

160© 2019 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 10, No. 4, November 2019

doi: 10.12720/jait.10.4.160-164

Numerically Simulating the Solar System in

Mathematica

Charles Chen
Northwood High School, Irvine, USA

Email: charlesbattlechen@gmail.com

Abstract—The planetary motion within our solar system is a

topic that has been studied for hundreds of years and has

given rise to the science of astronomy. It is very important

to know the positions of the planets in our solar system, as

many of our current scientific research depends on it. Space

exploration, for example, is a perfect example of when we

need to know the exact positions of the planets in our solar

system. Since it takes many years to send a rover or satellite

to a planet, we will need to be able to predict the position of

that planet many years into the future. Therefore, I present

a second order Runge-Kutta simulation to predict the

future position and velocity of the planets in our solar

system based on Newtonian laws of motion. The equations

of motion are implemented into a Mathematia script which

animates the motion of each planet by generating a single

static plot at each iteration within the while loop, stepping

forward in time, re-plotting overtop the previous frame.

This step-by-step numerical simulation is typically

overlooked as an animation technique available in

Mathematica. I herein provide an introduction to the

software, an intuitive comparison of numerical vs analytical

solutions to differential equations, and finally present the

results of the simulation. 

Index Terms—Mathematica, Newton’s second law of motion,

Runge-Katta, Universal Law of Gravitation

I. MATHEMATICA

Mathematica is a mathematical computation software

that uses the Wolfram programming language, and it

offers better symbolic manipulation than many other

programming languages. Mathematica documents are

called ‘notebooks’ and are organized into cells that can

be individually evaluated. The Wolfram language has

many built in functions, but it also allows the creation of

custom functions. Functions make use of the fact that

Wolfram is case-sensitive by using capital letters for

built-in functions, which is why it is good practice to start

custom functions and variables with lowercase letters. In

order to define a custom function, 𝑓[𝑥−]: = is used.

Variables in Mathematica work like variables in any

other programming language and are defined by using the

‘set’ assignment operator 𝑣𝑎𝑟 = . Modules in

Mathematica allows different programs to not conflict

with each other by localizing the scope of variables used

in the program, as the default scope for Mathematica

Manuscript received May 11, 2019; revised September 26, 2019.

variables is global across all notebooks. This works by

assigning a serial number $𝑠𝑛𝑛𝑛 to the end of all variable

names, making them unique.

Due to its user-friendly notebook format, Mathematica

is commonly used as an elaborate graphing calculator and

sometimes overlooked as a programming language for

numerical simulations. Furthermore, Mathematica’s

selection of helpful built-in functions such as “Animate”,

“Manipulate”, and “Dynamic”, which allow the user to

control input parameters (via a slide bar) for graphical

plots of analytic functions, often cause users to overlook

Mathematica’s ability to animate numerical solutions in

real time. The code presented in this paper shows a

creative method to achieve step-by-step, real time

animations by updating a particle’s position in a while

loop. To highlight the difference between analytical and

numerical solutions, this paper begins with a discussion

on differential equations, using the spring-mass system as

an example. The spring-mass problem is solved both

analytically and numerically to demonstrate the

difference between the two approaches.

II. DIFFERENTIAL EQUATIONS: ANALYTIC VS

NUMERICAL SOLUTIONS

A differential equation is any equation that involves

the derivative of a function, with the derivative being the

instantaneous rate of change of a function. Take for

example:
𝑑𝑦(𝑥)

𝑑𝑥
= 3𝑥5

Notice the solution to the above differential equation is

itself a function, 𝑦(𝑥). This is true for all differential

equations. Due to the time-derivative relationship

between acceleration, velocity, and position, any physical

system wherein the position is affected by the velocity or

acceleration (i.e. essentially physical systems) will be

described by a differential equation.

There are two approaches to solving differential

equations, analytical and numerical. The difference

between analytical and numerical solutions is that

analytical solutions are more accurate, as their solutions

are continuous functions, while numerical solutions are

discrete functions. However, many real-life situations

must be solved numerically, as their analytical solution

either does not exist or is too difficult to solve for. A

common real-world example where the analytical

solution of a differential equation does not exist would

the Blasius equation, used in fluid mechanics: 𝑓′′′ +
1

2
𝑓𝑓′′ = 0 [1].

In order to demonstrate the two ways of solving

differential equations, a simple spring-mass system will

be used. Since a spring-mass system is much simpler

than the solar system, it serves as an effective example to

highlight the difference between the two methods.

The example system that will be used is a horizontal

spring with a mass on the end of it, resting on a

frictionless surface with no gravity involved. The goal is

to solve for the spring’s exact motion in time 𝑥(𝑡), given

an initial position 𝑥(𝑡 = 0) = 𝑥0 and an initial velocity

𝑣(𝑡 = 0) = 𝑣0 (schematic shown in Fig. 1).

Figure 1. Schematic of a simple spring-mass system.

To solve for 𝑥(𝑡) analytically, it is important to note

that velocity is the derivative of position as a function of

time, and acceleration is the derivative of velocity as a

function of time. Therefore, 𝑣 =
𝑑𝑥

𝑑𝑡
 and 𝑎 =

𝑑𝑣

𝑑𝑡
 [2]. Thus,

acceleration is equal to the double derivative of position

as a function of time, 𝑎 =
𝑑2𝑥

𝑑𝑡2. Newton’s second law of

motion states that 𝐹 = 𝑚𝑎, and Hooke’s law states that

 𝐹 = −𝑘𝑥, where k is the force constant of a spring and x

is the displacement of the spring from its equilibrium

position. Setting the forces of the equations above equal

to each other gives the equation −𝑘𝑥 = 𝑚𝑎 . Setting

acceleration to be the second derivative of position with

respect to time, and dividing by 𝑚, gives the following

differential equation:

−
𝑘

𝑚
𝑥 =

𝑑2𝑥

𝑑𝑡2 (1)

Although it looks complicated, the equation simply

means that the second derivative of 𝑥 (t) is the same

function, 𝑥(𝑡), multiplied by a constant, −
𝑘

𝑚
. With this

new information, an ansatz that 𝑥(𝑡) = 𝐶𝑒−𝑖𝐴𝑡 can be

made. Plugging this ansatz into the different equation

results in −
𝑘𝐶𝑒−𝑖𝐴𝑡

𝑚
=

𝑑2(𝐶𝑒−𝑖𝐴𝑡)

𝑑𝑡2 . Taking the first

derivative of 𝐶𝑒−𝑖𝐴𝑇 gives −𝑖𝐴𝐶𝑒−𝑖𝐴𝑡 , and taking the

second derivative of that gives 𝐶𝐴2𝑒𝑖𝐴𝑡, which can then

be substituted back into the equation, giving 𝐶𝐴2𝑒−𝑖𝐴𝑡 =

−
𝑘𝑒−𝑖𝐴𝑇

𝑚
. Diving both sides by 𝐶 𝑒−𝑖𝐴𝑡 gives the equation

𝐴2 =
𝑘

𝑚
, which means:

 𝑥(𝑡) = 𝑒
−𝑖√ 𝑘

𝑚
𝑡

 →

 𝑥(𝑡) = 𝐴 cos √
𝑘

𝑚
𝑡 − 𝑖𝐵 sin √

𝑘

𝑚
𝑡 (2)

here, Euler’s identity has allowed to the exponential to be

rewritten in terms of oscillating sine and cosine functions

[3]. The unknown complex constants A and B are easily

solved for when the initial conditions of the system are

known. One can substitute 𝑥(𝑡) → 𝑥0 and 𝑡 → 0, as well

as 𝑣(𝑡) → 𝑣0 and 𝑡 → 0 to yield two equations with two

unknowns, solve for A and B, and obtain an exact

solution for 𝑥(𝑡) at all times.

To highlight the difference between analytical and

numerical solutions, the numerical solution to the same

problem is now presented. Again, the goal is to find an

unknown 𝑥(𝑡) given a set of initial conditions: 𝑥(𝑡 =
0) = 𝑥0 and 𝑣(𝑡 = 0) = 0. In other words, “what is the

motion of a mass after an initial perturbation?”

First, the horizontal axis (time) is broken into discrete

segments, as shown above in Fig. 2, and each 𝑥(𝑡) must

have some value at each point: {𝑥1 , 𝑥2 , 𝑥3 …}. Next, it is

assumed that the slope (i.e. derivative) between two

neighboring points 𝑥𝑛 and 𝑥𝑛+1 is simply the slope of a

line that connects the two points, these are shown as red

lines in Fig. 2. The slope of a line is given by mnemonic

“rise over run”, or slope ≈
𝑥𝑛+1−𝑥𝑛

𝑡𝑛+1− 𝑡𝑛
. Since velocity is the

derivative (i.e. slope) of position with respect to time, the

following equation is obtained:

𝑥𝑛+1−𝑥𝑛

𝑡𝑛+1− 𝑡𝑛
= 𝑣𝑛 (3)

Since acceleration is the derivative of velocity with

respect to time:
𝑣𝑛+1−𝑣𝑛

Δ𝑡
= 𝑎𝑛 (4)

where Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 has been substituted in. From

Newton’s second law, the acceleration of the mass must

be –
𝑘𝑥

𝑚
:

𝑣𝑛+1−𝑣𝑛

Δ𝑡
= −

𝑘

𝑚
 𝑥𝑛 (5)

Solving for 𝑥𝑛+1 and 𝑣𝑛+1 results in 𝑥𝑛+1 = 𝑣𝑛Δ𝑡 +

𝑥𝑛 and 𝑣𝑛+1 = −
𝑘𝑥

𝑚
Δ𝑡 + 𝑣𝑛 . These final two equations

are well suited for computation. A while loop can be

implemented to continuously calculate the new position

and velocity {𝑥𝑛+1, 𝑣𝑛+1} using the previous position and

velocity {𝑥𝑛 , 𝑣𝑛}.

As simple as Euler’s method is, it isn’t the most

accurate, as one side of the equation is centered with time,

and the other side isn’t. For example, in
𝑥𝑛+1−𝑥𝑛

Δ𝑡
= 𝑣𝑛,

the left side is centered halfway between 𝑡𝑛+1 and 𝑡𝑛 ,

while the right side is centered at 𝑡𝑛. Runge-Kutta is one

solution to the issue, which attempts to solve the issue by

centering both sides of the equation at the same 𝑡 through

a half step using Euler’s method to get 𝑥 and 𝑣 at 𝑡𝑛+1/2 ,

which can later be used to more accurately solve for the

next step. Applying this to the spring-mass system results

in 𝑣ℎ𝑎𝑙𝑓 = −
𝑘𝑥

𝑚
∗ Δ𝑡ℎ𝑎𝑙𝑓 + 𝑣𝑛 and 𝑥ℎ𝑎𝑙𝑓 = 𝑣𝑛 ∗ Δ𝑡ℎ𝑎𝑙𝑓 +

𝑥𝑛, which are then used to solve for the next step with

𝑥𝑛+1 = 𝑣ℎ𝑎𝑙𝑓 ∗ Δ𝑡 + 𝑥𝑛 and 𝑣𝑛+1 = −
𝑘𝑥ℎ𝑎𝑙𝑓

𝑚
∗ Δ𝑡 + 𝑣𝑛.

161© 2019 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 10, No. 4, November 2019

Figure 2. Graphical representation of Euler’s method applied to find an unknown function x(t).

III. NUMERICAL SIMULATION OF THE SOLAR SYSTEM

Moving on to the solar system, the mathematics is very

similar to the mathematics in the spring-mass system. As

there are many factors to consider in a system with

multiple items, the system will be solved for numerically.

Starting with Newton’s second law of motion 𝐹 = 𝑚𝑎,

and Newton’s universal law of gravitation 𝐹 =

−𝐺
𝑚𝑝𝑙𝑎𝑛𝑒𝑡𝑚𝑠𝑢𝑛

𝑟2 , the two equations can be substituted,

then solved for acceleration, giving the equation:

𝐹⃗ = −𝐺
𝑚𝑝𝑙𝑎𝑛𝑒𝑡 ∗ 𝑚𝑠𝑢𝑛

𝑟2
 𝑟̂ = 𝑚𝑝𝑙𝑎𝑛𝑒𝑡𝑎 ⃗⃗⃗ ⃗ ⟹ 𝑎⃗ = −𝐺

𝑚𝑠𝑢𝑛

𝑟2
 𝑟̂

(6)

Noting that the mass of the planet cancels out. Using

the fact that velocity is the derivative of position over

time, the following formula is given:
𝑥𝑛+1−𝑥𝑛

𝑑𝑡
= 𝑣𝑥𝑛 ,

where 𝑥 can be replaced by 𝑦 to find the vertical vector.

This equation can be solved for 𝑥𝑛+1 , resulting in the

equation:

𝑥𝑛+1 = 𝑣𝑥 ∗ 𝑑𝑡 + 𝑥𝑛

Now using the fact that acceleration is the derivative

of velocity over time, gives the equation −𝐺
𝑚𝑠𝑢𝑛

𝑟2 =
𝑣𝑛+1+𝑣𝑛

𝑑𝑡
, and solving for 𝑣𝑛+1 gives the equation 𝑣𝑛+1 =

𝐺
𝑚𝑠𝑢𝑛

𝑟2 ∗ 𝑑𝑡 + 𝑣𝑛 . However, as the simulation is two-

dimensional, the equation for velocity needs to be split

into 𝑣𝑥 and 𝑣𝑦. To do this, the scalar 𝑎 is multiplied by its

unit vector, 𝑎̂, to get vector 𝑎⃗. The unit vector is found by

summing the 𝑥 and 𝑦 vectors of the planet, and dividing

by the magnitude of 𝑟 |𝑟| = √𝑥2 + 𝑦2

means that 𝑟̂ =
−𝑥−𝑦̂

√𝑥2+𝑦2
. Together, this gives the equations:

𝑣𝑥+1 = 𝐺
𝑚𝑠𝑢𝑛

𝑥2+𝑦2 ∗
−𝑥

√𝑥2+𝑦2
∗ 𝑑𝑡 + 𝑣𝑥 (7)

Using Runge-Kutta, the half steps of the previous

equations are then taken, giving the final equations:

𝑝ℎ𝑎𝑙𝑓 = 𝑣𝑝 ∗ 𝑑𝑡ℎ𝑎𝑙𝑓 + 𝑝𝑛 (8)

𝑣𝑝ℎ𝑎𝑙𝑓 = 𝐺
𝑚𝑠𝑢𝑛

𝑥2+𝑦2 ∗
−𝑝

√𝑥2+𝑦2
∗ 𝑑𝑡ℎ𝑎𝑙𝑓 + 𝑣𝑝 (9)

𝑝𝑛+1 = 𝑣𝑝ℎ𝑎𝑙𝑓 ∗ 𝑑𝑡 + 𝑝𝑛 (10)

𝑣𝑝+1 = 𝐺
𝑚𝑠𝑢𝑛

𝑥ℎ𝑎𝑙𝑓
2 +𝑦ℎ𝑎𝑙𝑓

2 ∗
−𝑝ℎ𝑎𝑙𝑓

√𝑥2+𝑦2
∗ 𝑑𝑡 + 𝑣𝑝 (11)

where 𝑝 can be replaced by either 𝑥 or 𝑦 depending on

the component that is being found. These last four

equations are good for computational purposes, so given

the initial positions and velocities of planets, as well as

universal gravitational constant 𝐺 , the equations can

predict the future positions the planets.

It should be noted that there are factors of

consideration that have not been accounted for; however,

these factors do not produce a significant impact on the

results. One assumption that is made about planetary

movement is that the planets move in two dimensions

(snapshots of the animation are shown in Fig. 3). In

reality, the solar system exists in three dimensions, but

due to the common orbital angular moment of the gas

cloud that evolved into the solar system, the planets

rotate in a single 2-D plane to a good approximation. At

most, the orbital inclinations of the celestial planets only

differ by 7
o
 with respect to on another, meaning very little

accuracy is sacrificed in making this assumption [4]. A

second assumption that is made is that the planets only

feel a gravitational attraction to the sun. However, since

the mass of the sun is far greater than any other object in

our solar system, with the second most massive thing,

Jupiter, being 1000 times less massive, a largest

gravitational force a planet feels will be coming from the

sun.

162© 2019 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 10, No. 4, November 2019

, where . This

Before entering the initial values of all the planets into

the code, the units of these values must be converted so

Mathematica can run the simulation without having to

deal with numbers that tens of digits long, thousands of

times per second. To do this, all the distances were

originally in meters, and were brought down by 109 .

Times, originally in units of seconds, were divided by

33554.5, in order to set the velocity of the Earth at unity.

The units of mass were kept at kilograms, as only the

mass of the sun is ever used. The gravitational constant

(units of m
3
kg

-1
s

-2
) was converted to a value of 𝐺 =

7.514 ∗ 10−29 so as to incorporate the distance and time

conversions used.

IV. CONCLUSION

Since the employed algorithm only used second-order

Runge-Kutta and simplified the assumptions used

(circular orbits in a two-dimensional plane), the presented

simulation is less accurate than state of the art numerical

simulations of the solar system, e.g. Runge-Kutta-

Nystrom algorithms used by NASA [5]. However, the

final script (attached at bottom of this paper), maintained

impressive accuracy, matching true orbital patterns to

within roughly ± 0.15 earth years for 40 earth years into

the simulation. Fig. 3 shows the position of the planets

from 0 to 100 years into the future. The overall accuracy

of each planet is inversely proportional to its orbital

period, meaning the planet with the shortest period,

Mercury, is the first to deviate from its true orbit. If there

exists even a slight discrepancy between the initial

velocity and the initial position of the planet, then the

planet will be thrown off axis very easily. This problem

may be fixed if a higher order Runge-Kutta had been

used. This simulation uses second-order Runge-Kutta,

only taking the half step once, but a higher order, e.g.

sixth-order Runge-Kutta could help even out the

inaccuracies. Excluding Mercury, the other planets stay

in orbit for ~500 years before being thrown off axis.

Figure 3. Snapshot of animation after (a) 0 years (b) 1 year (c) 50 years and (d) 100 years.

The central purpose of this study, to develop a flexible

method for simulating and animating physics in

Mathematica was met. Although this paper only

explicitly deals with the spring-mass system and celestial

bodies orbiting the sun, the script (attached below) can be

easily modified to simulate any number of physical

phenomenon by substituting the necessary force in Eq. 6

and following the subsequent steps of Euler’s (or Runge-

Kutta’s) method outlined in the paper.

ACKNOWLEDGMENT

The author would like to thank his family and friends,

especially Kameron, for their help. He would also like to

thank his high school physics teacher for piquing his

interest in physics.

REFERENCES

[1] J. He, “Approximate analytical solution of Blasius' equation,”

Communications in Nonlinear Science and Numerical Simulation,
vol. 3, no. 4, pp. 260-263, 1998.

[2] W. Thomson, Theory of Vibration with Applications, CRC Press,

2018.
[3] N. H. Asmar, Partial Differential Equations with Fourier Series

and Boundary Value Problems, Courier Dover Publications, 2016.
[4] C. D. Murray and S. F. Dermott, Solar System Dynamics,

Cambridge University Press, 1999.
[5] J. R. Dormand and P. J. Prince, “New Runge-Kutta algorithms for

numerical simulation in dynamical astronomy,” Celestial
Mechanics, vol. 18, no. 3, pp. 223-232, 1978.

163© 2019 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 10, No. 4, November 2019

Charles Chen was born in New Brunswick,

NJ, USA in September 2001. He graduated

from Northwood High School. Now he

currently enrolled at University of California,
Berkeley. His research interests include

Computational Physics and Applied

Mathematics.

164© 2019 J. Adv. Inf. Technol.

Journal of Advances in Information Technology Vol. 10, No. 4, November 2019

