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Abstract—According to international credit card organisms 

such as VISA, there are more and more credit card frauds, 

both in quantity and in amount. To cure the problem, an 

anti-fraud project is developed using a combination of two 

unsupervised algorithms: Principal Component Analysis 

and SIMPLEKMEANS algorithm. To augment model 

accuracy, geographic positions of the transaction and of the 

client are added to traditional studied data, as everybody is 

fully connected with smartphones nowadays and as such 

tendency is growing up for a near future. Good results are 

obtained for proposed model on created test data base by 

achieving the foreseeing results and getting the classification 

of possible frauds.  

 

Index Terms—data mining, credit card, fraud detection, 

principal component analysis, SIMPLEKMEANS algorithm 

 

I. INTRODUCTION 

Credit card payment is nowadays a very common 

process for most financial transactions. But in parallel, 

the number of fraudulent operations has been increasing 

[1] and is demanding active surveillance for reducing its 

impact on economy, the more as internationalization and 

extreme simplicity of transactions makes more difficult 

the application of different security norms. In France for 

instance, between Nov. 1
st
 2013 and April 30

th
 2014, 

532.2 billion Euros transactions have been realized by 

68.4 million cards in France, a total amount of card 

payments increased by 4.4% in comparison with 2012 [2]. 

Meanwhile, the total fraud amount reached 469.9 million 

Euros during the same period, which represents a 4.3% 

raise. For a long time researches have been developed in 

the domain to find solution to fraud problem [3]-[15]. 

Typically, fraudulent operations are representing a small 

fraction of all transactions, leading to skewed 

distributions, which are also noisy due to errors from 

collecting devices in data sets. Another difficulty stems 

from data overlapping when operations may look 

fraudulent when legitimate and vice versa. Obviously, 

fraudulent techniques are changing over time so detection 

system ought to be adaptive to maintain its efficiency.    

For these various reasons it is difficult to design a very 

effective fraud filter, and usual approach is to take 

advantage of artificial learning systems for recognizing 

fraudulent features when facing them in real life after 

adequate training which mainly consists in optimizing a 
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cost function measuring the distance of legitimate 

observed real data to fraudulent ones once a convenient 

metrics has been set. In [16], supervised probabilistic 

Bayes and Bayesian Networks algorithms have been used 

on the following variables: operation code/ response 

transaction code/ transaction date (YYYYMMDD)/ hour, 

minute, second, transaction amount and other Boolean 

values. Results are obtained with an error rate between 

0.92% and 0.47%. Decision tree method and different 

Support Vector Machine (SVM) with polynomial and 

sigmoid functions have been compared in [17], with the 

conclusion that SVM generates over-fitting and is less 

efficient than decision trees. Artificial neural networks 

and Bayesian belief networks have been taken in [18, 19], 

and it has been observed that an error in selecting the set 

of detection variables could block the system due to 

imbalance between legal and fraudulent transactions. 

Most current approaches so far are depending on 

relatively heavy numerical treatment which makes 

improvement much heavier and obscures full 

understanding of their development.  

A different approach is followed in present study 

where the intention is to reach more understandable 

results and at the same time simplify their getting. For 

that it is proposed to use two very well defined 

unsupervised algorithms, the Principal Component 

Analysis (PCA) and SIMPLEKMEANS (SKM) 

algorithm, both exhibiting full transparency in their 

operating process, and to discuss their reliability when 

applied to fraud detection problem. 

II. DATA GENERATION 

 

Figure 1.  Schema of knowledge discovery from data process 
(Fayyad & Patetsky Shapiro & Smith, 1996). 
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Figure 2.  Model used in the program, showing the fields and 

associated methods. 

Knowledge discovery process from data base requires 

five steps as showed in Fig. 1. First of all, an Extraction 

Transfer Loading is necessary. This stage consists in 

extracting data from different sources (data base, files, 

applications...), to be transformed and to be regrouped in 

a same data base. Afterwards, this one has to be cleaned, 
detecting and correcting corrupted or missing data. 

Subsequently and just to simplify the number of 

operations and get a faster system, only the most relevant 

attributes of data are going to be considered.In this way, 

the fulfilment of the attribute selection step is achieved. 

As third stage, data have to be transformed, building new 

attributes or changing their own format to obtain easier 

future manipulations. Previously selected data mining 

algorithms are thus able to be applied to the 

abovementioned data. To finalize the process, all the 
results obtained by the system have to be analyzed and 

interpreted [20].  
In that way, to be able to test the efficiency of Credit 

Card Fraud Detection System, obviously data are 

required. Nevertheless, collection of real data from 

different banks is usually unsuccessful, because it is often 

related to sensitive financial transactions kept 

confidential for elementary privacy reasons. So 

randomized and forged data have to be generated for the 

purpose. These data are created so that data mining 

methods can be directly applied without having to clean 

and treat them. As it is necessary to deal with a large 

range of data types (coordinates, IBAN, dates, times…), 

they are generated regarding different algorithms such as 

a simple (just put a random value in each field) or a more 

complex one (fields linked to one another in order to 

simulate several transactions for a same person, for 

example). JAVA and JEE languages have been used to 

benefit from a web interface and easier implementation. 

The generator allows the user create a structure with 

desired fields. As showed in Fig. 2, several fields are 

displayed from which the user can define different limits 

according to his needs. All choices can be modified by 

user request, except during data generation. After 

choosing the number of desired entities, the generator 

calls the Generable class which produces randomized 

data. Then a CSV file is created, containing all generated 

data according to user choices.  This file can be used 

subsequently by the fraud detector program without any 

further needed modifications.  

III. PCA AND SKM ALGORITHM 

PCA is a powerful tool which allows us, with only 

some calculations, the obtaining a wide view of 

relationships among different credit card transaction 

characteristics. Its flexibility is demonstrated by the fact 

that it can be applied to very large data sets, independent 

of contents and size, an essential point for this problem. 

Afterwards, SKM algorithm will make an easier and 

faster identification of fraudulent or legal transactions. In 

other words, the following matrix is built: 
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T represents all the transactions of a bank account and 

each transaction Tj
 = {tj1, tj2,… tjp}  is described by p 

characteristics. T contains both legal TL and fraudulent 

TF transactions, T = {TL,TF} and the problem here is to 

exactly and only detect second ones by successive 

k}. Best ones are such 

that with minimum number of most transparent 

operations (so the choice of best filtering set is made 

difficult by the interaction between operations belonging 

to different successive filters). A test of full filter 

efficiency is the distance  = |k{k}T  TF| measured 

with adapted metrics when tested on a representative base 

set T of possible transactions T. As indicated above other 

important elements in the choice of filtering set {k} are 

calculation simplicity and operation transparency. Here 

filters are 1
 = PCA and 2

 = SKM algorithms, and after 

their application two sets are obtained: QL (transactions 

classify as legal) and QF (transactions classify as 

fraudulent). 

k{k}T = TF                       (2)
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with Tj = [ tj1, tj2, ..., tjp]  =>PCA,SKM}
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where  1,i j k l n     

A. PCA 

PCA is a data analyzing method which transforms 

correlated variables into uncorrelated ones. In present 

case this method aims at representing transactions 

described by different attributes (transaction amount, 

date …) in a smaller subspace than initial one, and so that 

the least possible information is lost.  

For each bank account, the matrix representing “n” 

transactions with their “p” respective attributes is built up. 

After centralized each value, variance-covariance matrix 

 = N
1

(X
T
X) is also constructed, representing the 

difference between the value and it respective estimation. 

         

(4) 

The solutions of error minimization are the different 

eigenvectors of matrix  obtained by application of 

Gram-Schmidt method. After having deduced the 

respective eigenvalues, the dimension d of new space is 

chosen following cumulated variance percentage 

technique. The new space is built from the first d 

eigenvectors related to the d higher eigenvalues. The last 

step consists in projecting each transaction in this new 

space. 

B. SKM Algorithm 

 

Figure 3.  Application scheme of SIMPLEKMEANS algorithm. 

After PCA, SIMPLEKMEANS unsupervised 

classification scheme [21] has been applied to classify the 

transactions. This algorithm consists in picking up 

randomly k initial points (cluster center), assigning then 

each point to the closest cluster, reevaluating the center of 

each cluster and reassigning points to their closest cluster, 

see Fig. 3. This cycle is repeated until the different sets 

become stable. 

IV. RESULTS 

The model has been applied to manually implemented 

data containing on five bank accounts. The first one 

contains 8 transactions in which there are 2 fraudulent 

and 6 legal ones. In the second bank account, there are 2 

legal transactions and 1 fraudulent one. The third bank 

account contains 3 legal transactions. The fourth bank 

account contains 20 transactions in which 15% of them 

are fraudulent and finally the last bank account contains 

15 transactions with 33.33% of fraud.  

TABLE I. RESULTS FOR 5 DIFFERENT BANK ACCOUNTS 

According to different tests, proposed present model 

gives good results. Transactions of bank accounts N°1, 2, 

4 and 5 have been correctly classified, with 100% 

precision, see Table I (a diagonal matrix is obtained). An 

error has been detected in the third bank account where a 

legal transaction has been considered as fraudulent. This 

result could be explained by the fact that the number of 

clusters in SKM algorithm is fixed to 2 and that all 

transactions are forced to belong to one of these clusters 

even in indeterminate cases. The problem would also 

appear in the other extreme case of 100% fraudulent 

transactions. Nevertheless, even with first plain iteration 

 = 12
 of filters PCA and SKM, results from proposed 

present model are attractive. With basic undifferentiated 

Euclidian metrics distance, measurement error is  = 

1/(707)
1/2

, a figure which can be significantly reduced by 

iterating 2
 several times without too much numerical 

involvement, see Fig. 4 which exhibits the remarkable 

reliability of proposed filter for fraud detection above 

some critical percentage. This suggests a reductive step 
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by step procedure to eliminate as much legal transactions 

as possible to end up within absolute reliability interval as 

it will be discussed elsewhere. 
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Figure 4.  % Error vs % Frauds 

V. CONCLUSION 

The proposed model has been developed to satisfy the 

two conditions of calculation simplicity and operation 

transparency. An interesting trade-off, composed of two 

unsupervised algorithms (Principal Component Analysis 

and SIMPLEKMEANS algorithm) which considers 

geographic position of both transactions and clients, has 

various advantages. It directly classifies the transactions 

with a good precision and it can detect new fraudulent 

behaviors. Principal Component Analysis offers a 

complete view of relations among different attributes and 

at the same time, it is more flexible. Nevertheless, the risk 

remains to achieve a ‘local’ optimum instead of a general 

one. This risk could be reduced by repeating the “k 

means” process several times with different initial 

clusters to the expense of increasing the execution time. 
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