

Toolkit for Building 802.15.4 and ZigBee-based

Pervasive Learning Games

Imran A. Zualkernan
Computer Science and Engineering, American University of Sharjah, Sharjah, UAE

Email: izualkernan@aus.edu

Abstract —Ad-hoc wireless network technologies like ZigBee

and 802.15.4 have been used in a variety of domains

including home automation. With current developments in

cross-protocol integration, sensor fusion and lower costs,

these technologies also lend themselves naturally to other

consumer applications. One emerging area of such consumer

applications is pervasive and learning games. With the

realization that children are not getting enough exercise,

parents and teachers are interested in their children

engaging in higher levels of physical activity. Pervasive and

tangible learning games superimpose networking and sensor

technologies on familiar outdoor game formats to create

games that make children engage in physical activity in

addition to learning. This paper presents the design and

development of an open-source toolkit and the associated

middleware that allow developers to build a variety of

pervasive learning games using ZigBee and 802.15.4.

Various sample learning games constructed by using this

toolkit are also discussed.

Index Terms—ZigBee, game-based learning, wearable

computing, ubiquitous learning, pervasive learning

I. INTRODUCTION

Zigbee and IEEE 802.15.4 have traditionally been used

in a variety of application areas including consumer

electronic devices, energy management, commercial

building automation, industrial plants, and in home

automation [1]. ZigBee has often also been used in

conjunction with other standards. For example, [2]

developed an active Radio Frequency Identification

(RFID) system using a multi-hop ZigBee network as the

backbone. Middleware to bridge different protocols is

often used to facilitate use of ZigBee with other

networking standards. In addition, [3] have a developed a

hybrid wired-wireless system that utilizes ZigBee for the

wireless functionality and seamlessly integrates network

services using a middleware. Similarly, [4] have proposed

another system that integrates a General Packet Radio

Service (GPRS) data collection node with a host of

ZigBee devices connected to sensors to detect flooding.

In addition to being used in hybrid networking

environments, there is an increasing trend towards using

ZigBee in personal area networks or wearable devices.

For example, [5] describe a ZigBee-based wearable

system that collects various physiological parameters like

heartbeat etc. to detect events like falling, and to report

these in a smart home environment. Similarly, [6]

proposed a system that uses a 3-axis accelerometer to

detect the posture of a wheelchair user, and to transmit

this information using the ZigBee network. Authors in [7]

described a wearable ZigBee based system that uses

optical fiber curvature to detect the change in joint angles.

In another example, [8] show an application that uses

Bluetooth, ZigBee and RS232 in unison to collect

physiological data; this data is sent to the cloud using a

mobile phone. Finally, [9] proposed a localization system

for ZigBee networks that is able to localize assets within a

range of 2 meters.

The use of hybrid wired and wireless networks, an

ability of incorporation into wearable devices and

clothing, the low-power consumption, integration with

physiological and physical sensors, and a possibility of

position localization make ZigBee an ideal candidate for

building consumer devices that implement a new class of

learning games called pervasive and tangible learning

games. These games are typically modeled after

playground games like Tag etc. and superimpose

technology and wireless and wired networking to gain

learning effects.

This paper presents a toolkit that makes it easier to

develop this class of learning games that employ off-the-

shelf ZigBee hardware for wireless communications. The

rest of the paper is organized as follows. Next section

presents a brief introduction to pervasive learning games.

This is followed by a description of the architecture of the

open-source toolkit. The following section presents a

number of case studies where the toolkit has been used to

implement pervasive learning games. The paper ends

with a conclusion.

II. PERVASIVE LEARNING GAMES

Game design and game-based learning has been

extensively explored [10], and studies show that game-

based learning tends to improve student engagement and

motivation [11] [12]. With the realization that children

today spend a significant amount of time in front of

computers and television, and do not get enough exercise,

there is an emergence of learning games where children

engage in physical activity by interacting with their

environment while learning [13]. For example, [14]

describe a pervasive game where children learn medieval

history by walking around a town and using their mobile

phones. Similarly, [15] describe a pervasive game for 7-

92
doi: 10.12720/jait.8.2.92-99

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

Manuscript received December 28, 2016, revised May 14, 2017.

11 year old children where small microcontrollers are

embedded in children’s play environments. In addition to

enabling the game environment by using technology,

pervasive games also use physiological features of

children as a part of the game. For example, [16]

implemented a game that uses a small device measuring

children’s heart beat and broadcasts it to other children to

play an enhanced version of the tag game. Authors in [17]

have also used technology-augmented tangible objects to

explore open-ended play in young children. Finally, [18]

have proposed a pervasive version of the hide-and-seek

game to teach mathematics to children.

Fig. 1 shows a prototypical example a pervasive

learning game incorporating tangible and wearable

components.

Figure 1. A prototypical example of a pervasive learning game

incorporating tangible and wearable components

As Fig. 1 shows, the example learning game is played

in a museum where children are required to run around

the museum and to identify and answer questions about

various art objects. Each student wears a ZigBee end-

node device interfaced to a small microcontroller.

Similarly, art objects like paintings or sculptures may also

have ZigBee end-devices attached to them. Children and

other items may also be interfaced to sensors. For

example, an RFID reader may be available at each art

object. Each child has a unique RFID tag sewn into their

shirt and they may swipe the RFID tag against the reader

to indicate that they have found the art object. The

children may also be asked to carry other tangible devices

that themselves include ZigBee end-nodes. For example,

the tangible device may have a MP3 player that plays

music from a specific time period and the child is

required to find an art object from that period. After

finding the appropriate art object, the child may leave the

tangible device there for the next team member for a

subsequent stage of the game.

In summary, pervasive learning games required a tight

integration of sensors and various types of ZigBee nodes

in addition to potentially complex game-logic.

III. ARCHITECTURE OF THE TOOLKIT

The conceptual architecture for building pervasive

learning games is shown in Fig. 2. As the Figure shows,

there are two primary components; the Learning Game

Server (LGS) and various types of client nodes like the

Player node or the Tangible item nodes.

A. The Learning Game Server (LGS)

The LGS is divided into three distinct modules; the

learning game logic engine (LGE), proxy objects for the

various actors in the game, and the Middleware. Use of

proxies with ZigBee for interface purposes is not new.

For example, [19] have proposed a scheme of using

Zigbee proxies to connect with the OSGI home

automation networks.

In the proposed architecture shown in Fig. 2, LGE is

responsible for implementing the gaming logic. For

example, if the game consists of finding the paintings

from a particular period, the GLE will have a database of

paintings from that period available in the museum. In

addition, the game logic may include scoring rules and

names and teams of the students participating.

The second components of LGS are software proxy

objects that encapsulate the behavior and communication

for each of the physical actors including players and other

tangible items participating in the game. For example, if

ten paintings are included in the game, then there would

be one proxy object for each painting. In addition, one

proxy object is created for each student participating in

the game. The purpose of the proxy objects to hide details

of the ZigBee protocol from the developer. The GLE

simply sends and receives messages from these proxy

objects to enact the game. For example, in the beginning

of each game cycle, the game engine may send the

GAME_RESET message to each of the proxy objects

indicating that a new game is starting. In doing so, the

game engine is not concerned about the mechanics of how

the message is delivered to each player or to items in the

physical world.

Finally, the third component of the learning game

server is the Middleware which is responsible for

providing all the services required to transmit and receive

the various messages from proxy objects, and to establish

a bi-directional communication between the proxy objects

and the physical nodes through the ZigBee network.

Figure 2. Architecture for building pervasive and tangible learning

games where a learning game server connects to a variety of client

nodes representing children or physical actors using the ZigBee

network

93

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

B. Client Nodes

Client nodes are game players or tangible objects that

participate in the learning game. As Fig. 2 shows, the

game server is physical connected to one ZigBee radio

node (ZR) on the ZigBee network which typically acts as

the Coordinator to route messages to and from the game

server. As Fig. 2 also shows, each game player or tangible

item has an attached microcontroller which is also

connected to a ZigBee node (typically an end-device).

Depending on the application, each microcontroller may

read various sensors, and act on actuators like turning

LED’s on and off, for example. In addition to

communicating through the ZigBee node, the

microcontroller also implements the game logic on the

client side. For example, a painting may send a message

to the game application indicating that a child with a

particular RFID tag has just swiped their tag indicating

that the child has found the painting. Like the LGS, the

microcontroller communicates through sending and

receiving messages using a natively compiled library

provided with the framework.

C. Proxy Objects and Messaging Architecture

Fig. 3 shows the detailed structure of software proxy

objects within the LGS. In addition to domain information

about the object itself like name and various attributes

(e.g., name of the painting and its creator), each proxy

objects receives APP_MSGes from the GLE. APP_MSG

are domain specific messages for each type of game

which are specified by developer. For example,

START_GAME and END_GAME are the two simplest

messages that must be implemented. As Fig. 3 shows, the

incoming messages are queued by each proxy object and

transformed into ZB_MSGes to be sent over to the

ZigBee network.

Figure 3. Structure of proxy objects within the Learning Game Server

where incoming and outgoing messages are queued and transformed in

addition to providing individual message queues for the various game

commands

The ZB_MSG is an abstraction of a particular protocol

implemented by a specific hardware/firmware

implementation of the ZigBee chipset being used to

establish the ZigBee network. Fig. 4. shows this mapping

for one specific ZigBee chipset. As Fig. 4 shows, the

Payload field of a ZB_MSG contains an APP_MSG

which consists of a start code followed by

COMMAND_ID. COMMAND_ID is defined by the

developer and represents a message in the learning

domain. For example, START_GAME is one

COMMAND_ID. COMMAND_ID is followed by a 16

bit unique transaction ID which is used to uniquely

identify acknowledgement indicating that a particular

message has been received by the intended recipient. This

filed is followed by the Payload length that can contain

any arbitrary application specific data. The ZB_MSG

ends with its own checksum.

The Middleware module shown in Fig. 2

asynchronously constructs ZB-MSG messages from the

incoming byte stream and also assembles and sends

ZB_MSG messages to the output stream to the ZigBee

network. Like the outgoing messages, incoming

ZB_MSGes from the ZigBee network are forwarded to

each proxy object based on their unique address by the

Middleware. Upon receiving the ZB_MSG intended for it,

as Fig. 3 shows, the Dispatcher module within the proxy

object converts the message into an APP_MSG and

queues the message into an appropriate command queue

defined by COMMAND_IDS. Each developer can

specify a set of COMMAND_IDs for their game. For

example, all GAME_STOPPED messages are

automatically queued into its own queue. All these

queues are made available to the LGE either through

polling, or by installing callback functions that are

automatically triggered when a message arrives in a

particular queue. This functionality frees up the developer

from worrying about the communication issues and to

focus on game logic as dictated by the various commands

sent or received.

A reference implementation of the middleware has

been implemented using the Microsoft .NET platform.

The libraries thus built are thread-safe and special care

has been taken to ensure that no native-only .NET APIs

has been used to ensure portability to alternative

platforms like Java. In addition, the platform only uses

generically available coordination primitive like threads

and semaphores.

Figure 4. The structure of ZB_MSG and APP_MSG for one commercial

ZigBee chipset

D. Client Side Processing

Fig. 5 shows the primary structure of how the

processing is done on each client node. The grayed out

94

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

blocks are provided through a natively compiled library

for each microcontroller. The developer modifies that

primary command interpreter loop that consists of

checking for inputs and outputs and other housekeeping

work followed by a command dispatch depending on

messages received. Since most small microcontrollers

being used for wearable and tangible devices do not

support multi-threading, a single main loop is used for all

processing. As Fig. 5 shows, The ZB_MSG Receiver

extracts any IEEE 802.15.14 packets received on the

ZigBee radio and constructs a ZB_MSG. As mentioned

earlier, this module does not assume the presence of

multi-threading in the embedded operating system and

hence is designed to be non-blocking. The ZB_MSG is

forwarded to the Dispatcher. The APP_MSG is then made

available on a queue for the Command Interpreter loop.

The developer uses appropriate APIs to retrieve each

APP_MSG and to take actions depending on the message

received. The command loop can also send APP_MSGes

using the provided API.

Figure 5. Structure of processing on the client side where the grayed

components are provide with a microcontroller-specific library and the

command interpreter is modified by the developer to implement the

game logic

As Fig. 5 shows, each APP_MSG is forwarded to the

APP_MSG sender that converts the message a ZB_MSG

which is forwarded to the ZB_MSG sender that in turns

converts it into an IEEE 802.15.14 packet for the ZigBee

network.

The client-side libraries have been implemented in the

C language. Special care has been taken to only use native

C programming constructs in embedded implementations

to ensure portability to most microcontrollers without

requiring additional software libraries.

IV. EXAMPLE IMPLEMENTATIONS

The toolkit and middleware described in this paper

were evaluated by using it to re-implement a variety of

pervasive games including those originally built using

Prête-à-apprendre+ [20]. Prête-à-apprendre+ is a

wearable ubiquitous platform designed for building

pervasive tag learning games. In a learning tag game,

children are given a topic to learn and based on the topic,

they prepare three questions. Each child then wears a tag-

shirt with their own questions on their shirt. As Fig. 6

shows, these three questions can be printed and stuffed

into the three pockets shown in front of the shirt. An LED

arrow is available next to each question indicating that the

question has been remotely selected. As Fig. 6 shows, the

shirt has two microcontrollers where one microcontroller

communicates with the ZigBee radio module. The shirt

also has a 3-axis accelerometer to detect movement. In

addition, the shirt has a number of outputs including a

buzzer and various other LEDs. The buzzer and the

accelerometer are controlled by one microcontroller while

the second microcontroller controls the LED’s. The two

microcontrollers are configured in a master-slave fashion

through the I2C bus.

Figure 6. Player node showing a wearable Zigbee node where data from

various sensors including a 3-axis accelerometer

Children play a game of tag using these shirts; the

game starts by two children standing in front of each other.

The game engine randomly selects a child and a question

on that child’s shirt and turns on the LED arrow next to

their question by using the ZigBee network. Lighting up

of an arrow on a shirt is a signal for the other child that

the child with that lit shirt is the ‘it’ in the tag game.

Figure 7. A tangible item Zigbee node next to an art object that allows

children to enter their code upon finding the art object to indicate that

they have found it.

95

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

To use the toolkit, it was assumed that there were two

types of proxy objects in these games; a PAD and a

SHIRT. Table I shows the APP_MSG structure

(command ID’s) for the SHIRT object. As Table 1 shows,

for example, upon receiving QUESTION_CLEAR

message, all the questions are cleared on the SHIRT node.

TABLE I. . COMMAND STRUCTURE OF APP-MSG FOR SHIRT OBJECT

COMMAND Meaning

QUESTION_CLEAR
Clear all questions being asked on

the shirt

QUESTION_ADD Add a question to the shirt

QUESTION_SELECT Select a question on the shirt

IO_STATE_GET Get the state of an I/O on the shirt

IO_STATE_SET Set the state of an I/O on the shirt

ROUND_START Start a round of the game

ROUND_END End a round of the game

ROUND_ABORT Abort a round

ROUND_RESULT_GET Retrieve the result of the round

STATE_SET
Change the state of the shirt (e.g.,

IDLE, IN-PLAY etc.)

STATE_GET Get the current state of the shirt

The command structure for the PAD object was almost

identical to that of the SHIRT object with some slight

modifications. For example, the ROUND_RESULT_GET

command, rather than returning just the question and its

answer, also returned the code entered by the team that

answered the question as shown in Fig. 7.

In addition to the command structures, call-backs were

defined for each of the messages. For example, a

QUESTION_SELECT_CALL_BACK function waited

for an ACK message from the SHIRT object to ensure

that the question had been selected on the shirt before

proceeding on to the next stage of the game.

After the message structures were defined, the game

server and the front-end were implemented using the

supplied Middleware with Visual Basic .NET. The

embedded code used the client-side C libraries to

implement the required functionality on each of the client

nodes; SHIRT and PAD.

Fig. 8 shows the first stage of the game where the

students, teams and the questions for each student are

entered. Fig. 9 shows the second stage of the game where

a teacher or a parent can review the questions for each

child. Fig. 10 shows that once the questions are finalized,

the parent or the teacher can print the questions in a large

font so that the labels can be printed and stuffed in front

of the shirts of each of the respective children playing the

tag game; each shirt has three questions on it.

Fig. 11 shows a screenshot of how a teacher or a parent

can select a question on any one of the children’s shirts.

Once a question is selected, the system, based on the

unique ID of the ZigBee node on the child’s shirt (e.g.,

00-13-A2-00-40-38-C9-91 in Fig. 11) as specified in the

corresponding proxy object sends a message

QUESTION_SELECT to the specific shirt to start the

game and make the children wearing the shirt, the ‘it.’

The shirt receiving the message responds by lighting up

the arrow LEDs. This starts a game-cycle where children

in the other team chase and try to tag the child who has

become the ‘it’ by their question lighting up. When a

child tags the ‘it’ child, a message is sent from the shirt to

indicate that the round has ended with the corresponding

answer. It is up to the game engine to now determine

whether the question was answered correctly or not. The

result is also stored locally on the microcontroller and the

game engine can query that result by using the

ROUND_RESULT_GET message. At this point, the

game engine also sends a ROUND_END message to all

shirts to indicate that a round has ended.

Figure 8. Setting up the team, students and questions written by each

member of the team where the hardware node information has already

been entered for each child’s shirt

Figure 9. Showing student teams, questions written by each team and

the correct answers for each question

Figure 10. Application allowing teacher/parent to print the labels to be

affixed to each child’s shirt

96

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

Figure 11. Teacher assigning a question and running a round of the

game while the screen shows the question being answered and the

amount of time that has lapsed since the question was posed

Fig. 12 shows the results of running one game session

showing which questions were answered correctly or

incorrectly by each child.

Figure 12. The system showing results at the end of one game session

Figure 13. Turtle arithmetic addition game using ZigBee enabled node

where children need to find the next number in the projected sequence

by using the turtle or add or subtract two numbers given in the grid and

indicate the sum or difference by using the turtle.

Fig. 13 shows an example of another pervasive game

where the children learning number sequencing and

addition are asked to use a ZigBee-enabled ‘turtle’ to

select the right sequence of numbers or to indicate the

sum or difference of two numbers shown on a projected

grid of numbers. The game logic runs on a laptop that is

connected to an overhead projector to project the number

grid. Behind each cell on the grid is a unique RFID tag,

and an RFID reader embedded in the turtle reads the tag

as child makes a selection of the answer. The answer thus

selected is transmitted to the game server using ZigBee

via an appropriate message. In addition to the

APP_MSGes defined earlier, this game had simple

messages like SELECTED_CELL where the PayLoad of

the message indicates the cell number indicating which

cell of the grid was selected by the child.

Figure 14. The learning game for number sequencing, addition and

subtraction where children have to throw the ball with the right answer

through the basketball hoop

Fig. 14 shows another example of a pervasive learning

game where the game of basketball is used to teach

sequencing of numbers or simple addition and subtraction.

In this game, the basketball hoop is instrumented with a

ZigBee wireless node and each ball contains a unique

RFID tag. When a child throws a ball through the hoop,

the RFID reader detects the unique RFID identifier of the

ball and sends an appropriate message to the game server.

Several different games are supported by the game engine.

For example, two children throw one ball each through

the hoop to make up an addition problem and a third child

throws a third ball indicating the correct sum or

subtraction result. The APP_MSGes for this game consist

of BALL_IN_HOOP with the PayLoad including the 10

digit RFID number of the RFID tag in the ball. The setup

and the game logic engine contain a map of the RFID tag

numbers to actual numbers written on each ball.

Finally, Fig. 15 shows an example of a learning game

that combines a ZigBee-enabled wearable shirt with a

game of ‘jacks.’ In this game, the child is wearing a shirt

that receives a question from a teacher using the ZigBee

wireless network; the question is displayed on a rolling

LED badge on their shirt. The child has a limited amount

of time to take some stones with embedded RFID tags,

throw them up like the game of jacks and pick the stone

with the right answer (true or false). Upon doing so, the

child now has to throw the right stone into a jar that

97

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

contains an RFID tag reader which reads the tag and

sends the answer back to the system. An interesting twist

in the game is that the jar is actually held by another child

who is running away from the first child; the first child

has to catch them and then throw their stone into the jar.

In this case, shirt and the jar have different messages.

Example APP_MSGes for the jar include

RFID_DETECTED (the command) where the Payload is

the actual 10 digit RFID code. Similarly, for the shirt, one

message sent to the shirt is the actual question,

QUESTION where the payload is the text of the actual

question to be displayed on the LED rolling badge on the

sleeve.

Figure 15. Zigbee-enabled game of Jacks combined with a wearable

ZigBee-enabled shirt where children need to answer a question that

appears on their shirt by throwing the right ‘stone’ into the jar

V. CONCLUSION

This paper has presented a light-weight messaging

architecture and a toolkit for developing a host of

pervasive games that use ZigBee. The toolkit hides the

complexities of dealing with the low-level networking

protocol, or a vendor-specific variation of the protocol by

providing software proxy objects to the developer who

can write their game logic by sending and receiving

domain-specific messages to software proxy objects. The

toolkit has been used to successfully implement a variety

of pervasive and tangible learning games. One current

limitation of the toolkit is that it uses a .NET framework

making it unsuitable for Linux or Android devices. An

effort is underway to port the Middleware to Java and

Android which will enable developers to build

applications that can use the mobile phones or the tablets

as the game server and hence increasing the portability of

such learning games.

ACKNOWLEDGEMENT

This work was supported in part by a grant from the

IBM Corporation and through a faculty research grant

from the American University of Sharjah, UAE. I. A.

Zualkernan is with the American University of Sharjah,

UAE (e-mail: izualkernan@aus.edu).

REFERENCES

[1] D. M. Han and J. H. Lim, “Smart home energy management

system using ieee 802.15. 4 and zigbee,” Consumer Electronics,

IEEE Transactions on, vol. 56, no. 3, pp. 1403–1410, 2010.

[2] H. Cho, J. Kim, and Y. Baek, “Large-scale active rfid system

utilizing zigbee networks,” IEEE Transactions on Consumer

Electronics, vol. 57, no. 2, pp. 379–385, 2011.

[3] O. Mirabella and M. Brischetto, “A hybrid wired/wireless

networking infrastructure for greenhouse management,” IEEE

Transactions on Instrumentation and Measurement, vol. 60, no. 2,

pp. 398–407, 2011.

[4] C. H. See, K. V. Horoshenkov, R. A. Abd-Alhameed, Y. F. Hu,

and S. J. Tait, “A low power wireless sensor network for gully pot

monitoring in urban catchments,” Sensors Journal, IEEE, vol. 12,

no. 5, pp. 1545–1553, 2012.

[5] K. Malhi, S. C. Mukhopadhyay, J. Schnepper, M. Haefke, and

H. Ewald, “A zigbee-based wearable physiological parameters

monitoring system,” Sensors Journal, IEEE, vol. 12, no. 3, pp.

423–430, 2012.

[6] O. A. Postolache, P. S. Girao, J. Mendes, E. C. Pinheiro, and

G. Postolache, “Physiological parameters measurement based on

wheelchair embedded sensors and advanced signal processing,”

IEEE Transactions on Instrumentation and Measurement, vol. 59,

no. 10, pp. 2564–2574, 2010.

[7] D. Stupar, J. Bajic, L. Manojlovic, M. Slankamenac, A. Joza, and

M. Zivanov, “A wearable low-cost system for human joint

movements monitoring based on fiber-optic curvature sensor,”

Sensors Journal, IEEE, vol. 12, no. 12, 2012.

[8] W. T. Sung, J. H. Chen, and K. W. Chang, “Mobile physiological

measurement platform with cloud and analysis functions

implemented via ipso,” Sensors Journal, IEEE, vol. 14, no. 1,

2014.

[9] H. Cho, H. Jang, and Y. Baek, “Practical localization system for

consumer devices using zigbee networks,” IEEE Transactions on

Consumer Electronics, vol. 56, no. 3, pp. 1562–1569, 2010.

[10] K. Salen and E. Zimmerman, Games of Play: Game Design

Fundamentals. The MIT Press, Cambridge., 2004.

[11] M. Papastergiou, “Digital game-based learning in high school

computer science education: Impact on educational effectiveness

and student motivation,” Computers & Education, vol. 52, no. 1,

pp. 1–12, January 2009.

[12] H. Tüzün, M. Ylmaz-Soylu, T. Karakus, Y. Inal, and G. Kzlkaya,

“The effects of computer games on primary school students’

achievement and motivation in geography learning,” Computers

& Education, vol. 52, no. 1, pp. 68–77, 2009.

[13] I. Soute, P. Markopoulos, and R. Magielse, “Head up games:

Combining the best of both worlds by merging traditional and

digital play,” Personal and Ubiquitous Computing, vol. 14, no. 5,

pp. 1617–4917, July 2010.

[14] S. Akkerman, W. Admiraal, and J. Huizenga, “Storification in

history education: A mobile game in and about medieval

amsterdam,” Computers & Education, vol. 52, no. 2, pp. 449–459,

2009.

[15] J. Verhaegh, I. Soute, A. Kessels, and P. Markopoulos, “On the

design of camelot, an outdoor game for children,” in Proc. 2006

Conference on Interaction Design and Children. ACM, 2006, pp.

9–16.

[16] R. Magielse and P. Markopoulos, “Heartbeat: An outdoor

pervasive game for children,” in Proc. SIGCHI Conference on

Human Factors in Computing Systems. ACM, 2009, pp. 2181–

2184.

[17] T. Bekker, J. Sturm, R. Wesselink, B. Groenendaal, and B. Eggen,

“Interactive play objects and the effects of open-ended play on

social interaction and fun,” in Proc. the 2008 International

Conference on Advances in Computer Entertainment Technology.

ACM, 2008, pp. 389–392.

[18] I. Arroyo, I. Zualkernan, and B. Woolf, “Hoodies and barrels:

Using a hide-and-seek ubiquitous game to teach mathematics,” in

Proc. the ICALT 2011., 2011.

98

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

[19] Y. G. Ha, “Dynamic integration of zigbee home networks into

home gateways using osgi service registry,” IEEE Transactions

on Consumer Electronics, vol. 55, no. 2, pp. 470–476, 2009.

[20] I. A. Zualkernan, N. Al-Khunaizi, S. Najar, and N. Nour, “Prête-à-

apprendre+: Towards ubiquitous wearable learning,” in Proc.

10th IEEE International Conference on Advanced Learning

Technologies, Sousse, Tunisi, July 2010, pp. 740–741.

Imran A. Zualkernan Dr. Zualkernan holds a

B.S. (high distinction) and a Ph.D. in Computer

Science from University of Minnesota,

Minneapolis, USA. Dr. Zualkernan has taught

at the University of Minnesota, Pennsylvania

State University and the American University of

Sharjah. He did post-doctoral work at the

Carlson School of Management and at the

Center for Research in Learning Perception and

Cognition. He has been an adjunct faculty

member at the Arizona State University and a visiting professor at the

University of Massachusetts, Amherst. Dr. Zualkernan was a Principal

Design Engineer for a high-end robotics company in Chanhassen,

Minnesota. Dr. Zualkernan later served as the founding chief executive

officer of a public-limited software services company and the chief

technology officer of an e-Learning technologies company. His areas of

interest are internet of things, ubiquitous computing, IT management

and advanced learning technologies. He has published over 150 articles

in refereed journals, conferences and workshops. He has been on the

executive board of the IEEE technical committee on Learning

Technology. He is a member of IEEE, Tau Beta Pi and Golden Key

National Honor Society.

99

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

