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Abstract—Many publications work on optimization of 

driving styles in motor vehicles. Most conclude that they can 

improve energy efficiency through training. In recent years 

the tools to address those problems evolved towards 

machine learning. To get appropriate data for learning 

algorithms we developed a method to judge a driving style 

with respect to energy efficiency. This approach leveraged 

handpicked criteria like acceleration extracted from GPS. 

Like related works, this method does not scale, since it 

requires substantial preprocessing. The goal of this 

evaluation was to reduce the resistance energy of a driven 

trip, while maintaining a natural traffic flow. This was 

accomplished by mimicking a low-pass filter on the speed 

profile. On top excessive speeding gets punished. It was 

possible to use our data with over 1 million kilometers for 

training a Recurrent Neural Network. In respect to the 

RNN the training data was used, to let it map the obtained 

function. The provided data was adjusted in different stages, 

until it was only the raw GPS data. The RNN learned to 

handle most GPS errors, only in initial phases the results 

are mixed. A RNN Network is well suited to handle GPS 

data and learn higher level features on its own. The result is 

a NN which judges the driving style using only raw GPS 

data.  

Index Terms—neural network, deep learning, RNN, LSTM, 

machine learning, GPS data, sensor data, driving style, 

driver behavior, intelligent vehicle control, energy efficiency, 

driving safety 


I. INTRODUKTION

A fundamental challenge of the 21st  century, which 

will affect all of us, is the development of an energy 

management, which can help to protect the environment 

[1]. While being energy efficient with personal motor 

vehicles won’t solve the complete problem, the short term 

consequences can be influenced, because transportation 

accounts for 30% of the total energy consumption [2], so 

it is clear that it has a beneficial impact. Therefore it is 

worthwhile to educate drivers to achieve a more efficient 

driving style.  

The driving style in motor vehicles has a significant 

effect on two aspects: energy efficiency and road safety. 

Increased road safety has a big social and economic 

benefit while energy efficiency has a positive impact on 

the environment, by reducing CO2 emissions. There has 
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been previous work which analyzed the effect of different 

driving styles on fuel consumption [3]. The authors of [4] 

found that the difference in fuel consumption (and thus 

energy efficiency) between a normal driving style and a 

fast aggressive driving style is above 40%. Statistics 

derived from the electric car fleet of our University 

suggest that the range of an electric vehicle can be 

increased by up to 50% only by maintaining an energy 

efficient driving style. Other studies showed that a direct 

feedback to car drivers’ behavior has a positive impact on 

the subsequent driving style [5], [6]. Considering these 

points it is worth while improving the drivers’ actions 

regarding  energy  efficiency. For  this  purpose, a  master

thesis at the University of Kempten developed an 

algorithm to determine the driving style considering 

energy efficiency and road safety [7]. This algorithm uses 

x- and y-accelerations as well as speed to make assertions

about the efficiency and safety of the driving pattern. The

required values get extracted from car GPS data, but

since GPS signals in general are not accurate and reliable

enough there is a need to preprocess the accumulated data.

The main problem arising from incomplete and

inaccurate GPS data will be described in this paper later

on.

As a consequence of the required filtering and 

preprocessing procedure the algorithm could not be used 

to give the car driver a real-time feedback. In our research 

group at University of Kempten a huge amount of data 

with recorded tours from numerous different vehicles and 

drivers has been collected during the last eight years. This 

data is very diverse, since there are trips from big cities in 

Germany and also rural areas in southern Germany. 

Another reason for the usage of this data is the different 

nature of scenarios. Many cars belong to local craftsmen, 

others belong to municipal fleets, transport fleet as well 

as many privately owned vehicles. In total there a more 

than one million kilometers of recorded tours. This 

database was used for testing the algorithm and creating 

labeled data for the machine learning approach. It is 

expected to get generalizable results due to the diverse 

nature of the available data.  

In this paper we propose a method to utilize raw GPS 

data to give live scores for a driving style, using 

Recurrent Neural Networks. The development and 

implementation was divided into two different steps. The 

first step was to apply Deep Learning to the preprocessed 

data and try to learn which patterns of acceleration and 

speed correspond to good driving styles. This was used to 
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get a feeling whether the algorithm was able to learn the 

driving-style-score function. Based on this, the next step 

was to train the Neural Network with the same function 

from raw GPS data. This was a far more interesting and 

difficult problem to solve. Since the data preprocessing is 

very costly the algorithm gets more flexible and can be 

applied in a more general way, if preprocessing is 

becoming obsolete. It could be shown that the neural 

network was able to extract the necessary features 

directly from latitude and longitude values. Not only 

could the neural network learn the features, it was also 

able to identify flawed GPS data and only base its score 

on real vehicle movements. 

The rest of the paper will be structured as follows. The 

next chapter explores what is generally understood by the 

term driving style and describes in detail how it is defined 

in the context of this paper. It is also explained which 

parameters were identified as most influential for an 

educated assertion about the driving style. The chapter 3 

will give an overview of some related work. In chapter 4 

we will describe the problem formulation and discuss the 

challenges of our chosen approach. The following chapter 

number 5 will examine the details of the dataset, how the 

raw data is composed, the patterns which could be seen 

and how the processing of this data was implemented. It 

is also described how the labeled data was obtained. 

Chapter 6 will illustrate the Deep Learning algorithm 

including the software architecture, algorithmic 

improvements and implementation. The section about the 

architecture is supposed to give an impression how the 

hyper-parameters where chosen. Then the experiments 

and evaluations will be shown. To wrap things up we will 

discuss in chapter 7 our results and their possible use 

cases in other systems. 

II. DRIVING STYLE

The topic of driving styles is widely discussed in 

various research papers [8]. Among many others the most 

widely discussed topics are energy efficiency and road 

safety. As a result of the varying objectives, different 

definitions for the term driving style can be found in 

literature. This chapter will first explore the definitions 

found in literature and clarify some terms. Then we will 

formulate our definition of the term driving style in this 

paper and also describe in more detail how the new 

evaluation procedure works. 

A. Definitions

Since driving style is a complex concept it is necessary

to clarify some terminology to make sure the intended 

meaning of the terms is clearly understood. According to 

[8] one can differentiate between three influencing areas.

Driving conditions (like traffic, weather, vehicle, road,

etc.) are the first part, which mostly cannot be influenced

by a driver or any driver assistance. But nonetheless an

assistance tool could benefit from being aware of those

external conditions.

The second part is the driver level, where there are 3 

subcategories: driving skill influences the driving style 

which in turn can lead to a specific driving behavior. This 

part can be influenced through training of the driver as 

well as making the driver aware of sub-optimal behavior 

[9].  

The third part is the vehicle level. This part can be 

divided in driving events (acceleration, turn, break, etc.) 

which in sum, form the driving pattern (speed profile, 

lateral acceleration profile). When optimizing the driving 

pattern, one has to consider the goals of the optimization 

to achieve good results. Even though it seems plausible 

that an energy efficient or anticipating driving style also 

is beneficial for road safety, there are other parameters 

which need to be considered. For a safe driving style it is 

not sufficient to consider the speed profile and with that 

anticipation of the driver. Whereas speed is a big part, the 

lateral acceleration also needs to be evaluated considering 

the behavior in curvy parts of the driven route. According 

to [10] there is a strong correlation between efficiency, 

anticipation and safety. They could show that training in 

fuel-consumption-optimized driving also results in safer 

more anticipating and in general more defensive driving 

behavior. This suggests that an improvement in driving 

style is beneficial for various different objectives. 

B. Approach

This section will bring our approach in line with the

aforementioned definitions. The aim of this work is to 

develop a procedure which analyzes the driving behavior 

through the individual driving events. The aim is to give 

drivers advice on how to optimize their driving style and, 

in the best case, to increase their personal driving ability 

in the long term and thus lead to better driving behavior. 

The driving style classification here should judge a trip 

regarding energy efficiency. The concentration on power 

consumption is just a simplification since it is easier to 

measure opposed to a safe vs. unsafe driving pattern. 

Following are three analyzes which are available for 

the evaluation of the driving style: 

i. Rating for efficient speed

ii. Rating for efficient positive longitudinal 

acceleration 

iii. Rating for efficient negative longitudinal 

acceleration

In order to come up with a general way to judge a 

driving event, based on speed and acceleration we 

analyzed the main forces which oppose the vehicle during 

driving. Those are acceleration resistance, air drag and 

rolling resistance. Since the last one of those cannot be 

influenced by the driver we chose to ignore it in our 

analyzes. In order to evaluate the influence of the 

different factors we constructed very basic driving 

scenarios. The benchmark data were generated as follows: 

Our research car, a BMW i3 equipped with appropriate 

measurement and data acquisition hardware for the 

experiment, was used for different test drives. The 

driving duration was 60 seconds and the car was 

accelerated to a given speed. This target speed was 

maintained until the end of the test drive. The variables 

for the different experiments were acceleration and target 

speed. It was found that the acceleration duration didn’t 

influence the energy consumption directly (for simplicity 

of the experiment the state of charge was used to measure 
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the energy consumption). Because the acceleration 

resistance is always the same to reach a specific speed, no 

matter how high the acceleration is. The second finding 

was, that the acceleration resistance plays a much bigger 

role in the power demand compared to air drag. 

When we compare an example acceleration of 1 s m 2 

which results in 1350 N resistance to the air drag of 

different speeds, it becomes obvious that the air drag is 

only relevant on motorways. When driving 80 km/h the 

resistance energy is 82 N, with 100 km/h 330 N still a lot 

smaller than acceleration resistance. Only with a speed of 

200 km/h the air drag values are in the same range as the 

values from the acceleration resistance. The author of [3] 

also found that speed in itself does not cause large 

environmental problems in urban traffic, which agrees 

with our findings.  

Those findings gave rise to the idea of a new definition 

of an efficient driving pattern. The definition could be 

expressed in an informal way by saying “the more 

constant a driving pattern, the lower is the power 

demand”. If this idea is pursued, the frequency of the 

speed change is what gets ultimately evaluated. So we 

decided to approximate an optimal driving style with the 

help of a low-pass filter. To come up with the right filter 

criteria we found guidance values in [11]. Here the 

authors identified acceleration values below 2 s m 2 and 

speed below 80km/h as efficient. Those values were used 

to determine specific rules to evaluate the individual 

driving events. To validate the results two different tours 

were analyzed with regard to acceleration resistance. First 

with the actual speed profile and afterwards with the 

filtered speed profile. The resistance energy for the 

“defensive” tour almost didn’t change between actual and 

filtered signal. While the aggressive tour had a similar 

acceleration resistance as the “defensive” tour after 

filtering and a much lower acceleration resistance than 

the original tour. Those findings suggest that a plausible 

way to judge the driving behavior regarding energy 

efficiency was found and can be used. 

Figure 1.  Diagram of a speed profile. Visualizing the criterion to 
evaluate energy efficiency [7]. 

In Fig. 1 the speed profile is shown with two different 

filtered speed signals. With the goal of not punishing a 

normal driving pattern, 0.1Hz was found as a good fit for 

the Butterworth filter for our purposes. To evaluate the 

driving pattern we simply used the difference between the 

actual speed profile and the optimal speed profile 

obtained the filtered data. Another counter-intuitive 

finding was, that an eco-friendly driving doesn’t 

necessarily take up more time. At least in the way we 

defined an optimal driving pattern, since the average 

speed is not changed by the filter. This requires a highly 

anticipating driving style. To validate that our definition 

of judging the energy efficiency is a viable option in 

optimizing the driving style, we compared the optimal 

driving style with very energy efficient tours in the 

database. We discovered that they almost didn’t differ, 

which led us to the conclusion that we found a good way 

to rate the driving style. 

Figure 2.  On the left is an evaluated trip with efficiency values 
between 1 and 0. On the right side are all the accelerations in g 

visualized, which have the most impact on the evaluation result [7]. 

In Fig. 2 a graph of an evaluated trip also visualizing 

the encountered accelerations is shown. 

To get those results we had to find a way to interpret 

those speed deviations in a score between 1 and 0, where 

1 is very efficient and 0 worst case driving. In order to 

prevent people from causing traffic obstructions we 

decided to define a threshold, before a deviation is 

punished. If the deviation is below this threshold the 

driving style scores will not get worse. Additionally a 

maximum value was defined. The values between the 

threshold and maximum value got normalized to values 

between 1 and 0 and inverted, resulting in the desired 

score. To get an ongoing rating, a sliding window method 

was employed which gives a rating based on the last 3 

minutes, while weighting the most recent values higher 

than the older ones. 

To model also the air drag, we decided to use the 

threshold of 80km/h to decide how to judge the speed. 

All speed values below this value were ignored. Because 

of the quadratic nature of the air resistance we had to 

adjust the driving evaluation on higher speeds. We 

modeled a quadratic function between 80 and 200km/h 

where the lower bound speed gets a score of 1 and the 

latter gets rated with 0. To get the overall score the two 

scores get multiplied. This way acceleration has the most 

important effect on the result, only with very high speeds 

the overall score gets pulled down and therefore becomes 

worse. 

Those considerations form the basis for the learning 

algorithm. 
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III. RELATED WORK

Here we want to discuss related work and highlight the 

differences as well as suggest ideas for follow-up 

research. There are many researchers working on similar 

problems like [3], [5], [6], [9], [12]-[15]. They all 

propose systems which can make sense of vehicle 

movement. They all had very different goals and just as 

different were the approaches to achieve those goals. 

Those goals were: 

 To analyze driving styles in order to understand

the impact of different driving events on power

demand [3]

 Rate driving styles in regards to road safety [14]

 Identify risk level of different driving styles [5] [6]

 Identifying drivers by their driving style [9], [12],

[15]

 Categorizing different driving styles [13]

Some of the approaches rely on manual work to find

out the necessary features to reach their goals [3], [13]. 

The other papers rely on some sort of high level feature 

like speed or acceleration to train a machine learning 

algorithm. This suggests, that it is hard to extract useful 

findings from raw GPS data. Thus an interesting 

application field for deep learning algorithms. 

IV. PROBLEM FORMULATION

This chapter will clarify the purpose of the presented 

work. The goal is to achieve a driving style classification 

using raw GPS signals. According to [12] previous 

proposed solutions relied on preprocessing and feature 

extraction. All the solutions we have looked at rely on 

some preprocessed features like acceleration, jerk, speed 

etc. Because they discovered that the chosen learning 

algorithms could not handle the raw latitude and 

longitude values directly. But it is an interesting field to 

apply deep learning, which in other fields proved to be 

able to learn different abstraction levels of features from 

input data [16]. 

This is a supervised learning scenario in which the 

algorithm learns to use GPS data in order to rate a driving 

style with respect to energy efficiency. Before training 

this model it is necessary to get labeled data. The most 

obvious way would be to let drivers judge, but in the case 

of driving style the subjective feeling about the effects 

may differ significantly from person to person. 

Considering this, it is a bad basis for a learning algorithm. 

So we used the evaluation algorithm developed in our 

research group at the University of Kempten as described 

above. This procedure is used to label all the available 

training data. Hereby the learning algorithm cannot 

achieve more energy efficient results than the developed 

offline concept, but we can show how well the deep 

learning model can work with raw and flawed GPS input 

data, to model the vehicles’ trajectories. 

Such a neural network, which can model the vehicle 

movements can be useful for a great variety of scenarios. 

For example car manufacturers who need to optimize 

energy consumption, design driver assistance systems or 

develop car-to-car communication systems which could 

model an optimal traffic flow based on individual vehicle 

data. 

V. DATASET 

Within this chapter the problems with the raw input 

data are described as well as how the data gets processed. 

Finally it is shown how the results were validated. 

A. Cleaning GPS Data

Figure 3.  Blue: flawed GPS signal with a typical point cloud. Red: 
cleaned GPS signal. 

One of the most significant things to consider in a 

machine learning environment are the datasets used for 

training and evaluating the architectures. In the following 

part the GPS data will be described in detail, discussing 

the main challenges arising from working with data from 

GPS sensors. There are three main errors discovered 

while working with the GPS data. These are point clouds, 

zero jumps and time gaps. Point clouds mostly occur at 

very low speeds or if the vehicle stands still in one place 

for some time. The result can be seen in Fig. 3. We can 

see the blue line, coming to and going from the parking 

lot, where the car went into an underground carpark. This 

causes the GPS signal to generate extensive point clouds. 

Those GPS jitters do not represent any car movement and 

should therefore be removed from the data. The second 

error source are zero jumps, where the GPS sensor 

returns a value of (0, 0) or (0, -90) for latitude and 

longitude, which means that an internal sensor error was 

encountered. The time gaps can be the result of a sensor 

error or an error in the logging component which records 

all vehicle data.  

The last two error cases are straightforward to fix. The 

zero jumps just get removed. For the time gaps we 

decided to linearly interpolate between the existing points. 

The point clouds are a lot harder to identify correctly and 

clean up. Two features which can help to identify those 

faulty GPS values are very low speed values (mostly < 3 

km/h) in combination with extreme changes in angle. For 

generating the labeled data we found, that we could 

develop a quite reliable algorithm to remove the point 

clouds by only considering the speed profile. The rules 

were simple: remove points, if a higher speed occurs, 

check whether it belongs to a plausible acceleration then 

include all points from this acceleration, otherwise keep 

removing those measured points. Finally all GPS points 
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were filtered with a Butterworth filter, because the 

smallest of deviations in latitude and longitude can lead 

to high lateral and longitudinal acceleration. The used 

filter was a low pass filter with filter degree of 1 and 

cutoff frequency of 0.1 Hz. To eliminate signal delay in 

the data, the filter was applied bidirectional.  

Those manual corrections are only applied to generate 

the labels for the driving style and are not the source for 

the learning algorithm, which is supposed to identify 

those errors and handle the data accordingly. 

B. Manual Feature Extraction

This section describes the extraction of the necessary

features for the evaluation algorithm. (Fig. 4) 

Figure 4.  Calculation of lateral and longitudinal acceleration of the 
vehicle, from the GPS data [7]. 

With the GPS sensor there are different values which 

can be obtained. The following values are relevant for the 

driving style evaluation: timestamp of the value, latitude, 

longitude, altitude, speed and signal accuracy. Those 

values are in raw form not enough for the evaluation 

algorithm. But the speed profile, lateral and longitudinal 

acceleration as well as deceleration are needed. Those can 

be obtained by the means of the following equations 

developed in [7]:
GPS input: 

𝜙1 = 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒  (1) 

𝜆1 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒  (2) 

𝑡1 = 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒    (3) 

Distance between degree of latitude and degree of 

longitude: 

𝑠𝜆1 = 111300 𝑚 ⋅ 𝑐𝑜𝑠(𝜙𝑡)   (4) 

𝑠𝜙𝑡 = 111300 𝑚  (5) 

Calculation of the distance traveled in x-direction: 

𝑠𝑥𝑡 = (𝜆𝑡+1 − 𝜆𝑡) ⋅ 𝑠𝜆𝑡                      (6)

Calculation of the distance traveled in y-direction: 

𝑠𝑦𝑡 = (𝜙𝑡+1 − 𝜙𝑡) ⋅ 𝑠𝜙𝑡                     (7)

Calculation of the distance traveled in driving direction: 

𝑠𝑡 = √𝑠𝑥𝑡
2 + 𝑠𝑦𝑡

2      (8) 

Calculation of the speed traveled in x- and y-direction: 

𝑣𝑥𝑡 =
𝑠𝑥𝑡+1−𝑠𝑥𝑡

𝛥𝑡
   (9) 

𝑣𝑦𝑡 =
𝑠𝑦𝑡+1−𝑠𝑦𝑡

𝛥𝑡
      (10) 

Calculation of the speed traveled in driving direction: 

𝑣𝑡 = √𝑣𝑥𝑡
2 + 𝑣𝑦𝑡

2     (11) 

Calculation of the unit vectors for speed: 

𝑣0x = −𝑣0𝑦   (12) 

𝑣0𝑦 = +𝑣0𝑥   (13) 

Calculation of the normal vectors for speed: 

𝑛0𝑥 =
𝑣𝑥𝑡+1

𝑣𝑡
     (14) 

𝑛0𝑦 =
𝑣𝑦𝑡+1

𝑣𝑡
   (15) 

Calculation of the acceleration share in x- and y-

direction: 

𝑎𝑥𝑡 =
𝑣𝑥𝑡+1−𝑣𝑥𝑡

𝛥𝑡
  (16) 

𝑎𝑦𝑡 =
𝑣𝑦𝑡+1−𝑣𝑦𝑡

𝛥𝑡
  (17) 

Calculation of longitudinal and lateral acceleration: 

0 0t t x t yl x ya a n a n     (18) 

All the described preprocessing and data enriching 

where implemented according to the formulas in a Python 

program and validated. 

C. Validation

In this section it will be described how the results of

the extracted features were validated. First, all the 

encountered values were validated against the values 

occurring in normal driving situations which are 

acceleration values up to 2.45 s/m
2
 [17]. In order to make 

a reliable statement about the quality of the calculated 

values it was necessary to compare them to values of an 

actual acceleration sensor. In Fig. 5 and 6, the calculated 

values get compared to the sensor values. 

Figure 5.  Red: longitudinal acceleration from the sensor. Blue: 
calculated values [7]. 

Figure 6.  Red: lateral acceleration from the sensor. Blue: calculated 
values [7]. 
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When examining the figures, it is noticeable that the 

shape is roughly the same. Only single extreme 

amplitudes do not get modeled by the calculated values. 

For the purpose of the driving style analysis those peaks 

should not be relevant. Since those peaks most likely 

stem from uneven or bumpy road surface or little jerks at 

the steering wheel which cannot be captured through GPS 

signals. 

VI. THE MODEL

This chapter describes how the used algorithm was 

built, which improvements were made and how they 

affect the result. Since Deep Learning has a great number 

of hyper-parameters, it is a hard task to find the optimal 

configuration. The search has to be done heuristically, 

because a brute force approach would take a long time. 

First, a few scenarios were built up to test the system with 

different hyper-parameters. After a reasonable 

configuration was found some further optimizations were 

included. 

A. Intuition

To get to grips with the first idea of how to design the

architecture, it is worthwhile to look into the necessary 

performance requirements of the underlying network. In 

the area of computer vision there has been done some 

interesting work to better understand the learning process 

in a neural network. The authors of [18] proposed an 

approach where they visualized the weights of the hidden 

layers to get an insight for what kind of input they are 

activated. This was the motivation to try and work out an 

architecture which can represent the features, which we 

were trying to find with the manual approach, for a 

Recurrent Neural Network architecture.  

If we think about the different requirements of the 

network, the first one is to iron out the GPS errors. So it 

seems natural that one layer will learn to identify the GPS 

errors. The next layer of abstraction is the feature 

extraction, where the algorithm has to learn to model the 

accelerations and speed from the GPS input. Based on 

this there is one more level of abstraction which learns 

the driving style evaluation based on the output of the 

previous layer. The thing which is quite hard to estimate 

is the number of cells in each layer, because it is not 

obvious how many different features have to be learned 

from the input data. Some guesses are: fast and slow 

acceleration/deceleration, speed below the defined 

threshold and above. To better understand the inner 

workings of the RNN we tried to analyze the learned 

weights. Nevertheless it is not easy to find those features 

for this scenario, analogous to the feature identification in 

a Convolutional Neural Network. The field of visually 

understanding the trained model of RNNs has a lot of 

potential.  

Having this in mind we tried to use 2 to 3 layers of 

RNN-cells and a fully connected output layer. For the 

number of cells per layer some experiments are required. 

B. Hyperparameters

These are the parameters that control the overall

behavior of the neural network, but cannot be learned by 

itself and have to be chosen by the developer. Choosing 

the right hyper-parameters is no a straightforward task 

which can be done with some fixed set of rules. LeCun 

identified a set of heuristics to choose optimizations [19]. 

Nonetheless there are no scientific results that can guide 

oneself through the design process of the complete 

algorithm [20]. Most developers trust their intuition to 

find the right parameters. Some of the more important 

factors are: 

 Way of initializing the weights

 Kind of architecture

 Number of layers

 Number off cells in each layer

 Regularization parameters

 Learning rate

 Way of backpropagating the error

 Dropout rate

 Weight decay

 Early stopping

The obvious approach would be a grid search, which in

the naive approach is a brute force way in which every 

single combination of hyper-parameters gets tested. The 

network is trained for every combination, but this is not a 

viable path for most tasks, since the training time for one 

model is in most cases really high. To reduce the number 

of combinations it is good to know the problem domain 

as deeply as possible, so one can reduce the parameters to 

test, or at least restrict the range of values. 

Weight initialization has a major impact on the training 

success and also training speed. The researchers in [21]-

[24] worked on good ways to do the initial weighting.

The basic idea is to give the neural net the best possible

starting point to improve fast. The weights should be

chosen randomly, but stay in a range where the activation

function for the neurons is almost linear. If the weights

are too big or too small, the gradient will be small and

therefore the training progress will get slow. If the

weights are chosen appropriately the network can start

with fast learning progress and only later on has to learn

the more complex non-linear parts [19].

The above discussed optimal range of values does not 

only apply to the activation function, but also to the input 

data. It would be a disadvantage if all the input data 

would be very big, since it would prevent the gradient 

based learning. It is therefore a good idea to transform the 

values in such a way that they are small and in average 

equal to 0. It can be advantageous to apply this heuristic 

to every layer of the network [25]. This process is called 

Batch Normalization. In [26] the problem of Internal 

Covariate Shift is described. This behavior occurs in deep 

architectures and can be prevented by means of layer 

wise batch normalization. For LSTM networks a 

normalization to values between 0 and 1 is most widely 

used [27]. 

The choice of the activation function also has a major 

impact. This becomes clear when considering the fact that 

every neural network which uses only linear activation 

functions can be reduced to a single perceptron [28]. In 

the LSTM cells there are multiple activation functions 

required which ideally only return 0 or 1 which can be 
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modeled by sigmoidal functions. To prevent the 

vanishing gradient problem a function like tanH is a good 

fit for the LSTM Networks [29]. 

The works of [30]-[33] did a lot of research for how to 

adapt the learning rate throughout the training. But it was 

not until [34] found an easy and efficient way to find a 

good learning rate. This approach starts with a low 

learning rate, and after each step it doubles the learning 

rate. Then it measures the loss and takes the value were 

the loss function improved the most. 

For all Recurrent Neural Networks one needs a special 

implementation of the backpropagation algorithm, since it 

has to consider the recurring part of each cell. For this 

purpose [35] proposed a variant which unfolds the time 

steps to a “normal” neural network, and adjust all weights 

for a unfolded recurrent cell at once. 

Then there are other parameters which can help the 

algorithm to prevent from overfitting like dropout, where 

a chosen rate of the neurons won’t get used during a 

given training step. This way the network needs to be 

more flexible and learn a more robust representation of its 

function [36]. The authors of [33] showed that a simple 

weight decay can improve the generalization capability of 

a neural network. 

Another useful tool is early stopping, which simple 

stops the learning if the loss function doesn’t improve 

anymore. 

C. Implementation

First it was necessary to choose a suitable network

architecture. We tried some shallow learning algorithms 

like, random forest and SVM but those were not able to 

get any meaningful information extracted from the input 

data. Afterwards a standard MLP was used to handle the 

problem, but both approaches were not promising without 

further data preprocessing. This is what we expected 

since it is not possible to achieve meaningful results 

based on single acceleration- or speed values. Only if the 

history based on the last x time steps are considered, a 

procedure is able to judge the driving style. The only 

thing those algorithms were able to learn was the speed 

dependent part of the driving style score, which is 

obvious because it is not dependent on previous values. 

Those tests showed that some sort of Recurrent Neural 

Network was necessary. Since the LSTM networks are 

widely used in the domain of timeseries prediction this 

network architecture was chosen. 

The whole software project was implemented in the 

programming language Python and the Deep Learning 

framework Keras. This setup made it easy to quickly test 

any given combination of algorithmic improvements and 

hyper-parameters. 

VII. EXPERIMENTS & EVALUATION

To get an impression what kind of results the network 

can give, three different scenarios were build up. In each 

scenario the labels were the preprocessed driving styles, 

only the input data was varied: 

 All GPS- and feature channels

 Acceleration values and speed

 Raw GPS data

The first scenario was designed to see whether the

algorithm was able to get useful results based of this big 

amount of data. But the result was a high bias network, 

which always returned a near perfect driving style with 

values close to 1. This is most likely due to the high 

complexity with the big amount of input data. In this 

scenario the number of layers and cells was incrementally 

enlarged until it became unfeasible to run the experiments 

because of the time and hardware constraints. The 

validation loss could not be improved. In fact the contrary 

happened. It became worse. If one would want to pursue 

this path, bigger networks and really big datasets would 

be needed. 

To improve the results in the second scenario the 

number of inputs was reduced to the channels which were 

known to have an effect on the results, namely 

acceleration/deceleration and speed values. The result is 

shown in Fig. 7. This result shows, that the algorithm is 

able to model the driving style evaluation. It is not 

exactly the same, but the similarity is good and reliable 

enough to use it for training of drivers. In this case the 

number of cells and layers was also raised to the point 

where no significant improvement in validation loss was 

apparent. In this case there were 3 layers with 10 LSTM 

cells each. 

Figure 7.  Orange: label for the training data. Blue: the score prediction from the neural net. 
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Finally the third scenario was applied which should 

model the same output as the second scenario, only with 

the raw GPS input. The naive approach was to take the 

same network architecture as in the previous scenario and 

just give the latitude and longitude values as input data. 

All the hyper-parameters and optimizations remained 

unchanged. The algorithm was able to learn the function 

without any changed precision compared to the approach 

with the preprocessed features. This shows the power of 

Deep Learning methods and in this case of the LSTM 

cells. Because the developer doesn’t need to know the 

individual properties that are required for the evaluation, 

but the network learns the different layers of abstraction 

on itself. It only took about 5 to 7 additional epochs of 

training to get to the same results. Based on these 

findings the rest of the hyper-parameters were tried out to 

improve performance and accuracy. The algorithm 

showed to perform better with a dropout rate of 0.5 and 

with reducing the learning rate on plateaus. Additionally 

early stopping was used to ensure that no unnecessary 

training steps were performed. 

VIII. CONCLUSION

We presented a system which leverages the 

possibilities of deep Recurrent Neural Networks, 

specifically LSTM networks, to make assertions about a 

driving style based on raw GPS signals. This means it is a 

system which can handle error-prone and incomplete 

GPS signals. It can generate a meaningful representation 

of the vehicle trajectory, in the hidden layers, and make 

assertions about the energy efficiency of the observed 

driving patterns. This is a very useful tool for many 

different applications. A possible application can be a 

systematic approach to find driving style categories for 

insurance companies, which want to have different 

insurance rates depending on the driving style. Another 

application can be training instructions for people to drive 

in a safe and economic way. Other applications could be 

found, where faulty sensor signals, which follow an 

identifiable pattern need to be handled. It could also help 

in a great variety of driver assistance systems or 

autonomous driving scenarios where a model of the 

vehicle trajectory is needed. 
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