
Using Frequent Substring Mining Techniques for

Indexing Genome Sequences: A Comparison of

Frequent Substring and Frequent Max Substring

Algorithms

Todsanai Chumwatana
College of Information and Communication Technology, Rangsit University, Thailand

Email: Todsanai.c@rsu.ac.th

Abstract—The amount of electronically stored information

in genome sequence database has grown rapidly in the last

decade. This makes frequent substring extraction an

essential task as most frequent substrings are meaningful in

genome sequences, in order to support the application in the

area of information retrieval and data analytics. In this

paper, two frequent substring mining techniques are

investigated: frequent substring and frequent max substring

mining algorithms. Many research communities have

acknowledged that the frequent substring mining is one of

the viable solutions for extracting the interesting patterns in

genome or protein in area of bioinformatics. Beside this, the

frequent max substring technique has been proposed as an

alternative method to extract meaningful patterns. In this

paper, experimental studies and comparison results are

shown in order to compare two techniques. From the

experimental results, the following observations can be

made. The frequent max substring mining technique

provides significant benefits over the frequent substring

mining technique in term of storage space. Meanwhile, the

frequent substring mining technique requires less

computational time as this technique is straight forward. 

Index Terms—frequent max substring mining, frequent

substring mining, genome sequence, frequent max

substrings, frequent substrings

I. INTRODUCTION

Over the last decade, genome sequence databases have

grown rapidly and have been widely used by molecular

biologists for homology searching. The survey shows that

the GenBank contains over 77 Gbp (giga, i.e. 10
9
, base-

pairs) from over 73 million sequence entries [1]. Due to

the large amount of data available, the task of providing

efficient frequent substring extraction has become

important. It has become critical to develop scalable data

management techniques for sequence storage, analytic

and retrieval. In searching such databases, frequent

substring mining techniques are essential for extracting

frequent substrings from a massive amount of sequence

data for retrieval. This is because the frequent substrings

Manuscript received September 19, 2015; revised April 20, 2016.

can be treated as index-terms in bioinformatics area. In

fact, various algorithms and data structures on strings can

be applied to genome sequences because they can be

regarded as a sequence of string [2], [3]. However, it is

sometimes difficult to use these existing methods for

genome sequence databases because of the drawbacks of

index sizes.

In this paper, the frequent substring and frequent max

substring mining techniques are applied to genome

sequencing problems as these two techniques aim to

reduce the index size by extracting only frequent

substrings. To demonstrate that the frequent substring and

frequent max substring mining techniques can be applied

to genome sequencing, the experimental and comparison

results are presented in this paper. Before the illustration

is presented, the characteristics of the genome sequence

are first described in the next section, followed by some

related works.

II. CHARACTERISTIC OF THE GENOME SEQUENCE

Figure 1. Example of nucleotide structure of some species’ genes

In the modern era of molecular biology, the genome

sequence can be refer to all of a living thing’s hereditary

information [4]. This hereditary information is encoded in

DNA or RNA, which are used for maintaining, building

and running an organism, and passing life on to the next

generation. In most organisms, the genome includes

genes that are packaged in chromosomes, and the non-

coding sequences of the DNA that affects specific

characteristics of living things. The genome term was

introduced by Hans Winkler, Professor of Botany at the

University of Hamburg, Germany, in 1920. This genetic

Journal of Advances in Information Technology Vol. 7, No. 4, November 2016

© 2016 J. Adv. Inf. Technol. 281
doi: 10.12720/jait.7.4.281-286

material or DNA can be represented as long texts with a

specific alphabet, known as the nucleotide bases, for

example, {A, C, G, T} in the genome. Most patterns

usually occur frequently in the texts because there is only

a four-character alphabet to represent genome sequences.

A typical example of the genome sequence is shown in

Fig. 1.

In fact, the genome contains many relationships. For

instance, the genome is the largest part that can be

divided into chromosomes, chromosomes are the smaller

parts that contain genes, and inside the genes represents

the DNA, which is the smallest part. These relationships

can be depicted as shown in Fig. 2.

Figure 2. Relationships of genome

There are many types of living things in the world that

can be divided into many species such as cows, dogs,

mice, chimpanzees, humans and so on. These species

have their own distinctive genome. Therefore, genomes

can be classified according to species, and can also be

used to identify individuals. For example, the genome of

people in this world can be classified as the human

genome, and each person also has a unique genome and

characteristics that can be used to identify individuals.

However, two persons may have the same genome if they

are identical twins. This significantly shows that the

genomes between two persons can be more similar than

the genomes between people and other species.

III. LITERATURE REVIEWS

As mentioned in the first section, genome sequence

databases are increasing in size exponentially. Due to this

challenge of the over increasing data available, many

approaches have been proposed for extracting index

terms, indexing and searching from genomic databases.

The basic methods proposed earlier perform a full text

search without using indices [5]. However, one of the

drawbacks of this technique is its poor searching ability.

As a result, the suffix tree, suffix trie and suffix array data

structures have been widely used in biological sequence

analysis, because these structures are fundamental data

structures for string matching [6], [3], [1]. Unfortunately,

the existing basic algorithms for constructing these data

structures do not support large inputs when they are used

in real-life applications, thus requiring that the input is

small enough to be kept in main memory. Therefore, it is

difficult to use them for genome-scale databases, because

of their massive amount of index sizes. In order to

address this particular drawback, many researchers have

improved several algorithms based on these data

structures in order to handle huge amounts of genome

sequence data.

Vilo introduced an algorithm for discovering frequent

substrings from biosequences in 1998 [7], [8]. This

algorithm systematically generates a pattern trie while

maintaining information about the occurrences of each

substring. It is basically a generalization of the wotd

(write-only top-down) suffix trie construction algorithm

[9], [10] to find frequent substrings of a string. This

technique is interested in substrings that occur at least at

the frequency threshold value in the string, by

constructing only the subtrees of the suffix trie that

correspond to the frequent substrings. This algorithm has

been successfully used for analyzing the full genome of

yeast and for predicting certain regulatory elements.

According to [1], [11], Phoophakdee and Zaki

proposed an approach for indexing genome-scale

sequences using suffix trees, called TRELLIS+, which

effectively scales a large amount of genome sequence

data using only a limited amount of main-memory, based

on a string buffering strategy. Their works focus on a

disk-based suffix tree to develop scalable data

management techniques for retrieval, analysis and storage

of complete and partial genomes. In this algorithm, the

index size is not increased when the input sequence is

very large. The experimental results showed that

TRELLIS+ outperforms existing suffix tree approaches.

Their technique was able to index genome-scale

sequences and also allowed rapid searching over the disk-

based index.

Hugh E. Williams and Justin Zobel proposed a

technique for searching genome sequence databases in

2002, known as the index-based approach for both

selecting sequences that display broad similarity to a

query and for fast local alignment [12]. Several criteria

were applied to satisfy the use of this technique. These

indexing and retrieval techniques are embodied in a full-

scale prototype retrieval system, CAFÉ, that is based on

techniques used in text retrieval and in approximate string

matching for databases [13]. The principal features of

CAFÉ are the incorporation of data structures for query

resolution and the indexing technique used. The

experimental studies show that this index-based searching

technique provides good results with low computational

requirements for local alignments. The index-based

searching technique produces results which are

comparable with existing exhaustive search schemes.

In 2009, Marina Barsky, Ulrike Stege, Alex Thomo

and Chris Upton proposed the external-memory suffix

tree construction algorithm for very large inputs, known

as B
2
ST. This algorithm is able to construct suffix trees

for input sequences significantly larger than the size of

the available main memory [14]. B
2
ST minimizes random

access to the input string and accesses the disk-based data

structures sequentially. It is able to build a disk-based

suffix tree for virtually unlimited sizes of input strings,

Journal of Advances in Information Technology Vol. 7, No. 4, November 2016

© 2016 J. Adv. Inf. Technol. 282

thus filling the ever growing gap between the increase of

main memory in modern computers and the much faster

increase in the size of genomic databases.

IV. FREQUENT SUBSTRING MINING TECHNIQUE FOR

GENOME SEQUENCES

In this section, the details of two techniques for

extracting frequent substrings as index-terms from

genome sequences: the frequent substring and frequent

max substring mining techniques are reviewed.

A. Frequent Substring Mining Algorithm

Jaak Vilo presented an algorithm for discovering

frequent substrings in a string [8]. This algorithm aims at

finding substrings that occur frequently in the string (at or

above the given frequency threshold value). This is

achieved by constructing a pattern trie, which is based on

the suffix trie, while maintaining information about the

occurrences of each substring. The algorithm constructs

only a subtree of the suffix trie that corresponds to

frequent substrings of the string, to avoid enumerating the

complete set of substrings and in order to reduce the

space requirement. It builds the pattern trie for the input

string in the breadth-first order, level by level, and creates

a list of occurrences for each frequent substring in the

string. Frequent substrings are constructed incrementally

by expanding prefixes of the substrings that occur at least

at the frequency threshold value. Only substrings that

occur in the string and occur at least at the frequency

threshold value are generated and analyzed. This

algorithm has been successfully used for analyzing the

full genome of yeast and for predicting certain regulatory

elements, and it has also been used for string matching in

bioinformatics where the string is a DNA sequence [8].

Vilo’s technique is interested only in substrings that

occur at least at threshold θ times in the string. It seems

that it is not necessary to construct the subtrees with less

than threshold θ leaves. As a result, Vilo’s algorithm only

builds the part that contains frequent substrings. The

algorithm is based on the suffix trie data structure. The

construction procedure is inspired by the lazy algorithm

[9] for generating a suffix trie. The algorithm is a

generalization of the wotd (write-only top-down) suffix

trie construction algorithm, to find the frequent substrings

of a string. The resulting trie contains all frequent

substrings. The nodes of the trie are labeled with the

substrings. Labels on the path from the root to an internal

node form the substring associated with that node. Thus

each internal node represents a substring of the string and

each terminal node represents a suffix of the string. The

trie is called the pattern trie in Vilo’s algorithm.

At each node, an occurrence list is maintained that

contains the position of each occurrence of the substring

corresponding to the node. The trie is generated starting

from the root. The root corresponds to the empty pattern λ

the occurrence list of which contains all character

positions of the string. The trie is extended by generating

the nodes in the trie in a systematic way. At each step, the

children of some of the current leaf nodes are generated

and inserted into the trie to make new leaf nodes. For a

node N with associated substring ABC, every legal

extension ABCD is generated by inserting a new child

with label D under the node N. The occurrence list of

ABCD is computed from the occurrence list of ABC by

checking for each occurrence of ABC in the string to see

if it can be extended to an occurrence of ABCD.

Each node N in the trie can be identified by the

substring x that is the sequence of labels along the path

from the root to the node N. This node N can be denoted

by N(x). Hence, N(ABC) is the node identified by

substring ABC, and N(xD) is the child of N(x) with

character label D that equals N(ABCD). Every node in

the trie contains additional information about its relation

to other nodes in the tree. The dot-notation will be used to

represent subfields—for example N.parent, N.child,

N.char and N.sibling. The substring x is formed by the

character labels N.char along the path from the root to the

node N(x), N(xD).char = ai that is the character label D

where ai∑, and N(xD).parent = N(x). Given the node N,

N.child(ai) is used to denote the child P of node N so that

P.char = ai. A sibling of node N can be identified by the

shorthand notation N.sibling(ai), where N.sibling(ai) is

actually N.parent.child(ai). Note that N.sibling(ai) is the

same as N if N.char = ai. To keep the information about

the occurrences of each substring, the lists of character

positions of the string where the substring occurs are used.

The occurrence list of substring x is stored in the node

N(x) and denoted by N(x).pos. In addition, the frequency

of substring x, fs(x), can be calculated from the number of

substring positions.

Vilo’s algorithm starts by building the suffix trie for

the input string s in a systematic order, for example in the

breadth-first order, level by level. For each node N(x)

create the list of positions N(x). pos containing each

location of the string s where x occurs. To represent the

occurrence that ends at character position j of the string s,

a pointer is used to position j+1. To create the children of

node N(x), find characters ai∑ for which the substring

xai occurs in at least at θ different locations of the string s.

This corresponds to counting which characters of ∑ occur

at least threshold θ at the positions N(x). pos of the string

s. This can be done by one traversal of the position list

N(x).pos and creating simultaneously all the position lists

for every character occurring at these positions in the

string s. Only these nodes N(xai) are inserted into the trie,

for which the character ai occurs at least threshold θ at

positions N(x).pos.

Figure 3. Discovering frequent substrings of genome sequence S =
‘ATGATGT’ having at least two occurrences.

Journal of Advances in Information Technology Vol. 7, No. 4, November 2016

© 2016 J. Adv. Inf. Technol. 283

The trie is constructed by systematically extending the

leaf nodes. Thus, the position lists are needed only for the

leaves during the trie construction. An example of trie

construction in discovering frequent substrings from the

genome sequence is depicted in Fig. 3.

Let genome sequence S = ‘ATGATGT’ and θ =2

Sequence S = A T G A T G T

pos = 1 2 3 4 5 6 7

N (λ).pos = 1, 2, 3, 4, 5, 6, 7

TABLE I. ALL FREQUENT SUBSTRING WITH NUMBER OF

OCCURRENCE

Substring Number of occurrences

T 3

A 2

G 2

AT 2

TG 2

ATG 2

The strength of Vilo’s algorithm is that this technique

requires less storage space and construction time than the

suffix tree and suffix trie for indexing the frequent

substrings when θ > 1. This is because the algorithm

constructs only subtrees of the suffix trie that correspond

to the frequent substrings to avoid enumerating all

substrings.

B. Frequent Max Substring Mining Algorithm

Frequent max substring mining technique is based on

text mining that describes a process of discovering useful

information or knowledge from unstructured texts [15],

[16], [17]. This technique is used to classify index-terms

called frequent max substrings from genome sequences

where the word boundaries are not clearly defined. The

frequent max substrings refer to the substrings that appear

frequently (at a predetermined frequency f) and have the

maximum length of n-grams on the given string, so these

terms are likely to be the patterns of interest. The set of

frequent max substrings is also able to contain all

frequent substrings which appear on the given sequences.

In order to explain the concept, the following shows

the process of the frequent max substring mining

technique using Min Heap and reduction rules to extract

the frequent max substrings as index-terms from genome

sequences.

Let genome sequence S = ‘ATGATGT’

Position(.pos) = 1 2 34 567

and predetermined frequency f = 2

Min-heap structure

Firstly, all substrings with a length of 1 are extracted,

together with their frequencies and list of positions. The

frequencies of these substrings are then checked in order

to select only the frequent substrings with a length of 1.

These frequent substrings are finally kept in the min-heap

structure for further processes.

Next, <A, 2> is removed from min-heap in order to

indicate that <A, 2> is detected and extracts its child

substrings for the next process. After <A, 2> is removed

from min-heap, the algorithm extracts child substrings of

<A, 2> using list of positions or pointers of <A, 2> to

reduce time complexity. Child substrings consist of <AT,

2>. <AT, 2> is kept in min-heap using the insertion rule,

because <AT, 2> is the substring that occurs in two

different positions in string s.

<T, 3> is removed from min-heap, after which child

substrings of <T, 3> are extracted using the list of

positions or pointers of <T, 3>. Child substrings

consisting of <TG, 2> and <T$, 1>. <G, 2> are deleted

from min-heap because <TG, 2> is a proper superstring

of <G, 2> at the same frequency, and <TG, 2> is kept in

min-heap instead, using the insertion rule, because its

frequency is equal to the predetermined frequency.

<AT, 2> is removed from min-heap and then its child

substrings are extracted using its list of positions

(pointers). They consist of <ATG, 2>. <TG, 2> is deleted

from min-heap because <TG, 2> is a substring of <ATG,

2> with the same frequency. After that, <ATG, 2> is kept

in min-heap using the insertion rule because <ATG, 2> is

the substring that occurs in two different locations in

string s.

<ATG, 2> is removed from min-heap and then its child

substrings are extracted using its list of positions. They

consist of <ATGA, 1> and <ATGT, 1>. They are not

kept in min-heap because their frequencies are less than

predetermined frequency.

The algorithm will stop when min-heap is empty. This

means all substrings in min-heap were detected and

processed completely.

Journal of Advances in Information Technology Vol. 7, No. 4, November 2016

© 2016 J. Adv. Inf. Technol. 284

In Vilo’s algorithm, each node in the trie represents a

unique substring and contains the list of positions in the

string where the substring occurs. From Fig. 3, the

algorithm generated six frequent substrings from string s

as shown in Table I.

From the above algorithm, the resulting trie can be

depicted in Fig. 4.

Figure 4. Frequent suffix trie structure using proposed frequent max
substring technique.

Fig. 4 shows the result tried from frequent max

substring mining technique. From observation, the

frequent max substring set is able to contain all frequent

substrings as shown in Table II.

TABLE II. NUMBER OF FREQUENT MAX SUBSTRINGS AND FREQUENT

SUBSTRINGS

Frequent max substrings Frequent substrings

<T, 3> <T, 3>

<ATG, 2> <A, 2>

<G, 2>

<AT, 2>

<TG, 2>

<ATG, 2>

It can be observed from Table II that <T, 3>, <A, 2>,

<G, 2>, <AT, 2>, <TG, 2> and <ATG, 2>, which

extracted from the frequent substring mining technique,

are substrings of <T, 3> and <ATG, 2>, which are

extracted from the frequent max substring mining

technique. The indexing terms <A, 2>, <G, 2>, <AT, 2>,

<TG, 2> and <ATG, 2> can be enumerated from

indexing term <ATG, 2>, while <T, 3> can be

enumerated from <T, 3>. It is considered that <T, 3> and

<ATG, 2> can be kept, instead of keeping <A, 2>, <G,

2>, <AT, 2> and <TG, 2> in order to reduce index size

and the number of index- terms.

V. EXPERIMENTAL STUDIES AND COMPARISON

RESULTS

In this section, the experiment and comparison result

of extracting frequent substring as index-terms from

genome sequences using the frequent substring and

frequent max substring mining techniques are presented.

In order to compare two different algorithms for genome

sequencing, the number of index-terms that are extracted

by using frequent substring and the frequent max

substring mining techniques are compared. The dataset

used for this evaluation is the genome sequence found on

the website: http://www.broadinstitute.org/cgi-

bin/annotation/methanosarcina/download-sequence.cgi.

Genome sequences have various lengths. The set of

genome sequences consists of 20 sequences and contains

52,500 characters. The sequence lengths start from 250 to

5,000 characters.

The results showed that frequent substring mining

technique, Vilo’s algorithm, extracted a greater number

of index-terms than the frequent max substring mining

technique at the low given frequency threshold value. All

index-terms extracted from Vilo’s algorithm were

contained by all index-terms extracted from the frequent

max substring mining technique as described in previous

section. However, the number of index-terms is likely to

be closer to each other when the given frequency

threshold value increases. The reduction rate can be

evaluated using the measurement in the proportion of the

number of index-terms extracted from two techniques as

shown in Fig. 5.

Figure 5. Reduction rate of number of index-term enumerations using
frequent max substring technique and frequent substring technique

(Vilo’s technique).

From Fig. 5, the experimental results showed that the

frequent max substring mining technique can increase the

reduction rate of the number of indexing terms by up to

99.98 percent at low frequency threshold value, and the

reduction rate has increased slightly at the higher

frequency threshold value. Meanwhile, the reduction rate

of Vilo’s technique is lower than the reduction rate of the

frequent max substring mining technique, although Vilo’s

algorithm also provided a high reduction rate of up to

99.96 percent at low frequency threshold value. However,

it can be observed that the reduction rate of both

algorithms is likely to be closer when the frequency

threshold value is higher. In addition, the reduction rate

of the number of index-terms for both algorithms

increases according to the given frequency threshold

values and the maximum size of index-terms. The

comparative study of both approaches in term of runtime

complexity are also revealed. From the experimental

studies, Frequent max substring mining technique takes

O(n
2
) time complexity, where n is the number of

characters in sequence. Meanwhile, Frequent substring

mining technique takes O(nd) time complexity where d is

the size of maximum index-terms. This shows that

0

Journal of Advances in Information Technology Vol. 7, No. 4, November 2016

© 2016 J. Adv. Inf. Technol. 285

Frequent max substring mining technique spends more

time than Frequent substring mining technique. However,

the indexing process is regarded as the backend process

that can be run behind the scene.

VI. CONCLUSION

This paper describes and compares two frequent

substring mining techniques: the frequent substring

mining (Vilo’ algorithm) and frequent max substring

mining techniques for genome sequences. These two

techniques are regarded as a viable solution for extracting

frequent substrings as index-terms in genome sequence

databases and also used in the area of bioinformatics.

From the experimental studies and comparison results,

the frequent max substring mining technique provides

significant benefits over the frequent substring mining

technique in term of storage space. This is because the

frequent max substring mining technique can increase the

reduction rate of the number of indexing terms by up to

99.98 percent at low frequency threshold value, and the

reduction rate has increased slightly at the higher

frequency threshold value. Meanwhile, the reduction rate

of Vilo’s technique is lower than the reduction rate of the

frequent max substring mining technique.

REFERENCES

[1] B. Phoophakdee and M. J. Zaki, "TRELLIS+: An effective

approach for indexing genome-scale sequences using suffix trees,”

in Proc. Pacific Symposium on Biocomputing, Kohala Coast,

Hawaii, USA, 2008.
[2] H. Huo and V. Stojkovic, "A suffix tree construction algorithm for

DNA sequences," in Proc. the 7th IEEE International Conference
on Bioinformatics and Bioengineering, Boston, 2007, pp. 1178-

1182.

[3] K. Sadakane and T. Shibuya, "Indexing huge genome sequences
for solving various problems," Genome Informatics, vol. 12, pp.

175-183, 2001.
[4] P. Baldi and G. W. Hatfield, DNA Microarrays and Gene

Expression: From Experiments to Data Analysis and Modeling,

United Kingdom: Cambridge University Press, 2002.
[5] D. E. Knuth, J. H. Morris Jr, and V. R. Pratt, "Fast pattern

matching in strings," SIAM Journal on Computing, vol. 6, no. 2,
pp. 323-350, 1977.

[6] M. Barsky, U. Stege, A. Thomo, and C. Upton, "Suffix trees for
very large genomic sequences," in CIKM '09 Proc. the 18th ACM

Conference on Information and Knowledge Management, 2009.

[7] J. Vilo, "Pattern discovery from biosequences," Facutly of Science,
Department of Computer Science, PhD thesis, University of

Helsinki, Helsinki, November 2002.
[8] J. Vilo, "Discovering frequent patterns from strings: Department

of computer science, university of Helsinki, Finland," Technical

Report C-1998-9, May 1998.
[9] R. Giegerich and S. Kurtz, "A comparison of imperative and

purely functional suffix tree constructions," Science of Computer
Programming, vol. 25, no. 2-3, pp. 187-218, 1995.

[10] R. Giegerich, S. Kurtz, and J. Stoye, "Efficient implementation of

lazy suffix trees," in Proc. the Third Workshop on Algorithmic
Engineering (WAE99), 1999, pp. 30-42.

[11] B. Phoophakdee and M. J. Zaki, "Genome-scale disk-based suffix
tree indexing," in Proc. the ACM SIGMOD International

Conference on Management of Data. 2007, pp. 833-844.

[12] H. E. Williams and. J. Zobel, "Indexing and retrieval for genomic
databases," IEEE Transactions on Knowledge and Data

Engineering, 2002, pp. 63-78.
[13] H. E. Williams, "Indexing and retrieval for genomic databases,"

Ph. D thesis, RMIT University, Melbourne, Australia, 1998.

[14] M. Barsky, U. Stege, A. Thomo, and C. Upton, "A new method
for indexing genomes using on-disk suffix trees," in Proc. CIKM

'08:17th ACM Conference on Information and Knowledge
Management, 2008, pp. 649-658.

[15] T. Chumwatana, "Genome sequence clustering using hybrid

method: Self-organizing map and frequent max substring
techniques," in Proc. the 12th International Conference on

Machine Learning and Cybernetics, Tianjin, China, 2013.
[16] T. Chumwatana, K. W. Wong, and H. Xie, "Frequent max

substring mining for indexing," International Journal of Computer

Science and System Analysis.
[17] T. Chumwatana “Using N-gram and frequent max substring

techniques for index-term extraction from non-segmented texts: A
comparison of two techniques,” The Journal of Information

Science and Technology, vol. 3, no. 1, 2012.

Asst. Prof. Dr. Todsanai Chumwatana–

Associate Dean for Academic of Information
and Communication Technology, Rangsit

University, Pathumtani, Thailand. His major
fields of scientific research contain Machine

Learning Text Mining, Natural Language

Processing, Artificial Intelligence, Medical
Informatics.

Journal of Advances in Information Technology Vol. 7, No. 4, November 2016

© 2016 J. Adv. Inf. Technol. 286

http://ist-journal.mut.ac.th/
http://ist-journal.mut.ac.th/

