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Abstract—Deep learning has shown its great potential and 

function in algorithm research and practical application 

(such as speech recognition, natural language processing, 

computer vision). Deep learning is a kind of new multilayer 

neural network learning algorithm, which alleviates the 

optimization difficulty of traditional deep models and 

arouses wide attention in the field of machine learning. 

Firstly, the origin of deep learning is discussed and the 

concept of deep learning is also introduced. Secondly, 

according to the architectural characteristics, deep learning 

algorithms are classified into three classes, this paper 

emphatically introduces deep networks for unsupervised 

and supervised learning model and elaborates typical deep 

learning models and the corresponding extension models. 

This paper also analyzes both advantage and disadvantage 

of each model and points out each extension method's 

inheritance relationship with the corresponding typical 

model. Finally, applications of deep learning algorithms is 

illustrated, the remaining issues and the future orientation 

are concluded as well. 

 

Index Terms—deep learning, auto-encoder, restricted 

boltzmann machine, convolutional neural network, deep 

neural network 

 

I. INTRODUCTION 

According to the related studies, it is necessary to 

introduce the deep learning in order to study higher-order 

abstract concept of complex functions and solve the 

artificial intelligence related tasks. Kunihiko Fukusima’s 

introduction of the Neocognitron in 1980 helped facilitate 

modern deep learning architectures. Before that, Alexey 

Grigorevich Ivakhnenko published the first general, 

working learning algorithms for deep networks in 1965. 

Since 2006, the deep structured learning has emerged as a 

new area of machine learning research [1], [2], [3]. The 

motivation of deep learning is by establishing and 

simulating human brain to analysis and learn neural 

network. Deep learning copies the human brain 

mechanism to explain the data, such as image, sound and 

text. The concept of deep learning is the result of the 
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artificial neural network research. A good example of 

deep learning model is MLP containing many hidden 

layers. Deep learning combines low-level features to 

form a more abstract high-level representation (category 

or feature) in order to find out distributed characteristic 

presentation of data [4]. The definition of the deep 

learning has several versions. In this paper, one of the 

versions which is easy to be understood is introduced: a 

class of machine learning techniques that discover many 

layers of non-linear information processing for 

supervised or unsupervised feature extraction and 

transformation, and for pattern analysis and classification 

[5]. Deep learning architecture is composed of multilayer 

nonlinear units, in which each lower output as an input of 

the higher level can learn effective features from a large 

number of the input data, and higher level of learning 

includes a great deal of structural information contained 

in the input data. It is a good method to extract 

representation of the data. This method can be utilized for 

specific problems like classification [6], [7], regression [8] 

and information retrieval [9], dimensionality reduction 

[10]. 

In view of the deep learning of theoretical significance 

and practical application value, domestic study of deep 

structure is still in its infancy. Compared to other 

countries, the published literatures are relatively few. 

This paper summarizes the latest progress of the deep 

learning system, which lays a certain foundation for the 

further study of deep learning theory and expands its 

application fields. 

II. THE BASIC METHOD OF DEEP LEARNING 

Deep learning involves quite a wide range of machine 

learning techniques and structures. A three-way 

categorization is performed depending on how the 

architectures and techniques are intended for use. a) Deep 

networks for unsupervised or generative learning, this 

structure describes the high order correlation 

characteristics of the data or characterize joint probability 

distribution of the observed data and the corresponding 

categories. Examples of commonly used: Denoising 

Auto-Encoder (DAE), Restricted Boltzmann Machine 

13

Journal of Advances in Information Technology Vol. 7, No. 1, February 2016

© 2016 J. Adv. Inf. Technol.
doi: 10.12720/jait.7.1.13-22



(RBM), Deep Belief Networks (DBN), and Deep 

Boltzmann Machine (DBM). b) Deep networks for 

supervised learning, which aims at providing 

discriminative power for pattern classification and 

describes the posterior distribution of the data, such as 

Convolutional Neural Network (CNN), Deep Neural 

Network (DNN). c) Hybrid deep networks, the goal is 

discrimination. Since it usually takes advantage of the 

structure of the generative learning output, the 

optimization will be easier, like DBN-DNN, deep CNNs. 

Next, deep networks for unsupervised and supervised 

learning are emphatically introduced. Typical deep 

learning models (Auto-Encoder (AE), Restricted 

Boltzmann Machine (RBM), Convolutional Neural 

Network (CNN) and so on) and the extensions of each 

model are introduced. Fig. 1 shows inheritance 

relationships of typical deep learning models. 

A. Deep Networks for Unsupervised or Generative 

Learning 

Next, the AE, the RBM and the corresponding 

extension model are introduced. 

Auto-Encoder (AE) 

Auto-Encoder (AE) is an unsupervised machine 

learning technique, using neural network to produce low 

dimension to represent the high dimension input. An 

auto-encoder [11], [12] takes an input dx R , then maps 

it to a hidden representation 
'dh R , using a 

deterministic function of the  type 

( ) ( , )fh f x W b   . { , }W b   represents the weight and 

bias. 
( ) 1 (1 exp( ))t t   

 is the sigmoidal function, then it 
is used to reconstruct the input '( ) ( )gy g h W h b     

 with
 
parameters

 
{ , }W b   .

 
The

 
two

 
parameter

 
sets

 
are

 
usually

 
constrained

 
to

 
be

 
of

 
the

 
form

 
TW W  .

 Parameters 
 
and

 
  are

 
trained

 
to

 
minimize

 
the

 
average

 reconstruction
 
error

 
over

 
the

 
training

 
set.

 
The

 
purpose

 
is

 
to

 
have

 
y

 
as

 
close

 
as

 
possible

 
to

 
the

 
input

 
x .

 
The

 
parameters

 
of

 
this

 
model

 
(namely

 
{ , , }h yW b b  )

 
are

 
optimized

 
such

 
that

 
the

 
average

 
reconstruction

 
error

 
is

 minimized.
 

This
 

corresponds
 

to
 

the
 

minimum
 

of
 

the
 

objective
 
function.

 
Compared

 
with

 
the

 
linearity

 
of

 
PCA

 which
 
limits

 
the

 
extraction

 
of

 
feature

 
dimension,

 
AE

 
uses

 the
 
inherent

 
nonlinear

 
neural

 
network

 
to

 
overcome

 
this

 limitation.
 Regularized

 
auto-encoder

 
(AE+wd)

  The
 
simplest

 
form

 
of

 
regularization

 
is

 
weight-decay

 [11].
 

It
 

favors
 

small
 

weights
 

by
 

optimizing
 

the
 regularized

 
objective,

 
where

 
the

 
hyper-parameter

 
controls

 the
 
strength

 
of

 
the

 
regularization.

 
Note

 
that

 
rather

 
than

 having
 

a
 

prior
 

on
 

what
 

the
 

weights
 

should
 

be,
 

it
 

is
 possible

 
to

 
have

 
a
 

prior
 

on
 

what
 

the
 

hidden
 

unit
 activations

 
should

 
be.

 
From

 
this

 
viewpoint,

 
several

 techniques
 
have

 
been

 
developed

 
to

 
encourage

 
the

 
sparsity

 of
 
representation.

 
Sparse

 
Auto-Encoder

 
(SAE)

 The
 

auto-encoder
 

(AE)
 

is
 

able
 

to
 

capture
 

the
 

most
 important

 
factor

 
of

 
the

 
input

 
data,

 
so

 
it

 
can

 
as

 
much

 
as

 

possible to emersion the input. The constraint condition is 

joined on the basis of the auto encoder, which demands 

most of the nodes are zero and only a few are not zero, 

this is the sparse auto-encoder (SAE) [12]. The aim is to 

aid the expression code as sparse as possible. The sparse 

expression is more effective than other expressions. Just 

like the brain, an input simply stimulates certain neurons 

and most of neurons are suppressed. The strengths are 

that SAE can not only reduce the data dimension, but also 

extract more helpful characteristics of data. But it also 

has weaknesses. When the network layer is not the same, 

characteristics of the model are different. If the number of 

layer is too low, learning efforts may be not enough, 

which leads to characteristics cannot reach the best effect; 

if the number of layer is too high, a fitting phenomenon 

may occur. 

Denoising Auto-Encoder (DAE) 

The disadvantage of AE is that once testing and 

training samples are not in the same distribution, the 

effect will be not good. So DAE is demanded to make up 

this defect and improve the robustness of the system. 

The technique of denoising auto-encoder is a 

successful alternative form of regularization. The 

denoising auto-encoder [13] is trying to reconstruct noisy 

inputs. It first corrupts the initial input x  into x , then 

maps it to a hidden representation, which is identical with 

the basic auto-encoder. The input x  is stochastically 

corrupted to x  by means of a stochastic mapping. The 

key difference from the basic auto-encoder is that y  is 

now a deterministic function of x  rather than x . Noise is 

added when to train the initial input, so the encoder must 

learn to remove the noise and obtain the real input with 

no noise pollution. As a result, it will force the encoder to 

study a more robust expression of the input signal, this is 

the reason why its generalization ability is superior to 

general encoder. 

Stacked Denoising Auto-Encoder (SDAE) 

Stacking denoising auto encoders [14] initializing a 

deep network and stacking RBMs in DBNs work in 

almost the same way. In the beginning, a first level of 

DAE is trained in which its learnt encoding function f is 

used on clean input, the aim is to get the resulting 

representation which is used for training a second level of 

DAE and learns a second level encoding function (2)f , 

then the procedure is repeated. Once a stacking of 

encoders has been built, the result of top level 

representation is utilized as input for the supervised 

learning algorithm. In the end, stochastic gradient descent 

is used to simultaneously fine-tune the parameters of all 

layers. 

The difference between DAE and SDAE is that: the 

corruption of DAE could be done in the training phase, 

and it doesn’t need to do with the forward feedback. But 

the corruption and the denoising of SDAE need to be 

done in the training of each layer [14]. 

Discriminative Recurrent Sparse Auto-Encoder 

(DrSAE)
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Figure 1.  Inheritance relationships of typical deep learning models.

The discriminative recurrent sparse auto-encoder 

(DrSAE) [15] which comprises a recurrent encoder of 

rectified linear units [16], [17], unrolls for a fixed number 

of iterations and has a connection with two linear 

decoders for the purpose of reconstructing the input and 

predicting the classification. The aim of training is via 

back propagation-through-time [18] to minimize an 

unsupervised sparse reconstruction loss function, and then 

the loss function is added on the supervised classification 

by using a discriminative term. That is to say stochastic 

gradient descent is used to pre-train the unsupervised loss 

function and get parameters, it is also used to perform 

discriminative fine-tune on the unsupervised sparsere 

construction loss function and the supervised 

classification loss function. 

DrSAEs are comparable to the recurrent neural 

networks [19], expect that the nonlinearity of DrSAEs is 

different and the loss function is heavily regularized. 

DrSAEs also resemble the recurrent networks [20], other 

than recurrent connections exit between the hidden units, 

not between the hidden units and the input units. 

Contractive Auto-Encoder (CAE) 

The contractive auto-encoder (CAE) is put forward by 

Bengio etc. as a new auto-encoder [11] which adds the 

new penalty term on the traditional auto-encoder 

reconstruction error. The new penalty term equals to the 

squared Frobenius norm of the Jacobian of the encoder 

activations function of the input. CAE can produce 

localized space contraction, therefore its characteristic is 

more robust. 

Two components of the loss function are proposed as 

two optimization objectives of CAE: the first part (auto-

encoder reconstruction) makes CAE will try best to 

capture a lot of information about the input image. The 

second part (the Jacobi matrix of Frobenius Norm) can be 

seen that the encoder throws away all information, hence 

the CAE is just capture the variance in the training data 

and insensitive to other variances. 

The relationship with other auto-encoder variant: firstly, 

the relationship with AE + weight decay: The squared 

Frobenius norm of the Jacobian is equivalent to a linear 

encoder with anL2 weight decay. Secondly, the 

relationship with sparse auto-encoder: The purpose of 

sparse auto-encoder is to make the most feature of each 

sample become zero. For the sigmoid function of CAE, it 

means the derivative is small and the corresponding part 

of the value of the Jacobi matrix is small, so they are 

similar. Thirdly, the relationship with denoising auto-

encoders: CAEs encourage robustness of representation, 

but DAEs encourage robustness of reconstruction. 

Because for classification, we only need the encoder to 

extract features among them, the robustness of extracted 

features becomes more important than robustness of the 

reconstruction, thus this property makes CAEs easier than 

DAEs to learn robust features. 

What’s more, good features represent roughly in two 

metrics: one can well reconstruct the input data; the other 

is that under a certain extent disturbance the input data 

has node formation. Ordinary auto-encoder and SAE 

mainly conform to the first standard, while DAE or CAE 

is mainly embodied in the second. If as a classification 

task, the second standard is more important, this is the 

superiority of the CAE. In general, CAE mainly inhibit 

the training sample disturbance in all directions. 

Denoising Auto-encoder with Interdependent Codes 

(DA-IC) 

The DA-IC [21] is a variant of DAE. The main idea is 

to capture the interaction between hidden layer nodes, 

such as inhibitory and excitatory interactions. That is the 

activation of hidden layer nodes, which is not only related 

to the input, but also will influence each other. The DA-

IC’s thought is to treat the inhibitory and excitatory lateral 

connections between the hidden layer units as adding an 

extra non-linear processing layer on the basis of regular 

encoding. The DA-IC using asimpler way to say is adding 

a hidden layer in the encoding function, in that the 

computational complexity will decrease. The DA-IC 

merely considers asymmetric lateral connections between 

the hidden layers when encoding and does not change 

when decoding. In encoding and decoding the same 

weight is shared. Compared with a recursive update 

equation [22], the DA-IC could copy with two defects. 

One is when we meet large layers or the number of 

iterations, the computation of the encoding becomes 

expensive. The other is that it is costly and hard to 

optimize the encoding through gradient descent. 

Convolutional Auto-Encoder (CAE) 

Fully connected AEs and DAEs both ignore the 2D 

image structure. When dealing with real image data, this 

is not the only problem. Another problem is that it 

involves redundancy in structure parameters, which 

makes each learned feature become global. But in the 
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field of machine vision and target recognition adopted by 

the most successful models, it can be discovered that 

localized features are implied in the whole data set. CAE 

[23] can better resolve the above problem. It is different 

from conventional AEs, as their weights are shared 

between all locations in the whole data set, such 

processing can preserve spatial locality. At this point the 

reconstruction becomes using a linear combination of 

basic image patches based on the implicit code. 

The CAE which differs from the AE is to learn 

localized features of the image and add the convolution 

and pooling operation. 

Restricted Boltzmann Machine (RBM) 

The RBM is a stochastic neural network, it only has 

two layers of neurons. The visible layer, which composes 

of visible units, is used for input training data. The hidden 

layer, consisting of hidden units, is used as feature 

detectors. Connections only exist between the visible 

units of the input layer and the hidden units of the hidden 

layer, there are no visible-visible or hidden-hidden 

connections. Connections between neurons are 

bidirectional and symmetric, this means that during the 

training, information flows in both directions; during the 

usage of the network, weights are the same in both 

directions. In an RBM, the hidden units are conditionally 

independent given the visible states, so we can quickly get 

an unbiased sample from the posterior distribution when 

given the observed data. This is a big benefit over 

directed belief nets. It is the same way to the visible units. 

In training a single RBM, weight updates are performed 

with gradient ascent [24].  

The RBM network works in the following way: First 

the network is trained by using some data sets and the 

neurons on visible layer are settled to match data points in 

data sets. After the network is trained, it can be put to use 

to classify other data. The RBM [25] which is used to 

initialize the feed forward neural network is a valid 

method of feature extraction and can obviously improve 

the generalization ability. The main characteristic of 

boltzmann machine is the activation layer features of the 

inputas the training data of the next layer, so the study is 

very quick. 

Temporal Restricted Boltzmann Machine (TRBM) 

For the extension of RBM, the Temporal Restricted 

Boltzmann Machine (TRBM) is put forward [26], [27]. 

The TRBM is a directed graphical model. It consists of a 

sequence of RBMs and the RBM is undirected at each 

time step. In TRBM, the bias of the RBM in next time 

step depends on the state of the previous RBMs. The 

advantage of TRBM is that it is able to successfully 

model several very high dimensional sequences, like 

motion capture data or the pixels of lower solution videos 

of balls bouncing in a box. The disadvantage of the 

TRBM is that it is very hard for exact inference, since 

computing a Gibbs update for a single variable of the 

posterior is exponentially expensive. In order to settle the 

difficult, a heuristic inference procedure is appear, which 

is related to the RTRBM [26]. 

Although the Recurrent TRBM (RTRBM) is similar to 

the TRBM, its performance is better than the TRBM. It 

learns to use the hidden-to-hidden connections to store 

information, so exact inference is very easy and 

computing the gradient of the loglikelihood becomes 

feasible. However, due to it is a recurrent neural network, 

the disadvantage of the RTRBM is that it is difficult to 

learn the full potential of its hidden units. 

Conditional Restricted Boltzmann Machine (CRBM) 

Conditional Restricted Boltzmann Machine (CRBM) 

contains connections from the visible layer at previous 

time steps to the current hidden and visible layers. The 

energy function just has a small change of the RBM, it 

can be achieved by contrastive divergence. The shortage 

is that it is fail to clearly model the evolution of the 

hidden features without resorting to a deep network 

architecture. 

Temporal Auto encoding Restricted Boltzmann 

Machine (TARBM)  

The TARBM [27] is an extension of the TRBM, it 

simply has hidden-to-hidden temporal connections. When 

to pre train the temporal weights it uses a denoising auto-

encoder approach, thus it has an advantage over 

contrastive divergence. The motivation is to gain deeper 

insight into the typical evolution of learned hidden layer 

features. Stacking the RBMs side by side through time 

and training the temporal connections between hidden 

layers use a similar way to training the AE, the difference 

is through time. 

Deep Belief Networks (DBN) 

Hinton shows that stacking and training RBMs in a 

greedy manner to form Deep Belief Networks (DBN) [10], 

[28], [29]. DBNs are graphical models. The DBN learns 

to extract a deep hierarchical representation of the training 

data. The structure of the DBN shows that the DBN has a 

visible layer, an output layer and multiple hidden layers, 

where the visible layer is also the input layer. The DBN 

which is composed of a stacking of RBMs can extract 

characteristics of more abstract and can be efficiently 

trained in an unsupervised and layer-by-layer manner.  

The learning process is as follows: Random samples 

are selected as training samples, and then they are put into 

the network directly. The first RBM is trained, so that the 

hidden layer neurons can capture important features of the 

input data. This hidden layer is put as DBN’s first hidden 

layer. The features are obtained by training, where the 

features are served as the input datas to train the second 

RBM. Once the first RBM is trained, another RBM will 

be “stacked” at the top of it to create a multilayer model. 

In fact, the above training process can be seen as features 

of the learning process and it can last until the specified 

layers of the DBN hidden layers are all trained. The 

training method of  RBMs uses Contrastive Divergence 

(CD)[30]. The framework bypasses training the overall 

DBN directly, and it transforms the training of DBN into 

the training of multiple RBMs so as to simplify problems. 

In general, the whole process is equivalent to first 

training RBM step by step. The model parameters are 

initialized to the optimal value, afterwards a small amount 

of traditional learning algorithm further training is 

processed. In this way, it not only can solve the model 

problem of slow training speed, but also can obtain good 
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effect. A large number of experiments show that this 

process can produce very good values of initial 

parameters and greatly improve modeling ability of the 

model. 

DBN can overcome problems of traditional BP 

algorithm when training multilayer neural network: 1) it 

needs a lot of labeled training samples; 2) the 

convergence speed is slow; 3) because of the 

inappropriate parameter selection, it is easy to fall into 

local optimization. 

Convolutional Deep Belief Network (CDBN) 

By introducing a convolution operation, Lee, etc. firstly 

extend the processing object of the deep model from 

small scale image (32 pixel x 32 pixel) to large scale 

image pixel(200 pixel x 200 pixel) and put forward the 

convolutional DBN(CDBN). Through visual learning to 

the characteristics of each floor, it illustrates that the high-

level abstraction process is constantly generated by the 

low-level features [31]. 

To introduce CDBN, it is necessary to realize CRBM at 

first. Convolutional RBM [32] is an extension of the 

RBM model and is a lot like the RBM. The CRBM 

corresponds to a simple structure simply with two layers: 

a visible layer and a hidden layer. The model uses visible 

matrix to represent the image, so sub windows of it 

represent image patches. Beside hidden units are divided 

into feature maps. The feature map is a binary matrix, 

which represents a feature at different location of image. 

Features are extracted from neighboring patches 

complement each other and they are cooperated to 

reconstruct the input. All nodes in the hidden and the 

visible layer share the same weight. Up the two layers, at 

an attempt to reduce the computation burden and put up 

with small translational misalignment, the pooling layer is 

imported which allows higher-layer representations to be 

invariant to small translations of the input. 

One disadvantage of CRBM is the over completeness 

of features, although it uses CD learning, it is fail to deal 

with highly over completeness. Another disadvantage is 

that sampled images become highly close to the original 

ones after parameters are updated, hence the learning 

signal will disappear. We often increase Gibbs sampling 

steps, but it is time consuming. 

Refer to the convolutional deep belief network (CDBN) 

[31], this architecture consists of several max-pooling-

CRBMs stacked on top of one another which is similar to 

DBNs. The defect of RBMs and DBNs is they both ignore 

the 2Dstructure of images. But for the CDBN, it is able to 

of images combined with the 

advantage gained by pre-training in DBN. 

Deep Boltzmann Machine (DBM) 

DBM [33] is a type of Markov random field, in which 

all connections between layers are undirected. DBM has 

the potential of learning internal representations that 

become increasingly complex at higher layers, so this is a 

promising way to resolve object and speech recognition 

issues. The approximate inference procedure, other than a 

bottom-up pass, can incorporate top-down feedback, 

which allows DBM can better propagate uncertainty 

about ambiguous inputs. We train the whole model online, 

and process one example at a time. High-level 

representations are built from unlabeled inputs and 

labeled datas are used to slightly fine-tune the model. 

However, the DBM [34] has more than one hidden 

layer, which increases its uncertainty and makes the 

learning process get quite slow, particularly when the 

hidden units form layers which become more and more 

distant from the visible units. In view of the above 

situation, a fast way to initialize model parameters to 

sensible values is described in the following. When 

considering initializing the model parameters of DBM, we 

compose the lower-level RBM and the top-level RBM to 

form a single system. For the lower-level RBM, we 

double the input and tie the visible-to-hidden weights；
For the top-level RBM, we double the number of hidden 

units. When the two modules are composed, it can be seen 

that the conditional probability distributions defined by 

the composed model and the DBM are exactly the same. 

The above is greedily pre-training the two modified RBM 

to form a DBM. Moreover, when greedily training the 

RBM is more than two, it only needs the modification for 

the first and the last RBM in the stacking. For all the 

intermediate RBM's, the weights are simply halved in 

both directions when composing them to form a DBM. 

Taking a three-layer Deep Boltzmann Machine as an 

example, DBM with within-layer connections is different 

from DBN [28] (a three-layer as example), where the top 

two layers form a restricted boltzmann machine which is 

an undirected graphical model, but the lower layers forma 

directed generative model. 

B. Deep Networks for Supervised Learning 

Next, the CNN, the DNN and the corresponding 

extension model are introduced. 

Convolutional Neural Network (CNN) 

The convolutional neural network (CNN) which first 

proposed by Le Cun in 1989 is a network structure [35]. 

CNNs belongs to the feed forward network, but it 

combines three architectural ideas to ensure some degree 

of shift and distortion invariance, they are local receptive 

field, shared weights, and sub-sampling. The CNNs is 

comprised of a sequence of convolution process and sub-

sampling process. The network architecture is composed 

of three basic building blocks: the convolutional layer, the 

max-pooling layer and the classification layer. The input 

is converted into a convolution layer via the convolution 

process, and then the output feature is treated as the input 

data, converted as a set of smaller-dimension feature 

maps via the sub-sampling process [36]. 

CNNs are influenced by the earlier work in time-delay 

neural networks (TDNN) [37]. The goal of the TDNN is 

by sharing weights in a temporal dimension to reduce the 

need of learning computation, which is employed for 

speech and time-series processing [38]. Compared with 

the general neural network, the CNN has the following 

strengths in image processing: A) the input image and the 

network topology structure can be a very good match; B) 

feature extraction and pattern classification process 

simultaneously and also produce at the same time in 

training; C) shared weights can reduce the training of the 
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network parameters, which lets the neural network 

structure get simpler and more flexible. The 

disadvantages include that the implementation is more 

complex and the time of training is longer. 

Deep Neural Network (DNN) 

The deep network structure obtained by the deep 

learning fits the characteristics of the neural network, this 

is the deep neural network. The deep network structure of 

deep learning contains a large number of single neurons 

and each neuron is connected to a large number of other 

neurons. Connection strength between neurons changes 

during the learning process and determines the function of 

the network. Two common issues of DNN are over fitting 

and computation time. Because the added layers of 

abstraction lead them to model rare dependencies in the 

training data, thereby DNN tends to over fitting. In order 

to combat over fitting, regularization methods are used, 

such as weight decay, sparsity or dropout. What’s more, 

mini-batching is used to speed up computation, due to it 

computes the gradient on several training examples at 

once rather than individual examples. In addition, 

researchers have been more careful to distinguish the 

DNNs and DBNs [39], [40]. 

Deep Tensor Neural Network (DTNN) 

In the paper, Dong Yu extends the DNN to a novel 

deep tensor neural network (DTNN) [41], where one or 

more layers are double-projection (DP) and tensor layers. 

Why the author consider DTNN comes from our 

realization about some factors, like noisy speech, interact 

with each other to predict an output and so on. For the 

purpose of showing interactions, the author divides the 

input into two nonlinear subspaces through the DP layer 

and models the interactions between these two nonlinear 

subspaces and neurons of the output by a tensor with three 

way connections. 

Generally speaking, the DTNN has two types of hidden 

layers: the conventional sigmoid layer and the DP layer. 

Each of the two types can be flexibly placed in hidden 

layers. The softmax layer which connects the final hidden 

layer to labels in the DTNN is the same with the DNN. A 

DTNN can be seen as the DNN augmented with DP 

layers. We use a unified way to train DNN and DTNN 

and map the input features of each layer to a vector and 

the tensor to a matrix. 

Deep Convex Network (DCN) 

To overcome the learning scalability problem, a new 

algorithm of deep learning-Deep Convex Network (DCN) 

[42] is proposed. A DCN consists of a variable number of 

layered modules and each module is a specialized neural 

network including one hidden layer and two trainable 

weights. In the DCN, the module consists of a first linear 

layer with a set of linear input units whose number equals 

to the dimensionality of input, a hidden layer with a series 

of non-linear parameter tunable units, a second linear 

layer with a set of linear output units. That is to say the 

input units of the second module include the output units 

of the lowest module and the raw training data and the 

output of a top module represents the target classification 

classes. The DCN blocks, each consisting of a simple and 

easy-to-learn module, are stacked to form the whole deep 

network. When training, block-wise is used without the 

need of back-propagation for the entire blocks. 

The DCN is called Deep Stacking Networks (DSN) 

later by Deng [43]. He considers for Deep Convex 

Network, it accentuates the role of convex optimization, 

but for Deep Stacking Network, it emphasizes the key 

operation of stacking. 

Tensor Deep Stacking Network (T-DSN) 

As developed in [42] and [44], each DSN block forms 

the basis of the T-DSN. The stacking operation of the T-

DSN is exactly the same as that for the DSN described in 

[45]. Unlike the DSN, however, each block of the T-DSN 

has two sets of lower layer weight matrices (1)W  and (2)W . 

They connect the input layer with two parallel branches of 

sigmoidal hidden layers (1)H  and (2)H . Each T-DSN block 

also contains a three-way connection, the upper layer 

weight tensor U  that connects the two branches of the 

hidden layer with the output layer. It changes from a 

matrix in DSN to a tensor in the T-DSN. This is difficult 

for the DSN through stacking by concatenating hidden 

layers with the input, in that its hidden layer is too large 

for practical purposes. The DSN owns the computational 

advantage in parallelism and scalability when learning all 

parameters, as a result the T-DSN reserves this superiority. 

The T-DSN also has an advantage in incorporating 

speaker or environmental factor, when training one of the 

hidden representations to encode speaker or 

environmental factor, we can effectively gate the other 

hidden-to-output mapping. 

Kernel Deep Convex Network (K-DCN) 

Deng then put forward Kernel Deep Convex Network 

(K-DCN) [46], in which kernel trick is used. It first bases 

on the DCN, and then is extended to the kernel version 

(resulting in K-DCN). K-DCN constructs infinite-

dimensional hidden representations in each of the DCN 

modules using the kernel trick and gets infinite-sized 

hidden layers without infinite-sized parameters. 

In this article, the author mentions comparing with 

DCN, the K-DCN vastly increases the size of hidden units 

avoiding subjecting to the difficulty of computation and 

over fitting. Parameters to tune in K-DCN are much fewer 

than in DC-N, T-DSN, and DNN. What’s more, 

regularization is more important in K-DCN than in DCN 

and T-DSN. K-DCN also can handle mixed binary and 

continuous-valued inputs without data and output 

calibration is more easily than other methods. In DNN or 

DCN, data normalization is often essential, but in K-DCN, 

it doesn’t need. As a summary, the K-DCN has a lot of 

advantages. But it also has fault. Once the training and 

testing samples become very large, the scalability is a 

problem. We tackle it by using random Fourier features, 

which makes possible by stacking kernel modules to form 

a deep architecture. 

C. Hybrid Deep Networks 

Hybrid model refers to the deep architecture which 

contains or uses the generative and discriminative model 

components at the same time. In the existing hybrid 

architectures, the main use of generative model is to help 

discrimination. The ultimate goal of hybrid model is 
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distinction, and generative model can help discriminative 

model. It can be accomplished by better optimization. 

The existing typical generative model is usually used as 

discriminative task at the end. When the generative model 

is applied to the classification task, the pre-training can 

combine with other typical discriminative learning 

algorithms to optimize all weights. This discriminative 

optimization process is often attached a top-level variable 

to represent the expected output or label which are 

provided by the training set. The BP algorithm can be 

used to optimize the DBN weight, and this initial weight 

is obtained by the pre-training of RBM and DBN rather 

than random, so the performance of this network is often 

superior than just through the BP algorithm training the 

network. It can be seen that for the DBN training, the BP 

only completes local parameter search space, and it 

accelerates the training and convergence time, compared 

with the feed forward neural network. 

Recently, the research based on DBNs includes appling 

stacking auto-encoder to replace RBMs of the traditional 

DBNs. This method uses the same training standard of 

DBNs, but the difference is that the auto-encoder uses the 

discriminative model. The generalization performance of 

the denoising auto-encoder, which brings in random 

changes in training process can match with the traditional 

DBNs. As for the training of a single denoising auto-

encoder, it has no difference with the generative model of 

RBMs. 

A hybrid deep model- DBN-DNN [47] is an example. 

The DBN, for unsupervised learning can be converted as 

the initial model of the DNN. Then for supervised 

learning, further discriminatively training or fine-tuning 

uses the target labels, which helps to make the 

discriminative model effectively. 

To pre-train deep CNNs, the generative models of 

DBNs is used in which pre-training can help to improve 

the performance of deep CNNs based on random 

initialization, just like the fully connected DNN. This is 

also an example of hybrid deep networks [31], [48]. 

What’s more, a similar example of hybrid deep networks 

is using a set of regularized deep auto encoders (DAEs, 

contractive AEs, and SAEs) to pre-train DNNs or CNNs. 

III. DEEP LEARNING APPLICATIONS 

This article introduces the AE, the DAE, the SDAE, the 

CAE, the DA-IC, the CNN, the RBM, the DBN, the 

CDBN, the DBM, the DTNN, the DCN, the DSN, and the 

T-DSN and so on. Some of these models’ architectures 

are analyzed in details. The above models are chosen as 

they seem to be popular and promising approaches based 

on the authors’ personal research experiences. As for 

applications of these models, they have been successfully 

used to solve problem of different machine learning [49].  

Speech is one of the earliest applications of neural 

network. Although the study of neural networks has been 

interrupted for a while, the neural network has made a 

breakthrough in the field of speech recognition. Around 

the year 2010, the voice group of Microsoft and Google 

both recruited the professor Hinton's students to learn, 

they abandoned traditional characteristics of MFCC/PLP 

and used deep learning to study characteristics in speech 

signal. What’s more, the deep learning technology was 

also used to contribute the acoustic model. Finally, it had 

a good effect in standard data sets on TIMIT. 

In China, many enterprises have joined in the research 

of deep learning. For example, in the annual meeting of 

Baidu, Founder and CEO Robin Lee announced to plan to 

set up the institute of Baidu in January, 2013. One of the 

most important directions was deep learning and the 

Institute of Deep Learning (IDL) was also established for 

this research. This was the first time to establish research 

institute for Baidu, which had been founded more than 10 

years. In April, 2013, the MIT Technology Review listed 

deep learning as the first of ten big breakthrough 

technologies of 2013. Meanwhile, Henry Markman, the 

neuroscientist of South Africa cooperating with other 

scientists hoped to simulate human brain through 

thousands of tests on a computer.  

Since 2006, the application of deep learning in the field 

of target recognition has mainly focused on the question 

of MNIST handwritten image. It broke the hegemony 

position of SVM in this data set and refreshed the error 

rate from 1.4% to 0.27%.  

In recent years, the vision of deep learning has moved 

from digital identification to the target identification of 

natural images. For example, the Google research institute 

also put into the research of deep learning. The theory 

study of deep learning is in its infancy, but it has revealed 

a huge energy in the field of application. Since 2011, 

Microsoft research and Google's speech recognition 

researchers have successively adopted the DNN 

technology to decrease the speech recognition error rate 

by 20% ~ 30%, which is the biggest breakthrough for 

more than ten years in speech recognition field. 

The New York Times reported the Google Brain 

project in June, 2012. The guiding ideology of the Google 

Brain project combined the computer science and the 

neuroscience, which was never implemented in the field 

of artificial intelligence. The result of this project was that 

the cat was identified by the machine independent study 

and the Image Net evaluation error rate was reduced from 

26% to 15%, which achieved astonishing results in the 

field of image recognition. Although its accuracy and 

flexibility were far less than the human brain, we believe 

that one day the result will achieve our desired effect. 

Nair etc. put forward the modified DBN using third-

order boltzman machine on the top floor. This DBN is 

applied to the NORB database of 3 d object recognition 

task, and the result closes to the best historical recognition 

error. In particular, he points out that the DBN is 

substantially better than shallow models like SVM. 

Taking an example of RBMs, they have found 

applications in classification, dimensionality reduction, 

collaborative filtering, feature learning and topic 

modelling. The deep neural network such as 

convolutional DBN and stack auto-encoder network have 

been used for voice and audio data processing, like music 

artists genre classification, speaker recognition, the 

speaker gender classification and classification of voice, 

etc. Like Deep Neural Networks (DNN), compared with 
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the lowest error rate, the recognition error rate of this 

model on the Switchboard standard data sets was reduced 

by 33%. It is reported that the Microsoft demonstrated a 

fully automatic simultaneous interpretation system in 

Tianjin on November, 2012. The key to support it is also 

DNN. As for DBN, the DBN is utilized for data 

dimension reduction [50], information retrieval [51], 

human behavior analysis [52], natural language 

understanding [30] and other tasks. They all have 

obtained very good learning results. 

The following is roughly a summary about applications: 

in addition to the most popular application: the MNIST 

handwriting challenge [53], there are also face detection 

[54], speech [55], audio and music, natural language 

processing [56], [57], [58], spoken language 

understanding [59], voice, image, modeling textures [60], 

modeling motion [61], language-type recognition, 

information retrieval [62], feature extraction, general 

object recognition [63], computer vision [64], and multi-

modal and multi-task learning [65], dimensionality 

reduction [10], object segmentation [66], collaborative 

filtering [25] and robotics [67]. There are many other 

applications which are not listed in this paper. What’s 

more, several private organizations, like Numenta [68] 

and Binatix [69] have paid attention to commercializing 

deep learning technologies with applications to a wide 

range of areas. Moreover, the America Defense Advanced 

Research Projects Agency (DARPA) declares a research 

project focused specially on deep learning. It can be seen 

that deep machine learning not only can be used in 

academic research, but also in organizations. 

IV. CONCLUSION  AND  FINAL  THOUGHTS  

Deep learning as a research field of machine learning 

has caused more and more attention in recent years, many 

scholars have extensively studied in deep learning. This 

paper gives a summary on typical deep learning models 

and describes the extension of each model. The paper 

emphatically introduces deep networks for unsupervised 

and supervised learning model. 

The advantage of deep learning: due to the strong 

model expression capability, it can handle very complex 

problems (such as target and behavior recognition) and 

learn more complex function relations. Because this 

method has a certain biological basis, more structure units 

or deep learning algorithms will be discovered in the 

future in order to better solve problems. Of course, deep 

learning also has some shortcomings: the time of training 

model is long; it needs constantly iteration for model 

optimization; it can’t guarantee to get the global optimal 

solution and so on, which are needed to overcome in the 

future. Besides, deep learning theory also needs to solve 

the following problems: 1. Where is the deep learning 

theory limit, whether there is a fixed number of layers, 

once when we meet it, the computer can realize the 

artificial intelligence. 2. Whether the value of each layer 

unit is regular, and if there are rules to follow, when we 

adjust the parameters. 3. How to weigh the number of 

pretraining epochs, the training speed and the training 

accuracy. On the premise of guaranteeing the training 

precision, how to improve the training speed is still need 

to study. 4. We can consider to merge with other methods 

(the method can involve deep learning algorithm or 

outside the deep learning), the single deep learning 

method often not bring the best result, the fusion of other 

methods may be bring higher accuracy. Therefore, deep 

learning method merging with other methods has a certain 

practical significance and research value. 

In conclusion, despite a large number of researchers 

study the theory and experiment research of artificial 

neural network in recent decades, the study has made a 

certain progress in the field of deep learning, and the 

experimental results also have shown the good learning 

performance, but in the field of the current deep learning 

research there are still some problem should to be solved 

further. The future study of deep learning includes 

theoretical analysis, data representation and model, 

training and optimization solution, research development. 

Predictably, with the depth of the deep study theory and 

method research, deep learning will be widely used in 

more domains. 
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