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Abstract—The amount of electronically stored information 

in genome sequence database has grown rapidly in the last 

decade. This makes frequent substring extraction an 

essential task as most frequent substrings are meaningful in 

genome sequences, in order to support the application in the 

area of information retrieval and data analytics. In this 

paper, two frequent substring mining techniques are 

investigated: frequent substring and frequent max substring 

mining algorithms. Many research communities have 

acknowledged that the frequent substring mining is one of 

the viable solutions for extracting the interesting patterns in 

genome or protein in area of bioinformatics.  Beside this, the 

frequent max substring technique has been proposed as an 

alternative method to extract meaningful patterns.  In this 

paper, experimental studies and comparison results are 

shown in order to compare two techniques. From the 

experimental results, the following observations can be 

made.  The frequent max substring mining technique 

provides significant benefits over the frequent substring 

mining technique in term of storage space.  Meanwhile, the 

frequent substring mining technique requires less 

computational time as this technique is straight forward.  

 

Index Terms—frequent max substring mining, frequent 

substring mining, genome sequence, frequent max 

substrings, frequent substrings 

 

I. INTRODUCTION 

Over the last decade, genome sequence databases have 

grown rapidly and have been widely used by molecular 

biologists for homology searching. The survey shows that 

the GenBank contains over 77 Gbp (giga, i.e. 10
9
, base-

pairs) from over 73 million sequence entries [1]. Due to 

the large amount of data available, the task of providing 

efficient frequent substring extraction has become 

important. It has become critical to develop scalable data 

management techniques for sequence storage, analytic 

and retrieval. In searching such databases, frequent 

substring mining techniques are essential for extracting 

frequent substrings from a massive amount of sequence 

data for retrieval. This is because the frequent substrings 
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can be treated as index-terms in bioinformatics area. In 

fact, various algorithms and data structures on strings can 

be applied to genome sequences because they can be 

regarded as a sequence of string [2], [3]. However, it is 

sometimes difficult to use these existing methods for 

genome sequence databases because of the drawbacks of 

index sizes.  

In this paper, the frequent substring and frequent max 

substring mining techniques are applied to genome 

sequencing problems as these two techniques aim to 

reduce the index size by extracting only frequent 

substrings. To demonstrate that the frequent substring and 

frequent max substring mining techniques can be applied 

to genome sequencing, the experimental and comparison 

results are presented in this paper. Before the illustration 

is presented, the characteristics of the genome sequence 

are first described in the next section, followed by some 

related works. 

II. CHARACTERISTIC OF THE GENOME SEQUENCE 

 
Figure 1. Example of nucleotide structure of some species’ genes 

In the modern era of molecular biology, the genome 

sequence can be refer to all of a living thing’s hereditary 

information [4]. This hereditary information is encoded in 

DNA or RNA, which are used for maintaining, building 

and running an organism, and passing life on to the next 

generation. In most organisms, the genome includes 

genes that are packaged in chromosomes, and the non-

coding sequences of the DNA that affects specific 

characteristics of living things. The genome term was 

introduced by Hans Winkler, Professor of Botany at the 

University of Hamburg, Germany, in 1920. This genetic 
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material or DNA can be represented as long texts with a 

specific alphabet, known as the nucleotide bases, for 

example, {A, C, G, T} in the genome. Most patterns 

usually occur frequently in the texts because there is only 

a four-character alphabet to represent genome sequences. 

A typical example of the genome sequence is shown in 

Fig. 1. 

In fact, the genome contains many relationships. For 

instance, the genome is the largest part that can be 

divided into chromosomes, chromosomes are the smaller 

parts that contain genes, and inside the genes represents 

the DNA, which is the smallest part. These relationships 

can be depicted as shown in Fig. 2. 

 

Figure 2. Relationships of genome 

There are many types of living things in the world that 

can be divided into many species such as cows, dogs, 

mice, chimpanzees, humans and so on. These species 

have their own distinctive genome. Therefore, genomes 

can be classified according to species, and can also be 

used to identify individuals. For example, the genome of 

people in this world can be classified as the human 

genome, and each person also has a unique genome and 

characteristics that can be used to identify individuals. 

However, two persons may have the same genome if they 

are identical twins. This significantly shows that the 

genomes between two persons can be more similar than 

the genomes between people and other species. 

III. LITERATURE REVIEWS 

As mentioned in the first section, genome sequence 

databases are increasing in size exponentially. Due to this 

challenge of the over increasing data available, many 

approaches have been proposed for extracting index 

terms, indexing and searching from genomic databases. 

The basic methods proposed earlier perform a full text 

search without using indices [5]. However, one of the 

drawbacks of this technique is its poor searching ability. 

As a result, the suffix tree, suffix trie and suffix array data 

structures have been widely used in biological sequence 

analysis, because these structures are fundamental data 

structures for string matching [6], [3], [1]. Unfortunately, 

the existing basic algorithms for constructing these data 

structures do not support large inputs when they are used 

in real-life applications, thus requiring that the input is 

small enough to be kept in main memory. Therefore, it is 

difficult to use them for genome-scale databases, because 

of their massive amount of index sizes. In order to 

address this particular drawback, many researchers have 

improved several algorithms based on these data 

structures in order to handle huge amounts of genome 

sequence data.  

Vilo introduced an algorithm for discovering frequent 

substrings from biosequences in 1998 [7], [8]. This 

algorithm systematically generates a pattern trie while 

maintaining information about the occurrences of each 

substring. It is basically a generalization of the wotd 

(write-only top-down) suffix trie construction algorithm 

[9], [10] to find frequent substrings of a string. This 

technique is interested in substrings that occur at least at 

the frequency threshold value in the string, by 

constructing only the subtrees of the suffix trie that 

correspond to the frequent substrings. This algorithm has 

been successfully used for analyzing the full genome of 

yeast and for predicting certain regulatory elements. 

According to [1], [11], Phoophakdee and Zaki 

proposed an approach for indexing genome-scale 

sequences using suffix trees, called TRELLIS+, which 

effectively scales a large amount of genome sequence 

data using only a limited amount of main-memory, based 

on a string buffering strategy. Their works focus on a 

disk-based suffix tree to develop scalable data 

management techniques for retrieval, analysis and storage 

of complete and partial genomes. In this algorithm, the 

index size is not increased when the input sequence is 

very large. The experimental results showed that 

TRELLIS+ outperforms existing suffix tree approaches. 

Their technique was able to index genome-scale 

sequences and also allowed rapid searching over the disk-

based index. 

Hugh E. Williams and Justin Zobel proposed a 

technique for searching genome sequence databases in 

2002, known as the index-based approach for both 

selecting sequences that display broad similarity to a 

query and for fast local alignment [12]. Several criteria 

were applied to satisfy the use of this technique. These 

indexing and retrieval techniques are embodied in a full-

scale prototype retrieval system, CAFÉ, that is based on 

techniques used in text retrieval and in approximate string 

matching for databases [13]. The principal features of 

CAFÉ are the incorporation of data structures for query 

resolution and the indexing technique used. The 

experimental studies show that this index-based searching 

technique provides good results with low computational 

requirements for local alignments. The index-based 

searching technique produces results which are 

comparable with existing exhaustive search schemes. 

In 2009, Marina Barsky, Ulrike Stege, Alex Thomo 

and Chris Upton proposed the external-memory suffix 

tree construction algorithm for very large inputs, known 

as B
2
ST. This algorithm is able to construct suffix trees 

for input sequences significantly larger than the size of 

the available main memory [14]. B
2
ST minimizes random 

access to the input string and accesses the disk-based data 

structures sequentially. It is able to build a disk-based 

suffix tree for virtually unlimited sizes of input strings, 
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thus filling the ever growing gap between the increase of 

main memory in modern computers and the much faster 

increase in the size of genomic databases.  

IV. FREQUENT SUBSTRING MINING TECHNIQUE FOR 

GENOME SEQUENCES 

In this section, the details of two techniques for 

extracting frequent substrings as index-terms from 

genome sequences: the frequent substring and frequent 

max substring mining techniques are reviewed. 

A. Frequent Substring Mining Algorithm 

Jaak Vilo presented an algorithm for discovering 

frequent substrings in a string [8]. This algorithm aims at 

finding substrings that occur frequently in the string (at or 

above the given frequency threshold value). This is 

achieved by constructing a pattern trie, which is based on 

the suffix trie, while maintaining information about the 

occurrences of each substring. The algorithm constructs 

only a subtree of the suffix trie that corresponds to 

frequent substrings of the string, to avoid enumerating the 

complete set of substrings and in order to reduce the 

space requirement. It builds the pattern trie for the input 

string in the breadth-first order, level by level, and creates 

a list of occurrences for each frequent substring in the 

string. Frequent substrings are constructed incrementally 

by expanding prefixes of the substrings that occur at least 

at the frequency threshold value. Only substrings that 

occur in the string and occur at least at the frequency 

threshold value are generated and analyzed. This 

algorithm has been successfully used for analyzing the 

full genome of yeast and for predicting certain regulatory 

elements, and it has also been used for string matching in 

bioinformatics where the string is a DNA sequence [8].  

Vilo’s technique is interested only in substrings that 

occur at least at threshold θ times in the string. It seems 

that it is not necessary to construct the subtrees with less 

than threshold θ leaves. As a result, Vilo’s algorithm only 

builds the part that contains frequent substrings. The 

algorithm is based on the suffix trie data structure. The 

construction procedure is inspired by the lazy algorithm 

[9] for generating a suffix trie. The algorithm is a 

generalization of the wotd (write-only top-down) suffix 

trie construction algorithm, to find the frequent substrings 

of a string. The resulting trie contains all frequent 

substrings. The nodes of the trie are labeled with the 

substrings. Labels on the path from the root to an internal 

node form the substring associated with that node. Thus 

each internal node represents a substring of the string and 

each terminal node represents a suffix of the string. The 

trie is called the pattern trie in Vilo’s algorithm. 

At each node, an occurrence list is maintained that 

contains the position of each occurrence of the substring 

corresponding to the node. The trie is generated starting 

from the root. The root corresponds to the empty pattern λ 

the occurrence list of which contains all character 

positions of the string. The trie is extended by generating 

the nodes in the trie in a systematic way. At each step, the 

children of some of the current leaf nodes are generated 

and inserted into the trie to make new leaf nodes. For a 

node N with associated substring ABC, every legal 

extension ABCD is generated by inserting a new child 

with label D under the node N. The occurrence list of 

ABCD is computed from the occurrence list of ABC by 

checking for each occurrence of ABC in the string to see 

if it can be extended to an occurrence of ABCD. 

Each node N in the trie can be identified by the 

substring x that is the sequence of labels along the path 

from the root to the node N. This node N can be denoted 

by N(x). Hence, N(ABC) is the node identified by 

substring ABC, and N(xD) is the child of N(x) with 

character label D that equals N(ABCD). Every node in 

the trie contains additional information about its relation 

to other nodes in the tree. The dot-notation will be used to 

represent subfields—for example N.parent, N.child, 

N.char and N.sibling. The substring x is formed by the 

character labels N.char along the path from the root to the 

node N(x), N(xD).char = ai that is the character label D 

where ai∑, and N(xD).parent = N(x). Given the node N, 

N.child(ai) is used to denote the child P of node N so that 

P.char = ai. A sibling of node N can be identified by the 

shorthand notation N.sibling(ai), where N.sibling(ai) is 

actually N.parent.child(ai). Note that N.sibling(ai) is the 

same as N if N.char = ai. To keep the information about 

the occurrences of each substring, the lists of character 

positions of the string where the substring occurs are used. 

The occurrence list of substring x is stored in the node 

N(x) and denoted by N(x).pos. In addition, the frequency 

of substring x, fs(x), can be calculated from the number of 

substring positions.  

Vilo’s algorithm starts by building the suffix trie for 

the input string s in a systematic order, for example in the 

breadth-first order, level by level. For each node N(x) 

create the list of positions N(x). pos containing each 

location of the string s where x occurs. To represent the 

occurrence that ends at character position j of the string s, 

a pointer is used to position j+1. To create the children of 

node N(x), find characters ai∑ for which the substring 

xai occurs in at least at θ different locations of the string s. 

This corresponds to counting which characters of ∑ occur 

at least threshold θ at the positions N(x). pos of the string 

s. This can be done by one traversal of the position list 

N(x).pos and creating simultaneously all the position lists 

for every character occurring at these positions in the 

string s. Only these nodes N(xai) are inserted into the trie, 

for which the character ai occurs at least threshold θ at 

positions N(x).pos. 

 

Figure 3. Discovering frequent substrings of genome sequence S = 
‘ATGATGT’ having at least two occurrences. 
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The trie is constructed by systematically extending the 

leaf nodes. Thus, the position lists are needed only for the 

leaves during the trie construction. An example of trie 

construction in discovering frequent substrings from the 

genome sequence is depicted in Fig. 3.  

Let genome sequence S = ‘ATGATGT’ and  θ =2 

Sequence S    = A T G A T G T 

pos      = 1  2 3  4  5  6  7 

N (λ).pos = 1, 2, 3, 4, 5, 6, 7 

TABLE I.  ALL FREQUENT SUBSTRING WITH NUMBER OF 

OCCURRENCE 

Substring Number of occurrences 

T 3 

A 2 

G 2 

AT 2 

TG 2 

ATG 2 

 

The strength of Vilo’s algorithm is that this technique 

requires less storage space and construction time than the 

suffix tree and suffix trie for indexing the frequent 

substrings when θ > 1. This is because the algorithm 

constructs only subtrees of the suffix trie that correspond 

to the frequent substrings to avoid enumerating all 

substrings.  

B. Frequent Max Substring Mining Algorithm 

Frequent max substring mining technique is based on 

text mining that describes a process of discovering useful 

information or knowledge from unstructured texts [15], 

[16], [17]. This technique is used to classify index-terms 

called frequent max substrings from genome sequences 

where the word boundaries are not clearly defined.  The 

frequent max substrings refer to the substrings that appear 

frequently (at a predetermined frequency f) and have the 

maximum length of n-grams on the given string, so these 

terms are likely to be the patterns of interest.  The set of 

frequent max substrings is also able to contain all 

frequent substrings which appear on the given sequences.   

In order to explain the concept, the following shows 

the process of the frequent max substring mining 

technique using Min Heap and reduction rules to extract 

the frequent max substrings as index-terms from genome 

sequences. 

Let genome sequence S = ‘ATGATGT’  

Position(.pos) =           1 2 34 567 

and predetermined frequency f = 2 

Min-heap structure 

Firstly, all substrings with a length of 1 are extracted, 

together with their frequencies and list of positions. The 

frequencies of these substrings are then checked in order 

to select only the frequent substrings with a length of 1. 

These frequent substrings are finally kept in the min-heap 

structure for further processes. 

 

Next, <A, 2> is removed from min-heap in order to 

indicate that <A, 2> is detected and extracts its child 

substrings for the next process. After <A, 2> is removed 

from min-heap, the algorithm extracts child substrings of 

<A, 2> using list of positions or pointers of <A, 2> to 

reduce time complexity. Child substrings consist of <AT, 

2>. <AT, 2> is kept in min-heap using the insertion rule, 

because <AT, 2> is the substring that occurs in two 

different positions in string s. 

 

<T, 3> is removed from min-heap, after which child 

substrings of <T, 3> are extracted using the list of 

positions or pointers of <T, 3>. Child substrings 

consisting of <TG, 2> and <T$, 1>. <G, 2> are deleted 

from min-heap because <TG, 2> is a proper superstring 

of <G, 2> at the same frequency, and <TG, 2> is kept in 

min-heap instead, using the insertion rule, because its 

frequency is equal to the predetermined frequency. 

 

<AT, 2> is removed from min-heap and then its child 

substrings are extracted using its list of positions 

(pointers). They consist of <ATG, 2>. <TG, 2> is deleted 

from min-heap because <TG, 2> is a substring of <ATG, 

2> with the same frequency. After that, <ATG, 2> is kept 

in min-heap using the insertion rule because <ATG, 2> is 

the substring that occurs in two different locations in 

string s. 

 

<ATG, 2> is removed from min-heap and then its child 

substrings are extracted using its list of positions. They 

consist of <ATGA, 1> and <ATGT, 1>. They are not 

kept in min-heap because their frequencies are less than 

predetermined frequency.  

The algorithm will stop when min-heap is empty. This 

means all substrings in min-heap were detected and 

processed completely. 
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In Vilo’s algorithm, each node in the trie represents a 

unique substring and contains the list of positions in the 

string where the substring occurs. From Fig. 3, the 

algorithm generated six frequent substrings from string s 

as shown in Table I.



 

From the above algorithm, the resulting trie can be 

depicted in Fig. 4. 

 

Figure 4. Frequent suffix trie structure using proposed frequent max 
substring technique. 

Fig. 4 shows the result tried from frequent max 

substring mining technique. From observation, the 

frequent max substring set is able to contain all frequent 

substrings as shown in Table II. 

TABLE II.  NUMBER OF FREQUENT MAX SUBSTRINGS AND FREQUENT 

SUBSTRINGS 

Frequent max substrings Frequent substrings 

<T, 3> <T, 3> 

<ATG, 2> <A, 2> 

<G, 2> 

<AT, 2> 

<TG, 2> 

<ATG, 2> 
 

 

It can be observed from Table II that <T, 3>, <A, 2>, 

<G, 2>, <AT, 2>, <TG, 2> and <ATG, 2>, which 

extracted from the frequent substring mining technique, 

are substrings of <T, 3> and <ATG, 2>, which are 

extracted from the frequent max substring mining 

technique. The indexing terms <A, 2>, <G, 2>, <AT, 2>, 

<TG, 2> and <ATG, 2> can be enumerated from 

indexing term <ATG, 2>, while <T, 3> can be 

enumerated from <T, 3>. It is considered that <T, 3> and 

<ATG, 2> can be kept, instead of keeping <A, 2>, <G, 

2>, <AT, 2> and <TG, 2> in order to reduce index size 

and the number of index- terms. 

V. EXPERIMENTAL STUDIES AND COMPARISON 

RESULTS 

In this section, the experiment and comparison result 

of extracting frequent substring as index-terms from 

genome sequences using the frequent substring and 

frequent max substring mining techniques are presented. 

In order to compare two different algorithms for genome 

sequencing, the number of index-terms that are extracted 

by using frequent substring and the frequent max 

substring mining techniques are compared. The dataset 

used for this evaluation is the genome sequence found on 

the website: http://www.broadinstitute.org/cgi-

bin/annotation/methanosarcina/download-sequence.cgi. 

Genome sequences have various lengths. The set of 

genome sequences consists of 20 sequences and contains 

52,500 characters. The sequence lengths start from 250 to 

5,000 characters. 

The results showed that frequent substring mining 

technique, Vilo’s algorithm, extracted a greater number 

of index-terms than the frequent max substring mining 

technique at the low given frequency threshold value. All 

index-terms extracted from Vilo’s algorithm were 

contained by all index-terms extracted from the frequent 

max substring mining technique as described in previous 

section. However, the number of index-terms is likely to 

be closer to each other when the given frequency 

threshold value increases. The reduction rate can be 

evaluated using the measurement in the proportion of the 

number of index-terms extracted from two techniques as 

shown in Fig. 5.  

 

 

Figure 5. Reduction rate of number of index-term enumerations using 
frequent max substring technique and frequent substring technique 

(Vilo’s technique). 

From Fig. 5, the experimental results showed that the 

frequent max substring mining technique can increase the 

reduction rate of the number of indexing terms by up to 

99.98 percent at low frequency threshold value, and the 

reduction rate has increased slightly at the higher 

frequency threshold value. Meanwhile, the reduction rate 

of Vilo’s technique is lower than the reduction rate of the 

frequent max substring mining technique, although Vilo’s 

algorithm also provided a high reduction rate of up to 

99.96 percent at low frequency threshold value. However, 

it can be observed that the reduction rate of both 

algorithms is likely to be closer when the frequency 

threshold value is higher. In addition, the reduction rate 

of the number of index-terms for both algorithms 

increases according to the given frequency threshold 

values and the maximum size of index-terms. The 

comparative study of both approaches in term of runtime 

complexity are also revealed. From the experimental 

studies, Frequent max substring mining technique takes 

O(n
2
) time complexity, where n is the number of 

characters in sequence. Meanwhile, Frequent substring 

mining technique takes O(nd) time complexity where d is 

the size of maximum index-terms.  This shows that 

0 
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Frequent max substring mining technique spends more 

time than Frequent substring mining technique.  However, 

the indexing process is regarded as the backend process 

that can be run behind the scene. 

VI. CONCLUSION 

This paper describes and compares two frequent 

substring mining techniques: the frequent substring 

mining (Vilo’ algorithm) and frequent max substring 

mining techniques for genome sequences.  These two 

techniques are regarded as a viable solution for extracting 

frequent substrings as index-terms in genome sequence 

databases and also used in the area of bioinformatics.  

From the experimental studies and comparison results, 

the frequent max substring mining technique provides 

significant benefits over the frequent substring mining 

technique in term of storage space.  This is because the 

frequent max substring mining technique can increase the 

reduction rate of the number of indexing terms by up to 

99.98 percent at low frequency threshold value, and the 

reduction rate has increased slightly at the higher 

frequency threshold value. Meanwhile, the reduction rate 

of Vilo’s technique is lower than the reduction rate of the 

frequent max substring mining technique. 
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