 12. XGBoost tree of the model of subject 1

The results from 03 models are displayed in Fig. 13.

Fig. 13(a) and 9(b) show that the models using

normalized EEG data result in higher accuracy than the

models using directly the raw EEG data. Moreover, the

figures also shows that the increase in model accuracy

between normalized and not normalized data is higher in

TF-DNN models than in TF-Keras models. Thus, min-

max normalization on EEG data before feeding to the

models has improved the performance of Keras and DNN

model, especially in DNN models.

We also see in Fig. 13(c) that the XGBoost models

have high accuracy (0.95) whether the input data were

normalized or not. This can be explained by the

algorithm of XGBoost, a gradient boosted decision tree.

While the neural networks such as Keras and DNN fit the

models based on computing connection weights and

activation functions, XGBoost is based on the best split

for each step by computing a structure score. The smaller

the score is, the better the structure is or in other words,

the better model accuracy is.

Figure 13(a). Comparison of TF-Keras models

Figure 13(b). Comparison of TF-DNN models

Figure 13(c). Comparison of XGBoost models

Figure 13(d). Comparison of resemble results from XGBoost and

TF.DNN models

VII. THE RESULTS RECORDED FROM THE MODELS

USING MICRO:BIT EEG DATA

Similar with the model of Neurosky data, in the TF-

Keras models for the Micro:bit data, the structure with 03

dense layers and the output shape for each dense layer

with 50 nodes provides a better accuracy in classifying

the EEG data. TF-DNN models also have 03 layers and

each layer had 50 nodes. Tensorboard are used to

generate the graph for the two models. TF-DNN model

of case 3 has the same graph as subject 1 (Fig. 9).

Though the structures of the models of subject 1 of

Neurosky data and case 3 of Micro:bit are similar, the

general activities in each model are different depending

0.00

0.50

1.00

Subject

1

Subject

2

Subject

3

Subject

4

Subject

5

Subject

6

Not Normalized Normalized

0.00

0.50

1.00

Subject

1

Subject

2

Subject

3

Subject

4

Subject

5

Subject

6

0.00

1.00

Subject

1

Subject

2

Subject

3

Subject

4

Subject

5

Subject

6

0.00

1.00

Subject

1

Subject

2

Subject

3

Subject

4

Subject

5

Subject

6

© 2020 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 11, No. 1, February 2020

31

on the character of the data input. Similarly, the graph of

TF-Keras model for case 3 is also the same as subject 1’s

(Fig. 10). It also has 03 dense layers and each dense also

has 50 nodes. The recording of the accuracy of the Keras

model at each training step are shown that the models

reach their highest accuracy rather soon since the

accuracy curve is very steep and quickly approach a

horizontal line (Fig. 14). The third model is XGBoost

whose tree is displayed in Fig. 15. This tree is less

complicated than the tree of subject 1 in Fig. 12.

Figure 14. The accuracy and loss of TF-Keras model in training.

(Extracted-normalized EEG data)

Figure 15. XGBoost tree of extracted-normalized-EEG-data model

These models were then used to make prediction. Fig.

16(a), (b), (c) shows the comparison of the performance

of models using normalized data and not-normalized data.

We can generally observe that when normalization is

included in data processing before feeding to the model,

it results in higher accuracy in classifying the test data.

However, how much the influence of normalization on

the model accuracy still depends on whether filtering or

extracting or decomposing data was implemented before

normalizing. Particularly, when extracting data were

applied (case 3 & 4), the accuracies of all models are

high and the differences of model accuracies when

utilizing extracted data with (case 3) and without

normalization (case 4) are small. Therefore, the influence

of normalization on the model accuracies is small when

EEG data were just extracted. Similarly, when filtering

and extracting EEG data were implemented (case 1&2),

the accuracies of all these models are also high, and the

difference of the model accuracy between filtered-

extracted data with (case 1) and without normalization

(case 2) is also small. It provides the evidence that there

is a small influence of normalization on the model

accuracies when filtering and/or extracting data were

applied. Conversely, when decomposing data was

implemented (case 5 & 6), the differences of model

accuracies between the models using decomposed data

with (case 5) and without normalization (case 6) are high.

This is the evidence that normalization has a large

influence on the model performance when decomposed

data are employed.

Figure 16(a). The comparison of models using filtered-extracted data

with and without normalization

Figure 16(b). The comparison of models using extracted data with and

without normalization

Figure 16(c). The comparison of models using decomposed data with

and without normalization

Fig. 17 shows the accuracy of models recorded from

the cases 1, 3, 5, 7 & 8. Normalizing are applied on case

1, 3, 5, 8 and case 7 is using raw data. At first, we can

realize that all three models utilizing the raw data (case 7)

result in the absolute accuracy (100%) and the ensemble

result of DNN and XGBoost models is also absolute

while the models using filtered-normalized data (case 8)

obtains the lowest accuracy among models in Fig. 17.

Secondly, the three models in case 3 (in which the data

are extracted) also result in high accuracy (0.97) and the

ensemble result of the two models is even higher (0.98).

Thirdly, the accuracies of the three models in case 5 (in

which data are decomposed) are much various. We can

see that just XGBoost provides the highest accuracy

(0.98) while two TensorFlow models have the lower

accuracies (0.83 for Keras and 0.85 for DNN). The

accuracy of the ensemble result remains high (0.96).

Finally, the accuracy of the three models in case 1 (in

which data are filtered and extracted) are rather lower

than other cases. The lowest accuracy in case 1 is from

0

0.5

1

TensorFlow-

Keras

TensorFlow-

DNN

XGB DNN +

XGB

Filtered, Extracted Data

Filtered, Extracted, Normalized Data

0

0.5

1

1.5

TensorFlow-

Keras

TensorFlow-

DNN

XGB DNN + XGB

Extracted Data Extracted, Normalized Data

0

0.5

1

TensorFlow-

Keras

TensorFlow-

DNN

XGB DNN + XGB

Decomposed Decomposed, Normalized

© 2020 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 11, No. 1, February 2020

32

two TensorFlow models (0.85) and the highest is from

XGBoost model (0.89). The ensemble accuracy is also

low (0.89) comparing to the ones in the other cases

(0.95). We also realize that Keras and DNN return the

accuracies very close to each other when the same data

input was fed to train the model, except for the

decomposed data. Details of the model accuracy for

normalized data are shown on Table II.

Figure 17. The comparison of models using the cases of normalized
data and raw data

TABLE II. THE MODEL ACCURACY FOR NORMALIZED DATA

Data
TF-

Keras

TF-

DNN
XGB

DNN +

XGB

Filtered-Extracted-

Normalized Data (case 1)
0.85 0.85 0.89 0.87

Extracted-Normalized
Data (case 3)

0.97 0.97 0.98 0.98

Decomposed-Normalized

Data (case 5)
0.83 0.88 0.98 0.96

Raw Data (case 7) 1 1 1 1

Filtered-Normalized
Data (case 8)

0.42 0.58 0.61 0.6

Figure 18. The comparison of models using filtered- normalized data
(case 8) and raw data (case 7)

The absolute accuracies in prediction when using raw

Micro:bit data to train the models is considerable. Fig. 18

shows the large different model accuracy between case 7

and 8. Observing closely the models in these two cases,

the only difference in their data input is that case 7 used

raw data while case 8 used filtered-normalized data. The

filtering process in case 8 already removed 10% IMFs of

lower frequencies while case 7 used directly the raw data.

Therefore, the high accuracy obtaining from raw data is

due to low frequency drifts. Additionally, another

meaningful result is that if we do not combine IMFs but

use them directly to fit the model, the model accuracy is

also high as shown in case 5. This means even though we

remove low frequency components, we can still achieve

high accuracy by using IMFs as features. We also realize

that XGBoost models have a good performance on all

cases of transforming data, and the resemble results of

DNN and XGBoost model are also very good. As a result,

it generally enhances the reliability of XGBoost models

in the classification of brain states using EEG data.

VIII. CONCLUSION

In this project, we have discovered that TensorFlow

can be used to identify the brain states using EEG data.

The project has surveyed two algorithms from

TensorFlow. The difference in model accuracy between

the results and from the XGBoost is small though the

result from XGBoost is still higher. Additionally, data

processing makes an important role in the Keras and

DNN algorithm in TensorFlow.

In the usage of both, Neurosky and Micro:bit data in

building models, the accuracy of models with data

normalized using min-max normalization is always

higher, especially in Neurosky data. In Micro:bit data,

normalization has more influence when data were

decomposed than when data were extracted. In the

project, the high accuracy obtaining from the model with

the extracted-normalized confirm the importance of

Fourier Fast Transformation in classify EEG data. Some

other features extracted such as PFD, HFD, Hjorth

Parameters, Spectral Entropy, SDV Entropy, Fisher

Information, Approximate Entropy, DFA, Hurst

Exponent contribute to the very good performance of

models as well.

The results from the project also verify that the low

frequency drifts in the raw data make an important role to

enhance the model accuracy in identifying the EEG data.

When the low frequencies were removed from the input

data, the model accuracy decreases though the min-max

normalization already included to improve its

performance (case 8). Moreover, in the usage of EEMD,

the results in the project also highlight the application of

IMFs as features to build the models for classifying the

EEG data. We experienced this in case 5 of Micro:bit

data.

Through the project, we can also experience how EEG

recorder devices make big impact on the data collection

when working on two datasets collected from two

different devices. Understanding the pre-processing data

inside the devices is very essential to navigate the data

processing in a study, especially when working with the

datasets from different recorder devices.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

0.4

0.5

0.6

0.7

0.8

0.9

1

TensorFlow-

Keras

TensorFlow-

DNN

XGB DNN + XGB

Filtered-Extracted-Normalized Data (case 1)

Extracted-Normalized Data (case 3)

Decomposed-Normalized Data (case 5)

Raw Data (case 7)

Filtered-Normalized Data (case 8)

case 8

 case 1

 case 5
 case 3
 case 7

0

0.5

1

TensorFlow-

Keras

TensorFlow-

DNN

XGB DNN + XGB

Raw Data Filtered, Normalized Data

© 2020 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 11, No. 1, February 2020

33

AUTHOR CONTRIBUTIONS

Phuong Huynh, Gregory Warner, and Hong Lin

conducted the research; Gregory Warner designed the

device and collected the data; Phuong Huynh analyzed

the data; Phuong Huynh wrote the paper; all authors had

approved the final version.

REFERENCES

[1] A. Chan, C. E. Early, S. Subedi, Y. Li, and H. Lin, “Systematic
analysis of machine learning algorithms on EEG data for brain

state intelligence,” in Proc. IEEE International Conference on

Bioinformatics and Biomedicine, Washington, DC, 2015, pp. 793-
799.

[2] S. Siuly, Y. Li, and Y. Zhang, EEG Signal Analysis and
Classification, Springer International Publishing, 2016, ch. 1, pp.

3-19.

[3] V. Srinivasan, C. Eswaran, and N. Sriraam, “Approximate
entropy-based epileptic EEG detection using artificial neural

networks,” IEEE Transactions on Information Technology in

Biomedicine, vol. 11, no. 3, pp. 288-295, May 2007.
[4] C. Saitis, et al., “Cognitive load assessment from EEG and

peripheral biosignals for the design of visually impaired mobility

aids,” Wireless Communications & Mobile Computing, pp. 1-9,
Feb. 2018.

[5] A. Fandango, Mastering TensorFlow 1.x., Birmingham, UK:

Packt Publishing, 2018.
[6] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting

system,” in Proc. the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2016.
[7] B. Lantz, Machine Learning with R, Lexington, KY, USA: Packt

Publishing, 2018.

[8] F. S. Bao, et al., “PyEEG: An open source Python module for
EEG/MEG feature extraction,” Computational Intelligence &

Neuroscience, pp. 1-7, Jan. 2011.

[9] D. Laszuk. PyEMD documentation. [Online]. Available:
https://buildmedia.readthedocs.org/media/pdf/pyemd/latest/pyemd

.pdf

[10] A. Petrosian, “Kolmogorov complexity of finite sequences and

recognition of different preictal EEG patterns,” in Proc. Eighth

IEEE Symposium on Computer-Based Medical Systems, Lubbock,

TX, USA, 1995, pp. 212-217.
[11] A. Zeiler, et al., “Empirical mode decomposition - An

introduction,” in Proc. International Joint Conference on

International Joint Conference on Neural Networks, 2010, p. 1.

Copyright © 2020 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Phuong T. Huynh earned her Bachelor and Master’s degree in

electrical engineering at HoChiMinh City University of Technology.

She has twenty years of experience in designing electrical systems in

utility and oil and gas projects such as the Sonaref Refinery (Angola),

the Jack and St. Malo Project (Gulf of Mexico), and the BP Toledo

Refinery (Ohio). In 2019, Ms. Huynh received her Master of Science in

Data Analytics at the University of Houston Downtown. Ms. Huynh’s

research currently focuses on machine learning and statistical

applications.

Gregory N. Warner earned his bachelor’s degree in computer science

at the University of Houston – Downtown in 2018. He has a total of six

years experience working in chemical research and development. This
includes 2 years as a Lab Technician at Dow Chemical and 4 years as a

Research Technician for the Merichem Company. Mr. Warner is

currently focused on human-centered computing.

Hong Lin earned his PhD in Computer Science at the University of
Science and Technology of China, and was a postdoctoral research

associate at Purdue University, an assistant research officer at the

National Research Council, Canada, and a software engineer at Nokia,
Inc. Dr. Lin is currently a professor with the University of Houston –

Downtown. His research interests include parallel/distributed

computing, data analytics, and human-centered computing. He is a
senior member of the ACM.

© 2020 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 11, No. 1, February 2020

34

https://buildmedia.readthedocs.org/media/pdf/pyemd/latest/pyemd.pdf
https://buildmedia.readthedocs.org/media/pdf/pyemd/latest/pyemd.pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

