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Abstracts—Brain-computer interfaces have been 

investigated for more than 20 years and have great potential 

to develop applications for physicians to diagnose diseases 

or patients with severe neurologic disabilities to return to 

interact with society. To gain those purposes requires 

technics to analyze the EEG data as well as an algorithm to 

train the model for identifying the patterns or controlling 

the devices. TensorFlow is a machine learning developed by 

Google team for internal use and was released for public use 

in 2015. Since it can train and test on deep learning neural 

network, it can be used for EEG data. This project used TF-

Keras and TensorFlow-DNN to train the models for 

classifying brain states using EEG data. Neurosky 

Mindwave Mobile headset and a new device developed from 

Micro:bit were the recorders for EEG signals in the project. 

Several technics such as min-max normalization, Ensemble 

Empirical Mode Decomposition (EEMD), extraction were 

applied to analyze the recorded EEG data. The results show 

that the accuracies of TensorFlow-Keras and TensorFlow -

DNN models are 97% while the results from XGBoost is    

98% when classifying the EEG data from Micro:bit device. 

The result confirms the ability of application of TensorFlow 

in identifying EEG data. The technics for processing data 

contributed to the above results are min-max normalization 

and data extraction. Moreover, we also verify that the low-

frequency drifts in the recorded data is essential to identify 

the brain states using EEG data. The results also show the 

application of IMFs generated from EEMD technic as 

features to build the models for classifying brain states 

using the EEG data. 

 

Index Terms—TensorFlow, EEG, XGBoost, TensorFlow-

Keras (TF-Keras), TensorFlow-DNN (TF-DNN), Ensemble 

Empirical Mode Decomposition (EEMD), Neurosky, 

Micro:bit, Brain-C   omputer Interface (BC   I) 
 

I. INTRODUCTION 

Electroencephalography (EEG) is a measurement of 

the human brain’s potentials emitted by electrical 

activities from the brain. Galvani, the scientist and 

philosopher, is remembered as the first person who 

identified the electrical activity of a living organism in 

the 18th century [1], and the first EEG recording machine 

was introduced to the world by Hans Berger in 1929 [2]. 

EEG signals are recording using electrodes which are 

placed in different locations on the surface of the scalp. 

Its function is to detect tiny electrical changes that result 
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from the activities of the brain cells. Each electrode 

connected to an amplifier and an EEG recording machine. 

Fig. 1 illustrates how electrodes placed on the scalp and 

the display on a recording machine. 

Depending on the procedure required, several 

electrodes recorded in parallel can vary from 2 to 256 

electrodes [2]. One pair of electrodes makes up a channel 

which produces a signal during an EEG recording. The 

amplitude of an EEG signal typically ranges from about 1 

to 100 µV for an adult. Brain-Computer Interfaces (BCIs) 

arise enhancing the applications of EEG data. BCI is a 

computer-based system that records and analyzes brain 

signals and generate a control signal(s) to the device 

which performs the desired action(s). Fig. 2 illustrates the 

general architecture of a BCI system. 

 

Figure 1.  An illustration of EEG recording (Ref. EEG Saint Luke's 
Health System) 

In the BCI architecture, pre-processing is to clean and 

denoise data to enhance the proper information in the 

EEG signal. Feature extraction is to transform an EEG 

signal into features by extracting the most important 

features from the signal and ensure the provision of 

sufficient information for classification. Classification 

assigns the label to each set of features of the EEG signal. 

The BCI system was used to diagnose a disease, for 

example, epilepsy or seizure. In a research, V. Srinivasan 

et al. used 128 channel amplifier system to record EEG 

signals [3]. Approximate entropy was used in extracting 

features, and two neural networks, Elman network and 

probabilistic neural network were trained to identify the 

patterns with the disease. The result was reported as high 

as 100%. Another application of BCI related to the 

cognitive load assessment from the combination of EEG 

data and EDA (electrodermal activity) resulted in high 

prediction rate in which Random Forest was employed 
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[4]. The research aimed to develop a device to support 

visually impaired mobility aids.  

Many algorithms for classification are currently 

utilized to identify EEG data. Among the algorithms 

selected to classify a specific EEG data in an experiment 

such as KNN, SVM, Random Forest, Bayes, and 

Boosting, Random Forest was reported to provide the 

highest accuracy while KNN and Boost made the second 

grade in identifying correctly the EEG signals [1].  

TensorFlow is a machine learning library for research 

and production and surveying its performance in the 

classification of EEG signals is important for the 

extension of using EEG data in applications. TensorFlow 

owns the ability to build a deep neural network and 

therefore, it owns a potential to works well on large EEG 

data.  

 
Figure 2.  The general architecture of a BCI system 

TensorFlow was created by Google Brain team and the 

version 1.0.0 was released in February 2017, for public 

use and development. As stated in their official website, 

“TensorFlow is an open source library for numerical 

computation using data flow graphs”. In TensorFlow, 

there are three models which are data model, 

programming model and execution model. TensorFlow 

data model consists of tensors which are an n-

dimensional collection of data. The programming model 

consists of data flow graphs or computation graphs, and 

the execution model is the implement of computation at 

nodes in a sequence, starting from the initial nodes that 

depend on the inputs. [5]. Fig. 3 shows a simple 

TensorFlow graph which represents the data flow of the 

computations. Dataflow graphs are the structures 

describing how data moves through a graph or a series of 

processing nodes and are created by users. Each node in 

the graph represents a mathematical operation, and each 

connection (also called edge) between nodes is a 

multidimensional data array (also called tensor). 

 

Figure 3.  TensorFlow graph 

In this project, we use TensorFlow to identify brain 

states using EEG data. For comparison, XGBoost, a 

scalable machine learning system for tree boosting, is 

also selected to train, test models and compare its 

performance with TensorFlow’s. XGBoost was 

employed in 17/29 winning solutions published at 

Kaggle’s blog in 2015 [6].  

II. METHODS OF DATA PROCESSING APPLIED 

A. Min-Max Normalization 

Min-max normalization is used to rescale a feature so 

that all the values in the feature are in a range between 0 

and 1 [7]. 

 𝑋𝑛𝑒𝑤 =
𝑋−𝑚𝑖𝑛(𝑋)

𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋)
 (1) 

where X is a feature to be normalized. 

B. Power Spectral Intensity and Relative Intensity 

Radio 

To a time series [𝑥1, 𝑥2, … 𝑥𝑁], denote its Fast Fourier 

Transformation (FFT) result as [𝑋1  𝑋2, … 𝑋𝑁] . A 

continuous frequency band from flow to fup is sliced into K 

bins and forms a vector 𝑏𝑎𝑛𝑑 =  [𝑓1, 𝑓2, … , 𝑓𝐾] such that 

the lower and upper frequencies of the 𝑖𝑡ℎ bin are 𝑓𝑖 𝑓𝑖+1, 

respectively [8]. 

The Power Spectral Intensity (PSI) [9] of the 𝑘𝑡ℎ bin is 

evaluated as 

 𝑃𝑆𝐼𝑘 =  ∑ |𝑋𝑖|, 𝑘 = 1,2, … , 𝐾 − 1
[𝑁(

𝑓𝑖+1
𝑓𝑠

⁄ )]

𝑖=[
𝑓𝑘

𝑓𝑠
⁄ ]

     (2) 

where 𝑓𝑠 is the sampling rate, and N is the series length. 

Relative Intensity Radio (RIR) [9] is defined on top of 

PSI. 

 𝑅𝐼𝑅 =  
𝑃𝑆𝐼𝑗

∑ 𝑃𝑆𝐼𝑘
𝐾−1
𝑘=1

, 𝑗 = 1, 2, … , 𝐾 − 1        (3) 

PSI and RIR are both vector features. 

C. Petrosian Fractal Dimension (PFD) 

PFD [8], [10] is defined as 

 PFD =  
log10N

𝑙𝑜𝑔10𝑁+𝑙𝑜𝑔10(𝑁
(𝑁+0.4𝑁)⁄ )

  (4) 

where N is the number of samples in a segment, and 𝑁 is 

the number of sign changes in the signal derivative. PFD 

is a scalar feature. 

D. Higuchi Fractal Dimension (HFD)  

Higuchi’s algorithm [8] constructs k new series from 

the original series by 

  𝑥𝑚, 𝑥𝑚+𝑘, 𝑥𝑚+2𝑘, … , 𝑥𝑚+⌊𝑁−𝑚
𝑘⁄ ⌋𝑘  (5) 

where m = 1, 2, …, k 

For each time series constructed above, the length 

𝐿(𝑚, 𝑘) is computed by 

 𝐿(𝑚,𝑘) =  
∑ |𝑥𝑚+𝑖𝑘−𝑥𝑚+(𝑖−1)𝑘|(𝑁−1)

⌊(𝑁−𝑚)/𝑘⌋
𝑖=2

⌊(𝑁−𝑚)/𝑘⌋𝑘
   (6) 

The average length is computed as  

 𝐿(𝑘) =  
∑ 𝐿(𝑖,𝑘)𝑘

𝑖=1

𝑘
  

This procedure repeats 𝑘𝑚𝑎𝑥 times for each k from 1 to 

𝑘𝑚𝑎𝑥 and then uses as a least-square method to determine 

the slope of the line that best fit the curve of ln((k)) 

versus ln(1/k). The slope is the Higuchi Fractal 

Dimension. HFD is a scalar feature. 

© 2020 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 11, No. 1, February 2020

27



E. Hjorth Parameters 

To a time series [𝑥1, 𝑥2, … 𝑥𝑁], the Hjorth mobility [8] 

and complexity are, respectively, defined as  

√𝑀2 𝑇𝑃⁄                               (7) 

and 

 √(𝑀4. 𝑇𝑃) (𝑀2. 𝑀2)⁄                      (8) 

where 𝑇𝑃 =  ∑
𝑥𝑖

𝑁
, 𝑀2 =  

∑ 𝑑𝑖

𝑁
, 𝑀4 =  √(𝑑𝑖 − 𝑑𝑖−1)2 𝑁⁄ , 

and 𝑑𝑖 =  𝑥𝑖 − 𝑥𝑖−1.   

Hjorth mobility and complexity are both scalar 

features. 

F. The Spectral Entropy 

The spectral entropy [8] is defined as follows 

 𝐻 = − 
𝑖

𝑙𝑜𝑔(𝐾)
∑ 𝑅𝐼𝑅𝑖𝑙𝑜𝑔𝑅𝐼𝑅𝑖

𝐾
𝑖=1    (9) 

where RIRi and K are defined in (3). Spectral entropy is a 

scalar feature. 

G. SVD Entropy  

SVD entropy [8] measures using Singular Value 

Decomposition (SVD). Let the input signal be [𝑥1,
𝑥2, … 𝑥𝑁]. We construct the delay vectors as  

 𝑦𝑖 =  [𝑥𝑖 , 𝑥𝑖+𝜏 , … , 𝑥𝑖+(𝑑𝐸−1)𝜏]   (10) 

where τ is the delay and dE is the embedding dimension. 

The embedding space is then constructed by  

 𝑌 =  [𝑦(1), 𝑦(2), … , 𝑦(𝑦𝑖+(𝑑𝐸−1)𝜏)]
𝑇
  (11) 

The SVD is then performed on matrix Y to produce M 

singular values, 𝜎1, 𝜎2 … , 𝜎𝑀 known as the singular 

spectrum. 

The SVD entropy is then defined as 

 𝐻𝑆𝑉𝐷 = − ∑ 𝜎𝑖
𝑀
𝑖=1 𝑙𝑜𝑔2𝜎𝑖  (12) 

where M is the number of singular values and 𝜎1, 𝜎2, … ,
𝜎𝑀  are normalized singular values such that 𝜎𝑖 =
 𝜎𝑖 ∑ 𝜎𝑗

𝑀
𝑗=1⁄ . SVD entropy is a scalar feature. 

H. The Fisher Information 

The Fisher information [8] can be defined in 

normalized singular spectrum used in (10). 

 𝐼 =  ∑
(𝜎̅𝑖+1−𝜎̅𝑖)

𝜎̅𝑖

𝑀−1
𝑖=1   (13) 

Fisher information is a scalar feature. 

I. Approximate Entropy 

Approximate entropy (ApEn) [8] is a statistical 

parameter to quantify the regularity of a time series. 

ApEn is computed by the following steps. 

1) Let the input signal be [𝑥1, 𝑥2, … 𝑥𝑁]  
2) Build subsequence 𝑥(𝑖, 𝑚) = [𝑥𝑖 , 𝑥𝑖+1,

… , 𝑥𝑖+𝑚−1] for 1 ≤ i ≤ N − m, where m is the length of 

the subsequence. In [3], m = 1, 2, or 3.  

3) Let r represent the noise filter level, defined as r = k 

× SD for k = 0, 0.1, 0.2, …, 0.9.  

4) Build a set of subsequences {x(j, m)} = {x(j, m) | j ∈ 

[1..N − m]}, where x(j, m) is defined in step 2.  

5) For each x(i, m)∈{x(j, m)}, compute 

 𝐶(𝑖, 𝑚) =  
∑ 𝑘𝑗

𝑁−𝑚
𝑗=1

𝑁−𝑚
  (14) 

where  

 𝑘𝑗 =  {
1     𝑖𝑓 |𝑥(𝑖, 𝑚) − 𝑥(𝑗, 𝑚)| < 𝑟    
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                .

  (15) 

 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =  
1

𝑁−𝑀
[∑ 𝑙𝑛

𝐶(𝑖,𝑚)

𝐶(𝑖,𝑚+1)
𝑁−𝑚
𝑖=1 ] (16) 

ApEn is a scalar feature. 

J. Detrended Fluctuation Analysis (DFA) 

The procedures to compute DFA of a time series 

 [𝑥1, 𝑥2, … 𝑥𝑁] are as follows [8].  

1) First integrate x into a new series  𝑦 =
[𝑦1 , 𝑦2, … 𝑦𝑁], where 𝑦(𝑘) = ∑ (𝑥𝑖 − 𝑥̅)𝑘

𝑖=1  and 𝑥̅ is the 

average of  [𝑥1, 𝑥2, … 𝑥𝑁]. 
2) The integrated series is then sliced into boxes of 

equal length n. In each box of length n, a least-squares 

line is fit to the data, representing the trend in that box. 

The y coordinate on the straight-line segments is denoted 

by 𝑦𝑛(𝑘). 

3) The root-mean-square fluctuation of the integrated 

series is calculated by  

 𝐹(𝑛) = √(1/𝑁) ∑ [𝑦(𝑘) − 𝑦𝑛(𝑘)]2𝑁
𝑘=1   

where the part y(k) − y n(k) is called detrending.  

4) The fluctuation can be defined as the slope of the 

line relating log F(n) to log n.  

DFA is a scalar feature. 

K. Hurst Exponent  

Hurst exponent [8] is also called Rescaled Range 

statistics (R/S). To calculate the Hurst exponent for time 

series  𝑋 = [𝑥1, 𝑥2, … 𝑥𝑁], the first step is to calculate 

the accumulated deviation from the mean of time series 

within range T. 

𝑋(𝑡, 𝑇) =  ∑ (𝑥𝑖 − 𝑥̅)𝑡
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒 𝑥̅ =  

1

𝑇
𝑥𝑖 , 𝑡[1. . 𝑁](17) 

Then, R(T)/S(T) is calculated as  

 
𝑅(𝑇)

𝑆(𝑇)
=

𝑚𝑎𝑥(𝑋(𝑡,𝑇))−𝑚𝑖𝑛(𝑋(𝑡,𝑇))

√(1/𝑇) ∑ [𝑥(𝑡)−𝑥̅]2𝑇
𝑡=1

  (18) 

The Hurst Exponent is obtained by calculating the 

slope of the line produced by ln (R(n)/S(n)) versus ln (n) 

for n ∈ [2, N]. Hurst exponent is a scalar feature. 

III. EEG DATA COLLECTION 

The Neurosky Mindwave Mobile headset (Neurosky 

headset) and a simple device developed from Micro:bit 

(Micro:bit device) was used to record the EEG signals 

from participants. 

The Neurosky headset, a single-sensor EEG device 

recorded the EEG signals from six persons. There was 

one person wearing the headset to record the EEG signal 

at a time. Each participant took three actions which are 
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meditation, reading and watching a video. Each action 

last 5 minutes ( 10s). The samples recorded from the 

Neurosky are called Neurosky data. 

Micro:bit device recorded the EEG signals from one 

person who performs four actions which are controlling, 

doing nothing, playing piano and reading. Each action 

last 5 minutes ( 10s). The samples recorded from the 

Micro:bit device are called Micro:bit data. 

Fig. 4 shows the NeuroSky headset and the EEG 

recording device made of Micro:bit. 

IV. METHODS TO BUILD THE TENSORFLOW MODELS 

USING NEUROSKY DATA 

A. Primary Data Processing 

 

Figure 4.  NeuroSky headset (Left) and Micro:bit EEG recording 
device (Right) 

Figure 5.  The processes to build models from Neurosky data 

TABLE I. NEUROSKY BRAINWAVE FREQUENCY 

Brainwave Type 
Frequency Range  

(Hz) 

Delta 0.5 - 2.75 

Theta 3.5 - 6.75 

Low Alpha 7.5 - 9.25 

High Alpha 10 - 11.75 

Low Beta 13 - 16.75 

High Beta 18 - 29.75 

Low Gamma 31 - 39.75 

Mid-range Gamma 41 - 49.75 

 

The process to build the models from Neurosky data 

are shown in Fig. 5. Neurosky data was preprocessed on 

Neurosky device using its proprietary analysis. 

Particularly, raw signals were first passed through a 

band-pass filter to remove frequencies <0.5Hz 

and >50Hz. They were then decomposed using Fast 

Fourier Transform to obtain components with 

frequencies of eight main brain wave bands as illustrated 

in Table I.  

The output from Neurosky for each person had 17 

features and 04 features to eliminate are “timestamps”, 

“poorSignal”, “tagEvent” and “location”. Therefore, 

Neurosky EEG samples finally had 13 features. Fig. 6 

displays the waveforms of Neurosky EEG data of 

“meditation” state with different frequencies. EEG raw 

value and EEG raw value volts had very high frequencies 

comparing with other features. The features on the figure 

are EEG raw value, EEG raw value volts, attention, 

meditation, blink stretch, delta, theta, low alpha, high 

alpha, low beta, high beta, low gamma, and mid-range 

gamma. 

B. Normalization and Model Building 

 

Figure 6.  Raw EGG data for meditation 

Neurosky data were fed into the model using two 

formats which were raw data and transformed data. In 

transforming EEG data, min-max normalization was used 

to rescale features. 

We tested whether normalizing EEG data before 

feeding to the model can improve the model accuracy 

comparing with the raw data. 

Case 1: From the Neurosky data of each person, 75% 

of samples were used to train three models and 25% to 

test the model accuracy in identifying new samples. 

Case 2: The Neurosky data were transformed using 

min-max normalization, and then 75% of data were used 

to train the three models and 25% to test the model 

accuracy in identifying new samples. 

We utilize from TensorFlow two types of models 

which are Keras model and deep learning neural network 

(DNN) model. XGBoost models are also built for the 

comparison of model accuracy in classification of EEG 

data between models. Additionally, the results from 

XGBoost model and DNN model are also combined for 

further assessment. 

V. METHODS TO BUILD THE TENSORFLOW MODELS 

USING MICRO:BIT DATA 

A. Primary Data Processing 

Fig. 7 shows the waveform of EEG data from 

Micro:bit device. The signals for 04 actions look 
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distinguished. Micro:bit device did not have the function 

to pre-process the EEG data recorded. Therefore, we 

need to pre-process and extract the EEG data before 

feeding them into the models. 

 

Figure 7.  EEG data from Micro:bit device 

The raw data from Micro:bit proceeded as indicated in 

Fig. 8. All the processes which were considered for this 

experiment were decomposition, filter, extraction, and 

normalization. Firstly, in data decomposition, Ensemble 

Empirical Mode Decomposition (EEMD) was used to 

determine Intrinsic Mode Functions (IMFs). EMD stands 

for Empirical Mode Decomposition and EEMD is a 

noise-assisted method to improve shifting and generate a 

better EEG data from Micro:bit device set of IMFs [10], 

[11]. Secondly, filtering process also used EEMD technic 

to decompose the data so that the first IMF and 10% of 

total IMFs with low frequency could be eliminated. We 

then compute the summary of remaining IMFs as the 

output of this process. Thirdly, data extraction was 

computed based on an open source python module for 

EEG feature extraction [8]. Particularly, Fast Fourier 

transform was used to extract the PSI (2), such as delta 

(0.5-4Hz), theta (4-7Hz), alpha (8-12Hz), beta (12-30Hz), 

and gamma (30-100Hz). RIR (3) computed from PSIs 

were deltaRIR, thetaRIR, alphaRIR, betaRIR, and 

gammaRIR. Though Neurosky data also used Fast 

Fourier transformation to transform its data, the range of 

frequency is just in the interval [0.5Hz, 50Hz]. Other 

features also extracted were PFD in (4), HFD, Hjorth 

Parameters in (7) & (8), Spectral Entropy in (9), SDV 

Entropy computed from (10), (11) & (12), Fisher 

Information in (13), Approximate Entropy in (16), 

Detrended Fluctuation Analysis, and Hurst Exponent 

computed from (17) & (18). There were 20 features 

extracted in total. One more datum transformation 

technic is min-max normalization which is described in 

(1). We processed EEG data through 8 cases. In case 1, 

raw data were filtered, extracted and normalized prior to 

being used to train the model; in case 2, raw data were 

filtered and extracted prior to being used to train the 

model; in case 3, raw data were extracted and normalized 

prior to being used to train the model; in case 4, raw data 

were extracted prior to being used to train the model; in 

case 5, raw data were decomposed and normalized prior 

to being used to train the model; in case 6, raw data were 

decomposed prior to being used to train the model; in 

case 7: raw data were used to train the model; finally, in 

case 8, raw data were filtered and normalized before used 

to train the model. The processed data was then divided 

into train data (75%) and test data (25%). 

 

Figure 8.  Micro:bit data processing 

VI. THE RESULTS RECORDED FROM THE MODELS OF 

NEUROSKY EEG DATA 

The TF-Keras model resulting in better accuracy in 

classifying the data had 03 dense layers, and the output 

shape for each dense layer was set at 50. The optimized 

TF-DNN model also had 03 layers and each layer had 50 

nodes. 

 

Figure 9.  The structure of node DNN in TF-DNN model. (subject 1 

and extracted-normalized EEG data) 

TensorFlow provides tensorboard which is a tool for 

users to look inside the model. Fig. 9 displays the 

structure of this deep neural network of 03 hidden layers. 

This figure is a part in the general structure which is 

generated by tensorboard and displays all activities in 

training a deep learning model for subject 1. Similarly, 

the graph of TF-Keras model is also exported from 

tensorboard and is shown in Fig. 10. This model has 03 

denses (layers) representing the fully connected nodes 

between layers. The accuracy of the model at each 
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iteration also recorded and shown as in Fig. 11. Though 

DNN and Keras model, both has the same number of 

layers, but their structures are different and so are their 

results. The third model to compare with two TensorFlow 

models is XGBoost and its tree is displayed in Fig. 12. 

XGBoost algorithm is quite different from neural 

network models since it is fitted based on the gradient of 

loss generated from the previous step. 

 
Figure 10.  The graph of TF-Keras model. (subject 1 and extracted-

normalized EEG data) 

 
Figure 11.  The accuracy of TF-Keras model in training. (The model of 

subject1) 

 
Figure 12.  XGBoost tree of the model of subject 1  

The results from 03 models are displayed in Fig. 13. 

Fig. 13(a) and 9(b) show that the models using 

normalized EEG data result in higher accuracy than the 

models using directly the raw EEG data. Moreover, the 

figures also shows that the increase in model accuracy 

between normalized and not normalized data is higher in 

TF-DNN models than in TF-Keras models. Thus, min-

max normalization on EEG data before feeding to the 

models has improved the performance of Keras and DNN 

model, especially in DNN models. 

We also see in Fig. 13(c) that the XGBoost models 

have high accuracy (0.95) whether the input data were 

normalized or not. This can be explained by the 

algorithm of XGBoost, a gradient boosted decision tree. 

While the neural networks such as Keras and DNN fit the 

models based on computing connection weights and 

activation functions, XGBoost is based on the best split 

for each step by computing a structure score. The smaller 

the score is, the better the structure is or in other words, 

the better model accuracy is. 

 
Figure 13(a). Comparison of TF-Keras models 

 
Figure 13(b). Comparison of TF-DNN models 

 
Figure 13(c). Comparison of XGBoost models 

 
Figure 13(d). Comparison of resemble results from XGBoost and 

TF.DNN models 

VII.   THE RESULTS RECORDED FROM THE MODELS 

USING MICRO:BIT EEG DATA 

Similar with the model of Neurosky data, in the TF-

Keras models for the Micro:bit data, the structure with 03 

dense layers and the output shape for each dense layer 

with 50 nodes provides a better accuracy in classifying 

the EEG data. TF-DNN models also have 03 layers and 

each layer had 50 nodes. Tensorboard are used to 

generate the graph for the two models. TF-DNN model 

of case 3 has the same graph as subject 1 (Fig. 9). 

Though the structures of the models of subject 1 of 

Neurosky data and case 3 of Micro:bit are similar, the 

general activities in each model are different depending 
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on the character of the data input. Similarly, the graph of 

TF-Keras model for case 3 is also the same as subject 1’s 

(Fig. 10). It also has 03 dense layers and each dense also 

has 50 nodes. The recording of the accuracy of the Keras 

model at each training step are shown that the models 

reach their highest accuracy rather soon since the 

accuracy curve is very steep and quickly approach a 

horizontal line (Fig. 14). The third model is XGBoost 

whose tree is displayed in Fig. 15. This tree is less 

complicated than the tree of subject 1 in Fig. 12. 

 
Figure 14. The accuracy and loss of TF-Keras model in training. 

(Extracted-normalized EEG data) 

 
Figure 15. XGBoost tree of extracted-normalized-EEG-data model 

These models were then used to make prediction. Fig. 

16(a), (b), (c) shows the comparison of the performance 

of models using normalized data and not-normalized data. 

We can generally observe that when normalization is 

included in data processing before feeding to the model, 

it results in higher accuracy in classifying the test data. 

However, how much the influence of normalization on 

the model accuracy still depends on whether filtering or 

extracting or decomposing data was implemented before 

normalizing. Particularly, when extracting data were 

applied (case 3 & 4), the accuracies of all models are 

high and the differences of model accuracies when 

utilizing extracted data with (case 3) and without 

normalization (case 4) are small. Therefore, the influence 

of normalization on the model accuracies is small when 

EEG data were just extracted. Similarly, when filtering 

and extracting EEG data were implemented (case 1&2), 

the accuracies of all these models are also high, and the 

difference of the model accuracy between filtered-

extracted data with (case 1) and without normalization 

(case 2) is also small. It provides the evidence that there 

is a small influence of normalization on the model 

accuracies when filtering and/or extracting data were 

applied. Conversely, when decomposing data was 

implemented (case 5 & 6), the differences of model 

accuracies between the models using decomposed data 

with (case 5) and without normalization (case 6) are high. 

This is the evidence that normalization has a large 

influence on the model performance when decomposed 

data are employed. 

 

Figure 16(a). The comparison of models using filtered-extracted data 

with and without normalization 

 
Figure 16(b). The comparison of models using extracted data with and 

without normalization 

 
Figure 16(c). The comparison of models using decomposed data with 

and without normalization 

Fig. 17 shows the accuracy of models recorded from 

the cases 1, 3, 5, 7 & 8. Normalizing are applied on case 

1, 3, 5, 8 and case 7 is using raw data. At first, we can 

realize that all three models utilizing the raw data (case 7) 

result in the absolute accuracy (100%) and the ensemble 

result of DNN and XGBoost models is also absolute 

while the models using filtered-normalized data (case 8) 

obtains the lowest accuracy among models in Fig. 17. 

Secondly, the three models in case 3 (in which the data 

are extracted) also result in high accuracy (0.97) and the 

ensemble result of the two models is even higher (0.98). 

Thirdly, the accuracies of the three models in case 5 (in 

which data are decomposed) are much various. We can 

see that just XGBoost provides the highest accuracy 

(0.98) while two TensorFlow models have the lower 

accuracies (0.83 for Keras and 0.85 for DNN). The 

accuracy of the ensemble result remains high (0.96). 

Finally, the accuracy of the three models in case 1 (in 

which data are filtered and extracted) are rather lower 

than other cases. The lowest accuracy in case 1 is from 
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two TensorFlow models (0.85) and the highest is from 

XGBoost model (0.89). The ensemble accuracy is also 

low (0.89) comparing to the ones in the other cases 

(0.95). We also realize that Keras and DNN return the 

accuracies very close to each other when the same data 

input was fed to train the model, except for the 

decomposed data. Details of the model accuracy for 

normalized data are shown on Table II. 

 

Figure 17. The comparison of models using the cases of normalized 
data and raw data 

TABLE II.  THE MODEL ACCURACY FOR NORMALIZED DATA  

Data 
TF- 

Keras 

TF- 

DNN 
XGB 

DNN + 

XGB 

Filtered-Extracted- 

Normalized Data (case 1) 
0.85 0.85 0.89 0.87 

Extracted-Normalized 
Data (case 3) 

0.97 0.97 0.98 0.98 

Decomposed-Normalized 

Data (case 5) 
0.83 0.88 0.98 0.96 

Raw Data (case 7) 1 1 1 1 

Filtered-Normalized 
Data (case 8) 

0.42 0.58 0.61 0.6 

 

Figure 18. The comparison of models using filtered- normalized data 
(case 8) and raw data (case 7) 

The absolute accuracies in prediction when using raw 

Micro:bit data to train the models is considerable. Fig. 18 

shows the large different model accuracy between case 7 

and 8. Observing closely the models in these two cases, 

the only difference in their data input is that case 7 used 

raw data while case 8 used filtered-normalized data. The 

filtering process in case 8 already removed 10% IMFs of 

lower frequencies while case 7 used directly the raw data. 

Therefore, the high accuracy obtaining from raw data is 

due to low frequency drifts. Additionally, another 

meaningful result is that if we do not combine IMFs but 

use them directly to fit the model, the model accuracy is 

also high as shown in case 5. This means even though we 

remove low frequency components, we can still achieve 

high accuracy by using IMFs as features. We also realize 

that XGBoost models have a good performance on all 

cases of transforming data, and the resemble results of 

DNN and XGBoost model are also very good. As a result, 

it generally enhances the reliability of XGBoost models 

in the classification of brain states using EEG data. 

VIII.  CONCLUSION 

In this project, we have discovered that TensorFlow 

can be used to identify the brain states using EEG data. 

The project has surveyed two algorithms from 

TensorFlow. The difference in model accuracy between 

the results and from the XGBoost is small though the 

result from XGBoost is still higher. Additionally, data 

processing makes an important role in the Keras and 

DNN algorithm in TensorFlow.  

In the usage of both, Neurosky and Micro:bit data in 

building models, the accuracy of models with data 

normalized using min-max normalization is always 

higher, especially in Neurosky data. In Micro:bit data, 

normalization has more influence when data were 

decomposed than when data were extracted. In the 

project, the high accuracy obtaining from the model with 

the extracted-normalized confirm the importance of 

Fourier Fast Transformation in classify EEG data. Some 

other features extracted such as PFD, HFD, Hjorth 

Parameters, Spectral Entropy, SDV Entropy, Fisher 

Information, Approximate Entropy, DFA, Hurst 

Exponent contribute to the very good performance of 

models as well. 

The results from the project also verify that the low 

frequency drifts in the raw data make an important role to 

enhance the model accuracy in identifying the EEG data. 

When the low frequencies were removed from the input 

data, the model accuracy decreases though the min-max 

normalization already included to improve its 

performance (case 8). Moreover, in the usage of EEMD, 

the results in the project also highlight the application of 

IMFs as features to build the models for classifying the 

EEG data. We experienced this in case 5 of Micro:bit 

data. 

Through the project, we can also experience how EEG 

recorder devices make big impact on the data collection 

when working on two datasets collected from two 

different devices. Understanding the pre-processing data 

inside the devices is very essential to navigate the data 

processing in a study, especially when working with the 

datasets from different recorder devices.  
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