

Automatic Generation of Printed Representations

of Ecuadorian Electronic Invoices through XML

Data Binding

Rolando P. Rodriguez-Cruz, Maria S. Avila-Garcia, and Maria F. Hernandez-Luquin
DEM Yuriria, University of Guanajuato, Guanajuato, Mexico

Email: {rp.rodriguezcruz, susana.avila, mf.hernandezluquin}@ugto.mx

Abstract—This paper presents an approach for the

automatic generation of printed representations of

Ecuadorian electronic invoices using XML Data Binding.

The proposed solution is based on the process of converting

XML documents into Java objects and then into PDF

documents, according to parameters established by the

Ecuadorian legislation. The results were analyzed with

regard to the elapsed time during the generation of a

printed representation and to the size of resulting objects.

The results, obtained as part of the implementation of the

solution in four companies in Ecuador, show improvements

not only in the generation time of printed electronic invoices

but also in more robust and secure mechanisms for handling

electronic vouchers through their representations in XML

format.

Index Terms—XML, XSD schema, XML Data Binding,

XML Mapping, electronic invoice

I. INTRODUCTION

An electronic invoice (e-invoice) is a digital

representation of a traditional paper invoice which

contains important data for calculating taxes [1].

Generally, an e-invoice is generated by the services

supplier as an XML file that contains tax information of

the business transaction parties, which is then shared with

the customers (receivers). A supplier may additionally

generate other related files in formats such as PDF or

EDIFACT [2].

According to [3], in recent years several Latin

American countries have begun to promote the use of the

e-invoice. For instance, in May 2013 the SRI (Servicio de

Rentas Internas) in Ecuador published a resolution of

mandatory issuance of e-invoices which has had a direct

impact on the tax administration processes. According

with the Article 4 of the SRI Resolution, published in

2014 and identified as Nº NAC-DGERCGC14-00790, the

issuer must provide the receiver the necessary tools for

accessing the e-invoices in its printed representation in

digital format (RIDE).

Given that the e-invoicing Ecuadorian model has three

issuance schemes (contingency, online, and offline),

Manuscript received February 26, 2016; revised May 21, 2016.
This work was supported by the Mexican “National Council on

Science and Technology,” CONACYT

issuers must implement mechanisms to dynamically

generate RIDEs from heterogeneous XML e-invoices.

Although XML is a standard markup language, the

different emission schemes mentioned above oblige

issuers to implement flexible methods for converting

XML e-invoices to non-XML formats such as PDF, a

standard for the accurate display of rich and complex

material [4].

Since the importance of XML language has increased,

a series of features have been developed around it. For

instance, XML Data Binding which converts an XML

document to an instance of a Data Model Class [5]. XML

Data Binding involves four concepts: class generation,

unmarshalling, marshalling and binding schemas, as

described in [5].

Unmarshalling consists in converting a format (which

can vary from a simple raw byte array to an elaborate

XML representation) into an object created from an XML

Schema Definition (XSD), called Content Tree [6]. This

transformation is very important since the direct

manipulation of XML documents, represented as strings

or DOM trees, can be tedious and error-prone [7].

This paper reports on an approach based on the

unmarshalling process to the automatic RIDEs generation

from issued XML e-invoices using XSD documents as a

skeleton definition. In this work, a prototype

implementation targeted to Java programming language

has been developed.

The remainder of the paper is organized as follows:

Section II analyses the state of the art in the field of XML

transformations and highlights the followed path in the

design of the proposed tool. Section III presents the XML

Unmarshalling process using block diagrams. Section IV

describes a specific implementation based on the

Ecuadorian e-invoice model using JAXB (Java

Architecture for XML Binding) and the obtained results.

Finally, Section V presents conclusions and future work.

II. RELATED WORK

In recent years, there has been a continuous evolution

in the field of the correct interpretation and handling of

XML documents with heterogeneous schemas. Several

approaches have been reported in three related topics:

XML generation from XSD schema, XML to data model

Journal of Advances in Information Technology Vol. 7, No. 4, November 2016

© 2016 J. Adv. Inf. Technol. 271
doi: 10.12720/jait.7.4.271-275

mapping, and XML Data Binding Applications, which

are discussed in the following subsections.

A. XML from XSD Schema/Marshalling

An XSD schema specifies the content that resides in an

XML document using the XML Schema Definition

Language [8].

References [9-10] present a technique for dynamically

creating an XML document according to a given XSD

schema using a computer language to generate a tree

linked structure. Fig. 1 shows the process described in

these proposals.

Figure 1. Generation process of an XML document from an XSD
schema as described in [9-10].

Reference [9] implements a technique using Java

DOM API, and the proposal shown in [10] is based on

JAXB. Both of them proposed determining the efficiency

of their methods as future work.

B. XML to Data Model Mapping

Since the introduction and dissemination of the XML

standard, there have been issues associated with handling

this data representation format. For example, as we can

see in Fig. 2, a single real-world object can be

represented in many ways through an XML file [11].

Additional tools are needed to resolve conflicts caused by

the heterogeneity of data models.

Figure 2. Bibliographical databases of different publishers may be

different [11].

Reference [11] reports an approach for resolving

structural and semantic conflicts of heterogeneous XSD

schemas in order to deal with data of different sources

which are represented in different formats and in

incompatible ways. This approach was reported as an

initial prototype; some issues, such as many-to-many

correspondences and integrity constraints, have not yet

been sorted out.

A transformation approach for responding to the

variation in different styles of XSD schema's organization

as needed in XML to object mappings is presented in [12].

A semantic mapping method which finds the

correspondence between two XML schemas, even if the

schemas have different structures, is introduced in [8].

C. XML Data Binding Applications

Proposals presented in [13]-[16] use information

extracted from XML documents to generate mobile

applications, widgets, documents or GUI (Graphical User

Interfaces). For example, Reference [13] presents an

approach to generate compact applications to process

XML documents, based on the fact that applications that

make use of XML data with large schemas do not

necessarily use all of the information included in them.

Reference [14] proposes a translator to represent data

defined in XSD schema into graphic user interfaces using

Apache Xerces-J. First, the translator generates a DOM

tree representation of nodes, then a second module

dynamically generates a user interface for mobile devices

in different rendering languages such as Java Swings,

HTML and WML.

An easily extensible tool to generate automatically

functional widgets from XML documents based on the

Widget Markup Language using JAXB is proposed in

[15].

The authors of [16] present an XML based Meta model

to represent UML classes and stored-procedures to access

databases which allow high independence between

databases and the software components.

Our approach complies with the Electronic invoicing

process of Ecuador. It uses the technique proposed in [10]

to create an XML document, and JAXB as technology to

implement XML data binding because it provides a

coherent and standard interface for XML marshalling,

unmarshalling, and supports compiling and runtime

binding [15], [17].

III. METHODOLOGY

Unmarshalling process allows to build object trees

from XML documents that are instances of an XSD

schema [6]. Each element in the tree corresponds to an

element in the XML document. Fig. 3 illustrates the

entire Unmarshalling process.

Figure 3. Unmarshalling process flow as described in [5].

The overall Unmarshalling workflow shown in Fig. 3
is described in the following sections:

A. XML to Data Model Mapping

Given an XSD schema, we can easily define the

corresponding structure in a computer language using the

method reported in [10]. We use JAXB to generate the

Java classes as suggested in [10] and [17]. JAXB

Schema

Binder/processor

Create/Edit

XML

XSD

Tree linked structure

from schema

to represent XML

structure

XML

Bibliographical database 1 Bibliographical database 2

Title Title

Discipline Curriculum CourseBooks Category CourseBooks

Book

Title Author @Price

Name Affiliation

FName LName

Book

Title Author Price

Name Affiliation

XSD
Generated

earlier

Java object

instances

Instances of

Form

Object tree

XML

Conforms to

Java

Classes

Unmarshaller

Journal of Advances in Information Technology Vol. 7, No. 4, November 2016

© 2016 J. Adv. Inf. Technol. 272

provides a tool called binding compiler to bind the XML

schema. It generates a set of java interfaces and classes

that represent the XML schema. The Java classes

generated must also define get and set methods which are

used to obtain and specify data for each type of element

and attribute in the schema.

B. XML Data Conforms to XSD Schema

XML data is necessary to continue with the

Unmarshalling process. The XML document must follow

the rules defined in the XSD document [5]; in other

words, XML properties and data attributes are restricted

by an XSD schema [18].

C. XML Data into Instances of Java Classes

According to [5], in this step XML data is converted

into some form of an input stream. Each property of

XML document must match with the respective attribute

of the Java object instantiated.

Once the Unmarshalling process has been performed,

it returns a top-level instance of the XML document. This

is an instance of the class that corresponds to the root

element of the XML document. The result is a normal

and plain Java object with set and get methods. This

object (also called object tree) can now be used as an

input to functions entrusted to render the RIDE in formats

such as PDF.

D. Object to PDF Content Matching

As a result of the previous steps, we have now a

cached copy of the content from the XML source

document in a Java object. The next stage of the RIDE

generation process is to structure the object's attributes

inside of the PDF.

Although the order used to represent the structure of an

e-invoice in a PDF file is not the same as the one used by

XML or an object instance, we can use a relatively simple

algorithm to search for the position of each XML field in

the PDF content. First, the document type of electronic

invoice is determined in order to define the data that must

be rendered through a PDF file. Once this happens, each

attribute of the object tree will be retrieved via

encapsulation using get methods (See Fig. 4). Once the

algorithm has finished, a PDF file is created.

Figure 4. Each attribute of the object tree is recovered through its get
method, then it is placed in its corresponding position within the PDF

content.

IV. IMPLEMENTATION

According to the Ecuadorian legislation, taxpayers

must issue the following electronic documents:

 Invoices

 Bills of lading

 Credit notes

 Debit notes

 Tax withholding receipts

which are supported by the developed application. The

SRI offers in its website [19], XSD documents for each

type of electronic documents.

An example of a XSD definition is shown in Fig. 5.

Figure 5. Partial definition of an electronic invoice through the XSD
schema.

All the needed classes associated to each type of

electronic document were obtained using JAXB. An

example of the translation of the XSD schema of an e-

invoice into a Java class is shown in Fig. 6.

Figure 6. Translation of the XSD schema of an e-invoice in Java using
JAXB.

Using the Java class shown in Fig. 6, we can instance a

Java object tree from the XML document shown in Fig. 7,

that are instances of the schema used to generate the Java

classes.

<xsd:element name="factura">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="infoTributaria"

type="infoTributaria"/>

 <xsd:element name="infoFactura">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="fechaEmision"

 type="fechaEmision"/>

 <xsd:element name="dirEstablecimiento"

 type="dirEstablecimiento"/>

 <xsd:element name="contribuyenteEspecial"

 type="contribuyenteEspecial"/>

 <xsd:element name="obligadoContabilidad"

 type="obligadoContabilidad"/>

 <xsd:element name="guiaRemision"

 type="guiaRemision" minOccurs="0"/>

 <xsd:element name="razonSocialComprador"

 type="razonSocialComprador"/>

@XmlRootElement(name = "factura")

public class Factura {

 @XmlElement(required = true)

 protected InfoTributaria infoTributaria;

 @XmlElement(required = true)

 protected InfoFactura infoFactura;

 @XmlElement(required = true)

 protected Detalles detalles;

 protected InfoAdicional infoAdicional;

 @XmlAttribute protected String id;

 @XmlAttribute

 @XmlSchemaType(name = "anySimpleType")

 protected String version;

 ...

}

Journal of Advances in Information Technology Vol. 7, No. 4, November 2016

© 2016 J. Adv. Inf. Technol. 273

Figure 7. Partial XML example of an e-invoice.

The Java object shown in Fig. 8 will allows the

generation of the RIDE as it contains all information of

the electronic invoice.

Figure 8. Object instance tree for an e-invoice.

The next stage of the generation process is to translate

the Java object containing the information of an e-invoice
and to build its corresponding PDF document. Fig. 9
presents the printable version of an e-invoice generated
from the object of the Fig. 8 through the Unmarshalling
process.

The RIDE’s generator proposed in this work can be

deployed:

 In standalone mode, where we can use the
application as an external jar library in any Java
project, and

 As a web service, where the application can be
used through SOAP protocol, ensuring
extensibility, transparency and interoperability
[19].

The iText rendering engine, a library that allows PDF

file manipulation, was used achieving good results.

The proposed software tool developed for this work is

on production stage in four companies in Ecuador. Before

the deployment of the proposed tool, the RIDEs were

generated using string processing algorithms, which are

tedious and unsafe [7]. The generator has made an impact

in the working practices of these companies reducing the

time needed to generate the RIDE’s. Furthermore, our

approach provides a more robust and secure mechanism

for handling the data of the e-invoices through their

representations in XML format.

Figure 9. Printable version of an e-invoice in PDF format generated
from a Java object using iText.

V. CONCLUSIONS AND FUTURE WORKS

This paper has presented our approach to the

development of a tool to generate automatically RIDEs

from e-invoices according to Ecuadorian model using

Unmarshalling. The developed tool is easily extensible to

future technologies, as well as to new issuance schemes.

Furthermore, the generator can be exploited as a

standalone application or as a library in the context of

other applications.

The main contributions of our approach can be

summarized as following:

 Enterprises no longer need to handle complicated

e-invoicing processes to generate RIDEs. The

developed tool determines the issuance scheme of

e-invoices automatically.

 Through automated generation of RIDEs with a

robust process, e-invoicing frameworks will be

able to deal with the dynamic changes in polices in

the e-invoicing model of Ecuador.

 The manipulation of e-invoices through objects or

data structures is safer than the direct manipulation

of XML files [7], because objects provide a high-

<?xml version="1.0" encoding="UTF-8"?>

<factura

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 id="comprobante" version="1.0.0">

 <infoTributaria>

 <ambiente>1</ambiente>

 <tipoEmision>1</tipoEmision>

 <razonSocial>

 PRODUCTOS ECUATORIANOS S.A.

 </razonSocial>

 <nombreComercial>

 PRODUCTOS ECUATORIANOS SA

 </nombreComercial>

 <ruc>1190381595001</ruc>

 <claveAcceso>

 0611201501119038159500110040030014554370145

 </claveAcceso>

 <codDoc>01</codDoc>

 <estab>004</estab>

 <ptoEmi>003</ptoEmi>

 <secuencial>001455437</secuencial>

 <dirMatriz>

TAMAYO 1025 Edif CLASECUADOR

 </dirMatriz>

 </infoTributaria>

Factura

estab=”004”

version=”1.0.0”

InfoTributaria

ambiente=”1”

tipoEmision=”1”

razonSocial=”PRODUCTOS ECUATORIANOS S.A.”

nombreComercial=”PRODUCTOS ECUATORIANOS S.A.”

ruc=”1190381595001”

claveAcceso=”0611201501119038159500110040030014554370145”

codDoc=”01”

ptoEmi=”003”

secuencial=”001455437”

dirMatriz=”TAMAYO 1025 Edif CLASECUADOR”

id=”comprobante”

Journal of Advances in Information Technology Vol. 7, No. 4, November 2016

© 2016 J. Adv. Inf. Technol. 274

level specification. Also, objects represent a best

option for Non-XML databases.

Future work is focused in the extension of the

proposed tool for cloud and mobile technologies.

Moreover, we intend to enhance the generator with

mechanisms proposed in [20], in order to improve the

semantic structure of the PDF files according to the

logical structure of its corresponding XML file.

ACKNOWLEDGMENT

The authors wish to thank to the Mexican “National

Council on Science and Technology,” CONACYT, for

the financial support provided via the scholarships

444186 and 664689 granted to Rolando P. Rodriguez-

Cruz and Maria F. Hernandez-Luquin respectively.

REFERENCES

[1] L. Humski, I. Lazegic, and Z. Skocir, “Datawarehouse for fer e-

invoice system,” in Proc. 35th International Convention MIPRO,
May 2012, pp. 1641–1646.

[2] European Commission, Definitions for e-Invoicing, 2012.

[3] Billentis, “E-invoicing/e-billing: Key stakeholders as game
changers,” 2014.

[4] M. R. B. Hardy and D. F. Brailsford, “Mapping and displaying

structural transformations between xml and pdf,” in Proc. 2002
ACM Symposium on Document Engineering, DocEng ’02, USA:

New York, ACM, 2002, pp. 95–102.

[5] B. McLaughlin, Java and XML Data Binding, O’Reilly, ch. 1,
2002, pp. 16-18.

[6] Sun Microsystems, Inc., The Java Architecture for XML Binding

Users Guide, ch. 3, 2001, pp 24-26.
[7] C. Kirkegaard, A. Moller, and M. I. Schwartzbach, “Static

analysis of xml transformations in java,” IEEE Transactions on

Software Engineering, vol. 30, no. 3, 2004, pp. 181–192.
[8] L. Checiu and D. Ionescu, “A new algorithm for mapping xml

schema to xml schema,” in Proc. 2010 International Joint

Conference on Computational Cybernetics and Technical
Informatics, 2010, pp. 625–630.

[9] P. Pardeshi and G. Ramachandran, “Generic method for xml

generation from given xsd,” in Proc. 3rd International Conference
on Electronics Computer Technology, vol. 5, pp. 404–408, April

2011.

[10] D. Raha, “Dynamic xml generation according to a given schema,”
in Proc. IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology, vol. 1, Dec. 2008,

pp. 938–942.
[11] A. Almarimi and J. Pokorny, “A mediation layer for

heterogeneous xml schemas,” International Journal of Web

Information Systems, vol. 1, no. 1, pp. 25–33, 2005.
[12] R. Lammel, “Style normalization for canonical x-to-o mappings,”

in Proc. 2007 ACM SIGPLAN Symposium on Partial Evaluation

and Semantics-based Program Manipulation, 2007, pp. 31–40.
[13] A. Tamayo, C. Granell, and J. Huerta, “Instance-based xml data

binding for mobile devices,” in Proc. the Third International

Workshop on Middleware for Pervasive Mobile and Embedded
Computing, MMPAC ’11, USA: New York, ACM, 2011, pp. 2:1–

2:8.

[14] V. Radha, S. Ramakrishna, and N. P. kumar, “Generic xml schema
definition (xsd) to gui translator,” in Proc. the Second

International Conference on Distributed Computing and Internet

Technology, Berlin, Heidelberg: Springer-Verlag, 2005, pp. 290-
296.

[15] C. Raibulet and D. Cammareri, “Automatic generation of mobile

widgets,” International Journal of Pervasive Computing and
Communications, vol. 7, no. 2, pp. 132–146, 2011.

[16] J. Gunathunga, A. Umagiliya, and S. Kodituwakku, “Leverage the

use of xml in dynamic gui parsing and database stored procedures,”
in Proc. International Conference on Industrial and Information

Systems, Aug 2007, pp. 235–238.

[17] T. Aihkisalo and T. Paaso, “A performance comparison of web
service object marshalling and unmarshalling solutions,” in Proc.

2011 IEEE World Congress on Services, USA: Washington, DC,

IEEE Computer Society, 2011, pp. 122–129.
[18] K. Svensson, “Faster xml data validation in a programming

language with xml datatypes,” SIGPLAN Not., vol. 42, Nov. 2007,

pp. 15–21.
[19] J. Tekli, E. Damiani, R. Chbeir, and G. Gianini, “Soap processing

performance and enhancement,” IEEE Transactions on Services

Computing, vol. 5, Third 2012, pp. 387–403.
[20] M. R. B. Hardy, D. F. Brailsford, and P. L. Thomas, “Creating

structured pdf files using xml templates,” in Proc. 2004 ACM

Symposium on Document Engineering, DocEng ’04, USA: New
York, ACM, 2004, pp. 99–108.

Rolando P. Rodriguez-Cruz was born in

Trujillo province, Peru, 1988. He received his
Bachelor Degree in Computer Science from

National University of Trujillo, Peru in 2011

and he is currently pursuing master's degrees in
Administration of Technologies at University

of Guanajuato, Mexico. He has got a total of 4

years as consultant on electronic invoicing for
companies of Ecuador. He is currently

Professor at Engineering Division, University
of Guanajuato, Guanajuato, Mexico. His area of interest include

electronic business, software project management, software process

improvement and web technologies.

Maria S. Avila-Garcia is an associate professor at the University of
Guanajuato. Her research interests lie in multidisciplinary projects,

research information systems, collaborative learning and research

environments, and medical image processing.

Maria F. Hernandez-Luquin received her

Bachelor Degree in Computing Engineering

from Engineering Division of the University of

Guanajuato, Mexico in 2014. Now,

she is

pursuing master's degrees in Applied
Electronic Engineering at University of

Guanajuato,

Mexico. She is currently

Professor

at Engineering Division, University
of Guanajuato, Guanajuato, Mexico. Her

current research interests include software

development and distributed databases, pattern recognition

and image
processing.

Journal of Advances in Information Technology Vol. 7, No. 4, November 2016

© 2016 J. Adv. Inf. Technol. 275

