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Abstract—Visualization is very effective when we analyze 

the time series data. In the paper, we shall illustrate change 

of the whole trend on time series data as shapes, as well as 

local changes. The method we used is the statistical shape 

analysis which can extract separately the Affine and non-

Affine transformation parts from the time change 

deformation. The method is helpful to see a local movement 

of each landmark data, compared to other neighbors. In the 

paper, we shall conduct the Indonesia province comparison, 

concerning the total fertility rate and the education status 

between 2007 and 2012. From the visualization, we can 

easily understand the time series changes. 
 
Index Terms—statistical shape analysis, Affine/non-Affine 

transformation, partial warp eigenvectors, fertility rates, 

education level 

 

I. INTRODUCTION 

Visualization is very useful for showing the changes in 

global trend particularly when we analyze the time series 

data. In this paper, we shall show a new method of the 

visualization. The data we used is the total fertility rate 

and education status in Indonesia province data. We 

employed a new method of “statistical shape analysis.” 

This is one of eigenvector based analyses such as 

principal component analysis (PCA) [1] and singular 

value decomposition (SVD) [2], [3].  

This eigenvector based analysis is reliable, compared 

to the deep neural network models, especially when we 

analyze non-image data. The eigenvector based analysis 

will always offer the same result. So far as the input data 

is reliable, the result can be trusted. Therefore, we shall 

always first analyze the data by the eigenvector based 

method before we try to analyze the data by machine 

learning methods such as Random Forest Algorithm [1]. 

Another reason of the use of statistical shape analysis in 

this paper is that the shape analysis is most suitable to 

analyze and visualize this province comparison result. 

The statistical shape analysis method was originally 

developed for image analyses in biological or medical 
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fields [4]-[7]. However, we found that the power of this 

analysis method could also be implemented in economics 

and socio-science. Subsequently, as one of the pioneer of 

the application of this method to economics data analysis, 

we have reported the results in some publications [8]-[14].  

Using this statistical analysis, we can measure the 

change in the shape of an object, so-called deformation. 

The problem on transforming data sets in different size, 

orientation and shape of an object into a coordinate 

system is a complex task, using a coordinate system 

called register marks or landmarks. By this analysis, 

however, we can quantify the shape of an object by 

eliminating the information of location, rotation, and 

scale.  

Though we shall describe the analysis results 

concerning Indonesia provinces in this paper, our purpose 

here is to propose the statistical shape analysis for big 

time series data analyses. To grasp the whole trend 

change of the big data, the Affine transformation of the 

statistical shape analysis is effective to extract of the 

essence. 

Indonesia is an emerging country and is a very 

important economy from business point of view. We 

would like to analyze the relationship between total 

fertility rates and an education status by provinces in 

Indonesia. The Total Fertility Rate (TFR) is the number 

of children that would be born to a woman over her 

lifetime. The data we used is from the Statistics Bureau of 

Indonesia (https://www.bps.go.id/). The original website 

name is “Badan Pusat Statistik Indonesia” (BPS), a non-

department government agency which directly report to 

the president.  

The BPS is instituted by Law Number 16, 1997 on 

Statistics; Government Regulation Number 51, 1999 on 

Statistics Undertakings [8]. Therefore, this website’s data 

is very reliable and suitable for researches. In Section 2, 

using the shape analysis, we will analyze the total trend 

of the change by provinces. In Section 3, the local change 

specific to some provinces will be explained, using the 

non-Affine transformation part of the shape analysis 

results. Finally we will conclude the paper. 
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Figure 1. Relationship between fertility rate and senior high school graduated people % in 2007. 

 

Figure 2. Change between pre-shapes in 2007 and 2012 on fertility rate and senior high school graduated people %. 
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II. TOTAL TREND OF THE CHANGE  

In this section, we shall conduct the shape analysis on 

a deformation between in 2007 and in 2012. Fig. 1 shows 

the relationship between Total Fertility Rates (TFR) and 

senior high school graduated people percentages in 2007. 

In the later, we use “high school %” as its abbreviation. 

Concerning TFRs in Fig. 1, the largest figure/point is 4.2 

children in Nusa Tenggara Timur and the smallest figure 

is 1.8 children in D. I. Yogyakarta. In Yogyakarta, there 

are many universities, therefore approximately one out of 

two persons in this city is a university graduated person. 

We can say that Yogyakarta city has the highest 

education level in Indonesia. The second smallest ones 

are Bali, DKI Jakarta, and Jawa Timur of which the 

figure is 2.1 children. Concerning the high school %, Fig. 

1 shows that Aceh and Maluku have the highest 

percentage which is over 72%. The Pearson correlation 

coefficient between TFRs and high school % is 0.066. In 

the year 2012 data, the correlation coefficient is -0.234, 

which shows a weak negative relationship. Then, we can 

not say that there is a strong relationship between TFRs 

and the high school %.  

 

Figure 3. The original 2007 pre-shape and one after the Affine 

transformation. 

Then we conduct the shape analysis. In the shape 

analysis, the given coordinates are standardized using the 

centroid size [15]. The standardized data is called pre-

shapes. The pre-shape consists of a set of dimensionless 

data. In this case, a landmark in a pre-shape corresponds 

to a province. Therefore, in this case, a pre-shape consists 

of 33 province data. In Fig. 2, the 2007 pre-shape is 

depicted by a circle mark and the 2012 pre-shape is 

depicted by a cross mark. Seeing pre-shapes figures, we 

can see the relative position of each province among all 

provinces. As shown in the Fig. 2, Papua’s movement is 

remarkable, compared to the movement of other 

provincess. In Papua, the TFR has largely increases and 

the high school percentage has relatively decreases. Let’s 

see the raw data of high school %. The decline provinces 

are only Maluku (-4.31%) and Papua (-4.71%). However, 

when we see the pre-shape difference in Fig. 2, we find 

that  D.K.I. Jakarta, Riau, and Aceh have negative value 

of directed changes. This means that D.K.I. Jakarta’s high 

school % increased, but others progress were still greater. 

The advantage of the statistical shape analysis is that we 

can extract a relative growth speed like this. Concerning 

TFRs, we can see that TFRs in Maluku and Nusa 

Tenggara Timur largely decrease, compared to others. 

 

Figure 4. The original 2007 pre-shape and one after the Affine 
transformation. 

Let us extract and see the Affine transformation part 

first (See Fig. 3). In the 2007 original pre-shape, the 

transformation grids are orthogonal. The pre-shape after 

the Affine transformation has the skewed transformation 

grids as shown in Fig. 3. In the figure, the same colored 

point means the same province. In the shape analysis, the 

Affine-transformation part expresses the total movement 

trend of the deformation. On the other hand, the non-

Affine transformation part expresses a local movement 

which occurs in a local specific area or a province. Let us 

compare the shape analysis with a linear regression 

method [1]. A linear regression illustrates the total trend 

only. On the other hand, the shape analysis can extract 

non-Affine transformation part, too.  

We analyze the Affine transformation part shown in 

Fig. 3 and 4. In Fig. 4, the same provinces are connected 

by arrows. The arrow in the figure depicts the change of a 

province. As shown there, the high school % (the vertical 

axis) totally increase and a homogenization can be seen. 

Many provinces of which high school % were lower in 

2007 have become concentrated to the center by this 

Affine transformation skew, which means that an 

educational level homogenization. It is a reasonable 

change during the five years in Indonesia. Concerning the 

TFR, two provinces on both sides, Yogyakarta and Nusa 

Tenggara Timur do not move the positions. Then we 

cannot say a homogenization of TFRs. 

III. LOCAL TIME SERIES CHANGE  

In this section, we shall analyze the local movement 

from 2007 to 2012. The local movement can be 

illustrated by non-Affine transformation of pre-shapes 

(See in Fig. 5). As shown there, the local movement is 

complicated. In Fig. 6, the 2012 pre-shape is shown, as an 

addition to the Affine transformation and the non-Affine 

transformation. For example, let’s see Maluku. Maluku 

Nusa Tenggara 

Timur 
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has a large TFR decline in the Affine transformation (See 

Fig. 4). However, as the local TFR movement is positive 

as shown in Fig. 5, finally the TFR change became a 

small decrease (See Fig. 6). As another example, let’s see 

Papua changes on high school %. The change of Papua in 

the Affine transformation was positive (See Fig. 4). 

However, Papua’s high school % decreased largely. Then 

the local movement of Papua has a large negative  value 

as shown in Fig. 5. Finally, the change of Papua is not a  

large negative as shown in Fig. 6. 

 

Figure 5. The original 2007 pre-shape and one after the non-Affine 
transformation. 

 

Figure 6. The original 2007 pre-shape and one after both Affine and 
non-Affine transformations. 

In the theory of the shape analysis, a non-Affine 

transformation can be decomposed to a set of partial 

warps. In this province data, the number of landmarks is 

33. This is because there was no data of Kalimantan 

Utara data in 2007. Therefore, we can get the 30 (=33 – 3) 

partial warps. An individual partial warp has its 

amplitude which is an eigenvalue of the correspondent 

principal eigenvector. The 33 eigenvalues are shown in 

Fig. 7. Seeing the eigenvalues, we can see that the first 

partial warp is a dominant one because the amplitude is 

still larger than others. Then, we shall see the first partial 

warp. 

In Fig. 8, the partial warp #1 and the original 2007 pre-

shape are illustrated. There is an arrow which depicts a 

delta (difference) part of each province in the partial warp 

#1. The sum of the delta parts from #1 to #30 becomes 

the total non-Affine transformation delta part of the 

province. The total non-Affine transformation is shown in 

Fig. 5. In other words, we can decompose the non-Affine 

transformation to the 30 partial warps. 

 

Figure 7. Eigenvalues of the 30 principal warps. 

 

Figure 8. The original 2007 pre-shape and one after the partial warp #1. 

 

Figure 9. Differences of the partial warp #1. 

In the partial warp #1, every province move shows the 

negative direction on the TFR axis. The largest negative 

change occurred in Kalimantan Selatan (See Fig. 8). Fig. 

9 only shows differences of the province data. There we 

can see that Kalimantan Selatan has the largest negative 

change on high school %. All the provinces have the 

negative values on both TFRs and high school %. 
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As mentioned previously, the total trend of TFRs has 

not change, because Yogyakarta and Nusa Tenggara 

Timur do not move in terms of their the positions. Those 

local movements with the reverse direction, however, can 

be extracted in the partial warp #1 as shown in Fig. 8. 

Seeing the transformation grids, we can find that the TFR 

change of the high school % lower group is larger.  

In the high school % lower group, there are two 

different local movements; The TFR decrease of 

Lampung is smaller than other neighbors, which makes 

the reverse directional transformation grid movement 

(See Fig. 8 and 9). The high school % movement in the 

partial warp #1 shows the decrease as well as one of 

TFRs. The partial warp #1 illustrates declines of both 

TFRs and the high school %.  

Let’s see the partial warp #2 in Fig. 10 and 11. From 

the scales of the both axes, we can see that the movement 

happens only on the high school %. The largest decline 

happened in Kalimantan Selatan. 

 

Figure 10. The original 2007 pre-shape and one after the partial warp #2. 

 

Figure 11. Differences of the partial warp #2. 

IV. CONCLUSION 

This paper presented a visualization of time series 

data changes by the statistical shape analysis. We 

analyzed and visualized the deformation of the 

relationship between fertility rates and percentages of 

senior high school graduated people by provinces in 

Indonesia. The target data were 2007 and 2012. 

Advantages of the shape analysis is that we can compare 

two shapes with the same landmarks relatively, because 

the shape is standardized by pre-shaping. Then we can 

get the relative position of the landmark among all the 

landmarks. By the shape analysis, from the deformation, 

an Affine transformation part and a non-Affine 

transformation part can be separately extracted and the 

non-Affine transformation part can be decomposed of a 

set of partial warps. The Affine transformation part 

expresses the total trend of the deformation and the non-

Affine transformation part expresses the local change of a 

landmark. Seeing an individual partial warp, a remarkable 

growth/decline compared to others can be extracted. The 

shape analysis method is an excellent formal model to 

express the local movements on the time series data 

change. 
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