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Abstract—The planetary motion within our solar system is a 

topic that has been studied for hundreds of years and has 

given rise to the science of astronomy. It is very important 

to know the positions of the planets in our solar system, as 

many of our current scientific research depends on it. Space 

exploration, for example, is a perfect example of when we 

need to know the exact positions of the planets in our solar 

system. Since it takes many years to send a rover or satellite 

to a planet, we will need to be able to predict the position of 

that planet many years into the future. Therefore, I present 

a second order Runge-Kutta simulation to predict the 

future position and velocity of the planets in our solar 

system based on Newtonian laws of motion. The equations 

of motion are implemented into a Mathematia script which 

animates the motion of each planet by generating a single 

static plot at each iteration within the while loop, stepping 

forward in time, re-plotting overtop the previous frame. 

This step-by-step numerical simulation is typically 

overlooked as an animation technique available in 

Mathematica. I herein provide an introduction to the 

software, an intuitive comparison of numerical vs analytical 

solutions to differential equations, and finally present the 

results of the simulation.  

 

Index Terms—Mathematica, Newton’s second law of motion, 

Runge-Katta, Universal Law of Gravitation 

 

I. MATHEMATICA 

Mathematica is a mathematical computation software 

that uses the Wolfram programming language, and it 

offers better symbolic manipulation than many other 

programming languages. Mathematica documents are 

called ‘notebooks’ and are organized into cells that can 

be individually evaluated. The Wolfram language has 

many built in functions, but it also allows the creation of 

custom functions. Functions make use of the fact that 

Wolfram is case-sensitive by using capital letters for 

built-in functions, which is why it is good practice to start 

custom functions and variables with lowercase letters. In 

order to define a custom function, 𝑓[𝑥−]: =  is used. 

Variables in Mathematica work like variables in any 

other programming language and are defined by using the 

‘set’ assignment operator 𝑣𝑎𝑟 = . Modules in 

Mathematica allows different programs to not conflict 

with each other by localizing the scope of variables used 

in  the  program,  as  the  default  scope  for  Mathematica 
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variables is global across all notebooks. This works by 

assigning a serial number $𝑠𝑛𝑛𝑛 to the end of all variable 

names, making them unique. 

Due to its user-friendly notebook format, Mathematica 

is commonly used as an elaborate graphing calculator and 

sometimes overlooked as a programming language for 

numerical simulations. Furthermore, Mathematica’s 

selection of helpful built-in functions such as “Animate”, 

“Manipulate”, and “Dynamic”, which allow the user to 

control input parameters (via a slide bar) for graphical 

plots of analytic functions, often cause users to overlook 

Mathematica’s ability to animate numerical solutions in 

real time. The code presented in this paper shows a 

creative method to achieve step-by-step, real time 

animations by updating a particle’s position in a while 

loop. To highlight the difference between analytical and 

numerical solutions, this paper begins with a discussion 

on differential equations, using the spring-mass system as 

an example. The spring-mass problem is solved both 

analytically and numerically to demonstrate the 

difference between the two approaches.  

II. DIFFERENTIAL EQUATIONS: ANALYTIC VS 

NUMERICAL SOLUTIONS 

A differential equation is any equation that involves 

the derivative of a function, with the derivative being the 

instantaneous rate of change of a function. Take for 

example: 
𝑑𝑦(𝑥)

𝑑𝑥
= 3𝑥5 

Notice the solution to the above differential equation is 

itself a function, 𝑦(𝑥).  This is true for all differential 

equations. Due to the time-derivative relationship 

between acceleration, velocity, and position, any physical 

system wherein the position is affected by the velocity or 

acceleration (i.e. essentially physical systems) will be 

described by a differential equation.  

There are two approaches to solving differential 

equations, analytical and numerical. The difference 

between analytical and numerical solutions is that 

analytical solutions are more accurate, as their solutions 

are continuous functions, while numerical solutions are 

discrete functions. However, many real-life situations 

must be solved numerically, as their analytical solution 

either does not exist or is too difficult to solve for. A 

common real-world example where the analytical 

solution of a differential equation does not exist would 



the Blasius equation, used in fluid mechanics: 𝑓′′′ +
1

2
𝑓𝑓′′ = 0 [1].  

In order to demonstrate the two ways of solving 

differential equations, a simple spring-mass system will 

be used. Since a spring-mass system is much simpler 

than the solar system, it serves as an effective example to 

highlight the difference between the two methods.  

The example system that will be used is a horizontal 

spring with a mass on the end of it, resting on a 

frictionless surface with no gravity involved. The goal is 

to solve for the spring’s exact motion in time 𝑥(𝑡), given 

an initial position 𝑥(𝑡 = 0) = 𝑥0  and an initial velocity 

𝑣(𝑡 = 0) = 𝑣0 (schematic shown in Fig. 1). 

 

Figure 1. Schematic of a simple spring-mass system.  

To solve for 𝑥(𝑡) analytically, it is important to note 

that velocity is the derivative of position as a function of 

time, and acceleration is the derivative of velocity as a 

function of time. Therefore, 𝑣 =
𝑑𝑥

𝑑𝑡
 and 𝑎 =

𝑑𝑣

𝑑𝑡
 [2]. Thus, 

acceleration is equal to the double derivative of position 

as a function of time, 𝑎 =
𝑑2𝑥

𝑑𝑡2. Newton’s second law of 

motion states that 𝐹 = 𝑚𝑎, and Hooke’s law states that 

 𝐹 = −𝑘𝑥, where k is the force constant of a spring and x 

is the displacement of the spring from its equilibrium 

position. Setting the forces of the equations above equal 

to each other gives the equation −𝑘𝑥 = 𝑚𝑎 . Setting 

acceleration to be the second derivative of position with 

respect to time, and dividing by 𝑚, gives the following 

differential equation: 

−
𝑘

𝑚
𝑥 =

𝑑2𝑥

𝑑𝑡2                                (1) 

Although it looks complicated, the equation simply 

means that the second derivative of 𝑥 (t) is the same 

function, 𝑥(𝑡), multiplied by a constant, −
𝑘

𝑚
. With this 

new information, an ansatz that 𝑥(𝑡) =  𝐶𝑒−𝑖𝐴𝑡  can be 

made. Plugging this ansatz into the different equation 

results in −
𝑘𝐶𝑒−𝑖𝐴𝑡

𝑚
=

𝑑2(𝐶𝑒−𝑖𝐴𝑡)

𝑑𝑡2 . Taking the first 

derivative of 𝐶𝑒−𝑖𝐴𝑇 gives −𝑖𝐴𝐶𝑒−𝑖𝐴𝑡 , and taking the 

second derivative of that gives 𝐶𝐴2𝑒𝑖𝐴𝑡, which can then 

be substituted back into the equation, giving 𝐶𝐴2𝑒−𝑖𝐴𝑡 =

−
𝑘𝑒−𝑖𝐴𝑇

𝑚
. Diving both sides by 𝐶 𝑒−𝑖𝐴𝑡  gives the equation 

𝐴2 =
𝑘

𝑚
, which means: 

 𝑥(𝑡) =  𝑒
−𝑖√ 𝑘

𝑚
𝑡

      →       

 𝑥(𝑡) =  𝐴 cos √
𝑘

𝑚
𝑡 − 𝑖𝐵 sin √

𝑘

𝑚
𝑡         (2) 

here, Euler’s identity has allowed to the exponential to be 

rewritten in terms of oscillating sine and cosine functions 

[3]. The unknown complex constants A and B are easily 

solved for when the initial conditions of the system are 

known. One can substitute 𝑥(𝑡) →  𝑥0 and 𝑡 → 0, as well 

as 𝑣(𝑡) →  𝑣0 and 𝑡 → 0 to yield two equations with two 

unknowns, solve for A and B, and obtain an exact 

solution for 𝑥(𝑡) at all times.  

To highlight the difference between analytical and 

numerical solutions, the numerical solution to the same 

problem is now presented. Again, the goal is to find an 

unknown 𝑥(𝑡)  given a set of initial conditions: 𝑥(𝑡 =
0) = 𝑥0 and 𝑣(𝑡 = 0) = 0. In other words, “what is the 

motion of a mass after an initial perturbation?” 

First, the horizontal axis (time) is broken into discrete 

segments, as shown above in Fig. 2, and each 𝑥(𝑡) must 

have some value at each point: {𝑥1 , 𝑥2 , 𝑥3 …}. Next, it is 

assumed that the slope (i.e. derivative) between two 

neighboring points 𝑥𝑛 and 𝑥𝑛+1 is simply the slope of a 

line that connects the two points, these are shown as red 

lines in Fig. 2. The slope of a line is given by mnemonic 

“rise over run”, or slope ≈
𝑥𝑛+1−𝑥𝑛

𝑡𝑛+1− 𝑡𝑛
. Since velocity is the 

derivative (i.e. slope) of position with respect to time, the 

following equation is obtained: 

𝑥𝑛+1−𝑥𝑛

𝑡𝑛+1− 𝑡𝑛
= 𝑣𝑛                          (3) 

Since acceleration is the derivative of velocity with 

respect to time: 
𝑣𝑛+1−𝑣𝑛

Δ𝑡
= 𝑎𝑛                          (4) 

where Δ𝑡 =  𝑡𝑛+1 − 𝑡𝑛  has been substituted in. From 

Newton’s second law, the acceleration of the mass must 

be –
𝑘𝑥

𝑚
: 

𝑣𝑛+1−𝑣𝑛

Δ𝑡
= −

𝑘

𝑚
 𝑥𝑛                      (5) 

Solving for 𝑥𝑛+1  and 𝑣𝑛+1  results in 𝑥𝑛+1 = 𝑣𝑛Δ𝑡 +

𝑥𝑛  and 𝑣𝑛+1 = −
𝑘𝑥

𝑚
Δ𝑡 + 𝑣𝑛 . These final two equations 

are well suited for computation. A while loop can be 

implemented to continuously calculate the new position 

and velocity {𝑥𝑛+1, 𝑣𝑛+1} using the previous position and 

velocity {𝑥𝑛 , 𝑣𝑛}.  

As simple as Euler’s method is, it isn’t the most 

accurate, as one side of the equation is centered with time, 

and the other side isn’t. For example, in  
𝑥𝑛+1−𝑥𝑛

Δ𝑡
= 𝑣𝑛, 

the left side is centered halfway between  𝑡𝑛+1  and 𝑡𝑛 , 

while the right side is centered at 𝑡𝑛. Runge-Kutta is one 

solution to the issue, which attempts to solve the issue by 

centering both sides of the equation at the same 𝑡 through 

a half step using Euler’s method to get 𝑥 and 𝑣 at 𝑡𝑛+1/2 , 

which can later be used to more accurately solve for the 

next step. Applying this to the spring-mass system results 

in 𝑣ℎ𝑎𝑙𝑓 = −
𝑘𝑥

𝑚
∗ Δ𝑡ℎ𝑎𝑙𝑓 + 𝑣𝑛  and 𝑥ℎ𝑎𝑙𝑓 = 𝑣𝑛 ∗ Δ𝑡ℎ𝑎𝑙𝑓 +

𝑥𝑛, which are then used to solve for the next step with 

𝑥𝑛+1 = 𝑣ℎ𝑎𝑙𝑓 ∗ Δ𝑡 + 𝑥𝑛 and 𝑣𝑛+1 = −
𝑘𝑥ℎ𝑎𝑙𝑓

𝑚
∗ Δ𝑡 + 𝑣𝑛. 
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Figure 2. Graphical representation of Euler’s method applied to find an unknown function x(t). 

III. NUMERICAL SIMULATION OF THE SOLAR SYSTEM 

Moving on to the solar system, the mathematics is very 

similar to the mathematics in the spring-mass system. As 

there are many factors to consider in a system with 

multiple items, the system will be solved for numerically. 

Starting with Newton’s second law of motion 𝐹 = 𝑚𝑎, 

and Newton’s universal law of gravitation 𝐹 =

−𝐺
𝑚𝑝𝑙𝑎𝑛𝑒𝑡𝑚𝑠𝑢𝑛

𝑟2 , the two equations can be substituted, 

then solved for acceleration, giving the equation: 

𝐹⃗ = −𝐺
𝑚𝑝𝑙𝑎𝑛𝑒𝑡 ∗ 𝑚𝑠𝑢𝑛

𝑟2
 𝑟̂ = 𝑚𝑝𝑙𝑎𝑛𝑒𝑡𝑎 ⃗⃗⃗ ⃗    ⟹    𝑎⃗ = −𝐺

𝑚𝑠𝑢𝑛

𝑟2
 𝑟̂ 

(6) 

Noting that the mass of the planet cancels out. Using 

the fact that velocity is the derivative of position over 

time, the following formula is given: 
𝑥𝑛+1−𝑥𝑛

𝑑𝑡
= 𝑣𝑥𝑛 , 

where 𝑥 can be replaced by 𝑦 to find the vertical vector. 

This equation can be solved for 𝑥𝑛+1 , resulting in the 

equation: 

𝑥𝑛+1 = 𝑣𝑥 ∗ 𝑑𝑡 + 𝑥𝑛 

Now using the fact that acceleration is the derivative 

of velocity over time, gives the equation −𝐺
𝑚𝑠𝑢𝑛

𝑟2 =
𝑣𝑛+1+𝑣𝑛

𝑑𝑡
, and solving for 𝑣𝑛+1 gives the equation 𝑣𝑛+1 =

𝐺
𝑚𝑠𝑢𝑛

𝑟2 ∗ 𝑑𝑡 + 𝑣𝑛 . However, as the simulation is two-

dimensional, the equation for velocity needs to be split 

into 𝑣𝑥 and 𝑣𝑦. To do this, the scalar 𝑎 is multiplied by its 

unit vector, 𝑎̂, to get vector 𝑎⃗. The unit vector is found by 

summing the 𝑥 and 𝑦 vectors of the planet, and dividing 

by the magnitude of 𝑟 |𝑟| = √𝑥2 + 𝑦2

means that 𝑟̂ =
−𝑥−𝑦̂

√𝑥2+𝑦2
. Together, this gives the equations: 

𝑣𝑥+1 = 𝐺
𝑚𝑠𝑢𝑛

𝑥2+𝑦2 ∗
−𝑥

√𝑥2+𝑦2
∗ 𝑑𝑡 + 𝑣𝑥        (7) 

Using Runge-Kutta, the half steps of the previous 

equations are then taken, giving the final equations: 

𝑝ℎ𝑎𝑙𝑓 = 𝑣𝑝 ∗ 𝑑𝑡ℎ𝑎𝑙𝑓 + 𝑝𝑛                   (8) 

𝑣𝑝ℎ𝑎𝑙𝑓 = 𝐺
𝑚𝑠𝑢𝑛

𝑥2+𝑦2 ∗
−𝑝

√𝑥2+𝑦2
∗ 𝑑𝑡ℎ𝑎𝑙𝑓 + 𝑣𝑝      (9) 

𝑝𝑛+1 = 𝑣𝑝ℎ𝑎𝑙𝑓 ∗ 𝑑𝑡 + 𝑝𝑛                 (10) 

𝑣𝑝+1 = 𝐺
𝑚𝑠𝑢𝑛

𝑥ℎ𝑎𝑙𝑓
2 +𝑦ℎ𝑎𝑙𝑓

2 ∗
−𝑝ℎ𝑎𝑙𝑓

√𝑥2+𝑦2
∗ 𝑑𝑡 + 𝑣𝑝     (11) 

where 𝑝 can be replaced by either 𝑥  or 𝑦 depending on 

the component that is being found. These last four 

equations are good for computational purposes, so given 

the initial positions and velocities of planets, as well as 

universal gravitational constant 𝐺 , the equations can 

predict the future positions the planets.  

It should be noted that there are factors of 

consideration that have not been accounted for; however, 

these factors do not produce a significant impact on the 

results. One assumption that is made about planetary 

movement is that the planets move in two dimensions 

(snapshots of the animation are shown in Fig. 3). In 

reality, the solar system exists in three dimensions, but 

due to the common orbital angular moment of the gas 

cloud that evolved into the solar system, the planets 

rotate in a single 2-D plane to a good approximation. At 

most, the orbital inclinations of the celestial planets only 

differ by 7
o
 with respect to on another, meaning very little 

accuracy is sacrificed in making this assumption [4]. A 

second assumption that is made is that the planets only 

feel a gravitational attraction to the sun. However, since 

the mass of the sun is far greater than any other object in 

our solar system, with the second most massive thing, 

Jupiter, being 1000 times less massive, a largest 

gravitational force a planet feels will be coming from the 

sun. 
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Before entering the initial values of all the planets into 

the code, the units of these values must be converted so 

Mathematica can run the simulation without having to 

deal with numbers that tens of digits long, thousands of 

times per second. To do this, all the distances were 

originally in meters, and were brought down by 109 . 

Times, originally in units of seconds, were divided by 

33554.5, in order to set the velocity of the Earth at unity. 

The units of mass were kept at kilograms, as only the 

mass of the sun is ever used. The gravitational constant 

(units of m
3
kg

-1
s

-2
) was converted to a value of  𝐺 =

7.514 ∗ 10−29 so as to incorporate the distance and time 

conversions used.  

IV. CONCLUSION 

Since the employed algorithm only used second-order 

Runge-Kutta and simplified the assumptions used 

(circular orbits in a two-dimensional plane), the presented 

simulation is less accurate than state of the art numerical 

simulations of the solar system, e.g. Runge-Kutta-

Nystrom algorithms used by NASA [5]. However, the 

final script (attached at bottom of this paper), maintained 

impressive accuracy, matching true orbital patterns to 

within roughly ± 0.15 earth years for 40 earth years into 

the simulation. Fig. 3 shows the position of the planets 

from 0 to 100 years into the future. The overall accuracy 

of each planet is inversely proportional to its orbital 

period, meaning the planet with the shortest period, 

Mercury, is the first to deviate from its true orbit. If there 

exists even a slight discrepancy between the initial 

velocity and the initial position of the planet, then the 

planet will be thrown off axis very easily. This problem 

may be fixed if a higher order Runge-Kutta had been 

used. This simulation uses second-order Runge-Kutta, 

only taking the half step once, but a higher order, e.g. 

sixth-order Runge-Kutta could help even out the 

inaccuracies. Excluding Mercury, the other planets stay 

in orbit for ~500 years before being thrown off axis.  

 

 

Figure 3. Snapshot of animation after (a) 0 years (b) 1 year (c) 50 years and (d) 100 years. 

The central purpose of this study, to develop a flexible 

method for simulating and animating physics in 

Mathematica was met. Although this paper only 

explicitly deals with the spring-mass system and celestial 

bodies orbiting the sun, the script (attached below) can be 

easily modified to simulate any number of physical 

phenomenon by substituting the necessary force in Eq. 6 

and following the subsequent steps of Euler’s (or Runge-

Kutta’s) method outlined in the paper.  
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