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Abstract—In evolutionary computation, several multi-

objective genetic algorithms (MOGAs) have been widely 

used to solve multi-objective optimization problems 

(MOOPs). The version NSGA-II, developed by Deb et al., is 

a useful package using a population-based genetic algorithm 

to solve optimization problems with multiple objectives 

subject to constraints. This study proposes an enhanced 

version of NSGA-II, termed LS-EMOGA herein, which 

modifies the crossover and mutation operators of original 

NSGA-II by an extended intermediate crossover and a non-

uniform mutation and also incorporates a local search (LS) 

procedure to improve the fine-turning ability of the solution 

searching. The performance of the proposed LS-EMOGA is 

assessed by evaluating five benchmark cases of MOOPs. 

The computed solutions are compared with those of 

obtained using NSGA-II and proposed MOGA without local 

search procedure (EMOGA version). Moreover, the 

proposed LS-EMOGA combines a k-means clustering 

algorithm to apply to the case diagnosis of gestational 

diabetic disease.  

 

Index Terms—enhanced multi-objective genetic algorithms, 

local search, k-means clustering algorithm, gestational 

diabetic disease 

 

I. INTRODUCTION 

Over past decades, several researchers had proposed 

state-of-the-art heuristic methods to solve combinatorial 

or NP-hard problems effectively. These methods, such as 

Genetic Algorithm (GA) [1], Ant Colony Optimization 

(ACO) [2], Particle Swarm Optimization (PSO) [3], 

Artificial Bee Colony (ABC) [4], etc., are basically 

belonging to the one of global search technologies. They 

always find out the optimal solutions effectively. Among 
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these algorithms, the GA is a widely applied method in 

solving multi-objective optimization problems (MOOPs) 

due to its simplicity for implementation. Generally 

speaking, the GA can be applied to solve single or 

multiple objective functions. As we known, there are a set 

of optimal solutions, named non-dominated solutions, in 

the MOOP, whereas there is only a global optimum in the 

single objective optimization problem. As shown in Fig. 

1, the optimal solution marked with symbol “” can be 

achieved via a single objective optimization algorithm by 

optimizing the objective function f1. On the other hand, 

when multi-objective optimization reaches its optimum, 

the cost will be higher if a higher accuracy is to be 

demanded. It is clearly that the objectives of predicted 

accuracy (f1) and cost (f2) are conflicting with each other. 

If we set a threshold of acceptable accuracy (Acceptthreshold) 

as a constraint, the Pareto front, along points “p” to “q”, 

can be formed for the multi-objective optimization. Each 

solution on the Pareto front is an optimum and is a trade-

off between the objectives f1 and f2. 

 

Figure 1.  Single optimal solution vs. multi-objective solutions. 

The best popular version of MOGA is NSGA-II [5]. 

This version of NSGA-II contains a fast non-dominated 

sorting procedure with a less computational complexity 
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of (MN
2
) instead of (MN

3
). The symbols denoted in the 

computational complexity are the numbers of objectives 

(M) and the population (N). Moreover, NSGA-II also 

includes a tournament selection operator based on a 

crowded-comparison to achieve a uniform distribution for 

non-dominated solutions. To improve the performance of 

NSGA-II, Liu et al. [6] introduced an enhanced MOGA 

which applied Deb et al.’s fast non-dominated sorting and 

tournament selection operator, as well as used an 

extended intermediate crossover and a non-uniform 

mutation to achieve the obtained non-dominated solutions 

with good diversity-preservation and uniform spread on 

the approximated Pareto front. From the experiments of 

test cases, homogeneous and heterogeneous base station 

placement problems, the enhanced MOGA showed better 

results than those obtained using NSGA-II. 

Basically, GA itself is a gradient-free searching 

method, and hence it possesses a good potentiality in 

performing the global search. However, it is a little of 

ineffective in local search so that the computed solution is 

often trapped in the local optimum. Therefore, Do et al. 

[7], Sindhya et al. [8] and Soam et al. [9] proposed three 

different kinds of local search techniques to their 

evolutionary algorithms in order to improve the 

convergence speed and solution accuracy. Their 

experiments showed that the local search procedure is 

useful for aiding the convergence to obtain a more 

accurate Pareto-optimal front. Accordingly, this study 

develops an iterative-manner local search procedure to 

the EMOGA, termed LS-EMOGA herein, and also 

combines a k-means clustering algorithm to apply to the 

case diagnosis of gestational diabetes disease. 

II. RESEARCH METHODOLOGY 

A. Mathematical Formulations of Multi-objective 

Optimization Problem 

Generally, the mathematical expression for multi-

objective optimization can be formulated as a 

minimization of objective function )(xf


 with M 

objectives subject to p constraints denoted by function 

)(xg


 as follows: 

 T
Mfffxf ...,,)(Minimize ,21


       

       (1) 

pjxg j ...,,1,0)(subject to 


 

In the minimizing process, if the solution ax


 and bx


 

meet the following two conditions, we call it: “ ax


 

dominates bx


 ”. 

  )()(,,...,2,1 biai xfxfMi


              (2) 

  )()(,,...,2,1 bjaj xfxfMj


              (3) 

In the process of optimum, the dominated solutions 

will gradually transform into non-dominated ones. When 

the optimal solution 
*x


 is found, i.e. at the optimal state, 

we can obtain an estimated Pareto-optimal front.  

B. Objective Functions for the Medical Diagnosis 

This study conducts the GA to find the best possible 

weights ( w


), and then combines the weights with that 

similarity computing using Manhattan distance in the k-

means algorithm. The k-means clustering can divide the 

given data set into k clusters. When there are n attributes 

in the data set of disease, the similarity computing for a 

solution ix


 to the thj cluster centroid, j
cx


, can be 

expressed as  

kjxxw

n

i

j
cii ...,,1,

1




                   (4) 

Thereafter, we put the miscalculated values of 

classification and false negativity yielded from k-means 

into the use of GA, thereby setting the dual objective 

functions to evolve the best solution ( optw


). The 

objectives used in this study are: (1) minimizing the 

classification error between the predicted class ( predC ) 

and actual class ( actualC ), and (2) minimizing the number 

of false negativity (fn) which means the number that a 

patient is with disease but is diagnosed contrarily. 

   













 



n

i

iactualipred CCMinwf

1

1 )(


          (5) 

 fnMinwf )(2


                                       (6) 

III. PROPOSED ALGORITHM 

A. Enhanced Multi-objective Genetic Algorithm 

As mentioned above, the use of non-dominated sorting 

is an important process to build up the Pareto front. This 

study adopts the computing process presented in Deb et 

al. [5] to obtain each individual’s rank (irank). After we 

completed the sorting process to all individuals, we then 

proceed to comput the crowded distance (idistance) based 

on the sorted fitness values of each objective function 

between non-dominated solutions [5]. A tournament 

selection operator is also applied to select the solution 

with the lower rank (with better fitness) or larger crowded 

distance when both points i and j are located on the same 

front.  

The process mentioned above also includes an elitist 

strategy to make sure that the best individual will to be 

survival in the next generation. Thereafter, a crossover 

process is performed after the tournament selection. This 

study adopts an extended intermediate crossover [10], 

presented mathematically as follows: 

)( 121 pppc xxxx


                        (7) 

where α is a random parameter between [d, 1+d]. The 

value of d equals 0.25 is a good choice for the simulation. 

The last operator in the MOGA is mutation. This study 

adopts a non-uniform mutation operator, which allows a 

higher rate of mutation in the initial stage, yet the rate 
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gradually decreases as the evolution progress. Let the 

individual of parent ( x


) with n variables is denoted 

by ],...,,...,[ 1 nl xxxx 


, the new individual ( x


) can be 

expressed as ],...,,...,[ '
1 nl xxxx 


 after mutation. The 

variable lx  is presented as follows [1]: 




















10.5 if),,(

0.50 if),,(
'

rlxtx

rxutx
x

lll

lll
l           (8) 

)1(),( )/1( bTtryyt                       (9) 

where t and r represent the number of generation and 

random value between [0, 1], respectively; the symbol T 

is the maximum number of generation, and b (in this 

study, b=0.9) is a parameter determining the degree of 

non-uniformity. 

B. Local Search Procedure 

As mentioned in Introduction, an evolutionary 

algorithm incorporating a local search procedure can 

improve the convergence speed of solution and solution 

accuracy [7] [8] [9] [11]. Accordingly, this study 

incorporates an iterative-manner local search procedure, 

named feasible direction method, into the EMOGA to 

enhance the solution accuracy. The feasible direction 

method is considered to be the best available optimization 

technique because it usually converges rapidly to a near-

optimum design. The calculation is performed iteratively, 

as follows.  

iiii Sxx


'
                          (10) 

here, the subscript i of x


 denotes the number of iteration, 

vector S


 represents the direction of the search in n-

dimensional design space, and   is the step length for 

determining the amount of movement in the search 

direction. In Eq. (10), the search direction must be usable 

and feasible. Hence, the search direction S


 should satisfy 

the requirements of usability and feasibility as follows: 

         0)(  Sxf


                                  (11) 

pjSxg j ...,,1,0)( 


           (12) 

 

Figure 2.  Modified sorting pool of individuals for the non-dominating 
sorting. 

The work applies the Golden Section method to find 

the minimum objective function. After performing the 

local search procedure, parts of the individuals can be 

improved to superior fitness values. Accordingly, this 

work combines the

 

individuals of parents and offspring, 

and also the improved

 

individuals into the sorting pool

 

for the non-dominated sorting process. Hence, the new 

individuals in the next generation

 

are composed of 

parents, offspring and also improved individuals, as 

shown in Fig. 2.

 

The improved individuals are often 

picked up as one part of individuals of the next 

generation.

 

C.

 

The Combination

 

of LS-EMOGA and K-means 

Clustering Algorithm

 

The data set in this study

 

was

 

divided into two groups 

(k=2), those

 

with and without gestational diabetic disease. 

And this work combines

 

EMOGA and the k-means 

algorithm

 

for the diabetes diagnosis.

 

The computing 

procedure of LS-EMOGA

 

with k-means clustering 

algorithm was displayed in Fig. 3.

 

 

Figure 3. 

 

Flow chart of the proposed LS-EMOGA

 

and K-means 
clustering algorithm.

 

IV.

 

RESULTS

 

AND DISCUSSION

 

A.

 

Performance

 

Evaluation of the Proposed LS-

EMOGA

 

Firstly, this study adopts five benchmark cases to 

evaluate the performance of the proposed LS-EMOGA. 

The benchmark cases include ZDT1, ZDT2, ZDT3, 

ZDT4, and ZDT6 [5]. The objective functions and 

dimension

 

(n) of the five problems are listed in Table I.

 

The numbers of population and function evaluations were 

100 and 2000, respectively, and the probability rates of 

crossover and mutation were pc=0.9 and

 

pm=0.1. The 

computations were performed using NSGA-II, EMOGA 

and proposed LS-EMOGA for the five optimization 

problems, and the computed results were shown in Fig. 4. 

It is

 

obviously that the results obtained using the three 

algorithms were

 

very close to the true Pareto fronts for 

ZDT1-4 (Figs. 4(a)-(d)). However, the result solved by 

NSGA-II

 

and PAES were

 

deviated from the true Pareto 

front for ZDT6 [5] (as shown in Fig. 4(e)). 
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TABLE I.  MATHEMATICAL FORMULAS AND DIMENSIONS OF FIVE 

TEST CASES 

Fun. 

(dim) 
Objective Functions and Domains 

ZDT1 
(n=30) 

 

  nixnxxg

xgxxgxfxxf

i

n

i

i ,...,1,1,0);1/(91)(

)(/1)()(;)(

2

1211





























 

ZDT2 

(n=30) 

 

  nixnxxg

xgxxgxfxxf

i

n

i

i ,...,1,1,0);1/(91)(

)(/1)()(;)(

2

2
1211
























 








 

ZDT3 

(n=30) 
  nixnxxg

x
xg

x
xgxxgxfxxf

i

n

i

i ,..,1,1,0);1/(91)(

)10sin(
)(

)(/1)()(;)(

2

1
1

1211








































 

ZDT4 
(n=10) 

 

 

    nixx

xxnxg

xgxxgxfxxf

i

n

i

ii

,..,2,5,5,1,0

;)4cos(10)1(101)(

)(/1)()(;)(

1

2

2

1211















 

ZDT6 

(n=10) 

 

  nixnxxg

xgxfxgxf

xxxf

i

n

i

i ,...,1,1,0;)1/(91)(

)(/)(1)()(

)6(sin)4exp(1)(

25.0

2

2
12

1
6

11
























 













 

 

To further understand the differences of algorithmic 

performance between the three MOGAs, two metrics of 

performance, denoted by GD and △, are used to evaluate 

the proximity of the obtained non-dominated solutions to 

true Pareto-optimal solutions and the uniformity of spread 

for the computed non-dominated solutions [5]. Table II 

lists the metrics of proximity and uniformity obtained 

using NSGA-II, EMOGA and LS-EMOGA for the five 

test cases with 20 repeated runs. It can be seen from Table 

II that LS-EMOGA was capable of converging closely to 

the true Pareto-optimal solution, with good distribution of 

non-dominated solutions, for most of the cases. For 

Problem ZDT6, the mean values of GD and △ metrics 

obtained using the presented LS-EMOGA were both 

clearly superior to those of using NSGA-II. Again, the 

proposed LS-EMOGA gave good results on metric GD 

for the four test cases, ZDT1, ZDT2, ZDT3, and ZDT6, 

while NSGA-II was good for the case ZDT4 only. 

Moreover, the spread and uniformity of non-dominated 

solutions were evaluated by the spread metric △ from the 

NSGA-II, EMOGA and LS-EMOGA computations. It is 

noted that the lower value of △ indicates a better 

performance. Table II clearly shows that the presented 

LS-EMOGA outperforms NSGA-II and EMOGA for all 

the cases. 

 
 

 
 

 
 

 
 

 

Figure 4. 
 

Comparisons of solution distributions for (a)
 
ZDT1, (b) 

ZDT2, (c) ZDT3, (d) ZDT4, and (e)
 
ZDT6
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TABLE II.  COMPARISONS OF METRICS GD AND   FOR FIVE TEST 

CASES (20 REPEATED RUNS) 

Prob. 
Mean value of GD 

NSGA-II EMOGA LS-EMOGA 

ZDT1 2.279E-04 2.775E-04 2.270E-04 

ZDT2 9.921E-05 1.415E-04 9.686E-05 

ZDT3 6.230E-04 6.643E-04 5.912E-04 

ZDT4 2.347E-04 4.307E-04 4.622E-04 

ZDT6 7.797E-03 5.186E-04 1.000E-04 

 Mean value of △ 

ZDT1 0.4043 0.3533 0.3013 

ZDT2 0.3941 0.3584 0.3045 

ZDT3 0.4641 0.4485 0.3614 

ZDT4 0.3849 0.3840 0.3447 

ZDT6 0.5209 0.3811 0.3570 

 

B. Medical Diagnosis of Gestational Diabetic Disease 

In this study, the data set of disease, “pima-indians-

diabetes” from UCI repository [12], was conducted for 

the medical diagnosis. This work adopted 614 cases (80% 

of the data set) as the training sets (randomly chosen) and 

the remains with 154 cases as the test sets. Two objective 

functions were used for minimizing the classification 

inaccuracy )(1 wf


(subject to Acceptthreshold60%) and 

number of false negativity )(2 wf


for the gestational 

diabetes diagnosis. The result of medical diagnosis will 

be presented using performance parameters, including 

accuracy (acc), sensitivity (true positive ratio, tpr), 

specificity (true negative ratio, tnr), F-measure (f-m), cost, 

and number of false negativity (fn). Fig. 5 displays the 

results of the Pareto front, from points “p” to “q”, 

obtained using NSGA-II, EMOGA and LS-EMOGA. 

From the Pareto fronts, the solution at point “p” displayed 

a smaller number of false negativity, while the 

classification accuracy was lower. Solution at point “q” 

was more accurate in classification, while the number of 

false negativity was high. Clearly, the solution at point 

“q” obtained using LS-EMOGA had a lower number of 

false negativity than those of NSGA-II and EMOGA at 

the best classification accuracy. Moreover, the uniformity 

of non-dominated solutions obtained using LS-EMOGA 

was also better than those of EMOGA and NSGA-II. 

 

Figure 5.  Comparison of solution distributions for medical diagnosis. 

Table III shows the average classification accuracy and 

its standard deviation after 20 repeated times evaluated 

by NSGA-II, EMOGA and LS-EMOGA. The results of 

mean value and standard deviation at point “q” obtained 

using LS-EMOGA were better than those of NSGA-II 

and EMOGA. From Table IV, the best values of 

classification accuracy at point “q” evaluated by NSGA-

II, EMOGA and LS-EMOGA were 78.34%, 78.66% and 

78.50%, respectively. Moreover, the total costs evaluated 

by NSGA-II, EMOGA and LS-EMOGA were 425, 419 

and 412, respectively. Table IV also reveals that the 

solution at “p” had higher sensitivity and lower cost; 

whereas the solution at point “q” had higher classification 

accuracy, specificity, and F-measure. The numbers of 

false negativity at points “p” and “q” were 36 and 70 for 

the computation of LS-EMOGA. Still, we can observe 

from Table V that the solutions at point “q” obtained 

using NSGA-II and LS-EMOGA were remarkable on the 

attributes “Pl”, “Bm” and “Pd”, while it gave the least 

effect on the attributes “Sr” and “Ag”. 

TABLE III.  COMPARISONS OF AVERAGE CLASSIFICATION ACCURACY 

AND STANDARD DEVIATION 

solution algorithm 
optimal points 

“p” “q” 

mean 
(standard 

deviation) 

NSGA-II 
64.03 % 

(3.1139%) 
78.03% 

(0.3426%) 

EMOGA 
61.61% 

(1.0054%) 

78.13% 

(0.2953%) 

LS-EMOGA 
62.19% 

(1.9311%) 

78.19% 

(0.2239%) 

TABLE IV.  COMPARISONS OF PERFORMANCE METRICS 

Par. 
NSGA-II EMOGA LS-EMOGA 

“p” “q” “p” “q” “p” “q” 

acc 62.05% 78.34% 61.40% 78.66% 61.40% 78.50% 

tpr 83.41% 67.26% 83.86% 67.71% 83.86% 68.61% 

tnr 49.87% 84.65% 48.59% 84.91% 48.59% 84.14% 

f-m 62.42% 74.96% 61.53% 75.34% 61.53% 75.59% 

cost 381 425 381 419 381 412 

fn 37 73 36 72 36 70 

TABLE V.  COMPARISONS OF THE OPTIMAL WEIGHTS OF ATTRIBUTES 

attribute

s 

NSGA-II EMOGA LS-EMOGA 

“p” “q” “p” “q” “p” “q” 

w1 (Nu) 0.0181 0.2334 0.0418 0.3574 0.0288 0.3363 

w2 (Pl) 0.3912 0.6865* 0.5761* 0.7457* 0.4908 0.7467* 

w3 (Ds) 0.7167* 0.3112 0.9734* 0.0220 0.8078* 0.1408 

w4 (Tr) 0.4326 0.3552 0.6398* 0.3884 0.5169* 0.3847 

w5 (Sr) 0.0420 0.1258 0.0008 0.0175 0.0150 0.0771 

w6 (Bm) 0.6008* 0.6383* 0.6984* 0.7284* 0.5753* 0.7400* 

w7 (Pd) 0.0208 0.9848* 0.0000 1.0000* 0.1665 0.9802* 

w8 (Ag) 0.2112 0.1041 0.1279 0.0000 0.1138 0.0468 

 

V. CONCLUSIONS 

This study proposed the local search-based enhanced 

multi-objective optimization genetic algorithm, termed 

LS-EMOGA, combining with the k-means algorithm to 

achieve the best classification accuracy and the lowest 

number of false negativity for the medical diagnosis. The 

multi-objective functions for evaluating the performance 

of LS-EMOGA included ZDT1, ZDT2, ZDT3, ZDT4, 

and ZDT6. The computational results clearly displayed 
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that the proposed LS-EMOGA outperforms NSGA-II on 

ZDT1, ZDT2, ZDT3, and ZDT6. Also, the results of 

performance measures using the metrics of proximity and 

spread showed that the proposed LS-EMOGA can 

provide accurate Pareto fronts. Furthermore, this study 

incorporated the k-means clustering algorithm into LS-

EMOGA to analyze the diagnosis of gestational diabetic 

disease. In the analyses of the data set by using the 

proposed LS-EMOGA, EMOGA and NSGA-II, the 

proposed LS-EMOGA gave better solutions than those of 

EMOGA and NSGA-II from the comparisons of 

performance metrics. 
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