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Abstract—Logistic regression is an important statistical 

analysis methods widely used in research fields, including 

health, business and government. On the other hand 

preserving data privacy is a crucial aspect in every 

information system. Many privacy-preserving protocols 

have been proposed for different statistical techniques, with 

various data distributions, owners and users. In this paper, 

we propose a new method to securely compute logistic 

regression of data, privately shared among two or more data 

owners. Using this secure protocol, data users can receive 

the coefficient vector of logistic regression from the data 

owners, who jointly execute a privacy-preserving protocol, 

in which only encrypted values are exchanged between them. 

At the end of the protocol, each data owner will send her 

portion of the final results to the user to construct the final 

query result. We have tested our method along with the 

secure building blocks using sample data to illustrate the 

performance of the results in terms of computational and 

communication complexities.  

 

Index Terms—privacy-preserving, secure multiparty 

computation, cryptography, homomorphic encryption, 

statistical analysis 

 

 

I. INTRODUCTION 

As more data are collected, there is increasing number 

of demands to extract various knowledge by researchers, 

such as in health services research and public health 

systems. Remote access to information over the Internet 

is one of the current solutions to apply data privacy. 

However, this method will cause security risks and it 

requires patient consent. In addition, remote access 

cannot be used when data are stored and kept by multiple 

parties. Another privacy-preserving technique is data de-

identification, in which different generalization and 

suppression will be applied on individual records before 

any data disclosure. Secure multi-party computation, 

using various cryptosystems is another privacy-

preserving method. Using this approach, data users are 

able to receive aggregate knowledge, while no private 

and sensitive individual data will revealed to them.  

By using secure computation instead of de-

identification methods, there is no re-identification risk, 

and the final results will be in high precision, which is not 

the case when generalization and suppression are being 

used. The only disadvantage of secure computation 

approach is that it is slower compare to data de-

identification, because of the time needed for data 
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encryption and decryption. In this paper we use secure 

computation techniques to compute an important 

statistical analysis method, Logistic Regression. In our 

protocol two types of parties are involved; Data Users or 

Researchers, and Data Owners or Custodians. Each data 

owner has a subset of records from the whole dataset, 

such that no other party has access to that portion of plain 

data. Data user sends her information request to the data 

owners and receives the final results as some private 

shares from them. Another advantage of our proposed 

method is that in large data custodians, such as 

government statistics organizations, which provide access 

to potentially identifiable data, data users have to take 

oath of confidentiality and background checks. It also 

needs physical presence of the data users at the data 

centers to perform data analysis. Using our approach 

allows the data users to perform data analysis remotely. 

Also, some custodians disclose de-identified version of 

original data that reduces data utility and reliability. In 

statistical analysis methods, we are dealing with different 

computations with various mathematical operations such 

as addition, multiplications, exponentiation and natural 

logarithms. To have a secure computation for this set of 

operations we need secure and efficient privacy 

homomorphism techniques to apply on those methods. 

However, most of the homomorphic encryption methods 

only support one operation, addition or multiplication. 

The existing fully homomorphic cryptosystems have 

various security vulnerabilities and are not suitable for 

privacy-preserving protocols. 

Following is the outline of this paper: Section 2 

discusses background and related work. Section 3 is 

dedicated to secure building blocks that are used in the 

main protocol. Privacy-preserving logistic regression 

protocol is proposed in Section 4. Section 5 shows the 

security and complexity analysis of the protocol. 

Experimental results will be illustrated in Section 6, 

followed by the conclusions and future work in Section 7. 

II. BACKGROUND AND RELATED WORK 

Two papers [1], [2], with the title “Privacy-Preserving 

Data Mining”, were published in 2000, in which two 

different approaches, secure multiparty computation and 

randomization, have been proposed. After those papers, 

research in the field of secure computation has rapidly 

grown and many privacy-preserving methods and 

protocols have been introduced for statistical analysis and 

data mining methods [3], [4].  
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Many secure building blocks, with various security and 

efficiency levels have been proposed, such as secure sum 

[5], secure comparison [6], and secure multi-party 

multiplication and factorial [7]. Most SMC protocols 

assume that the parties involved are in equal situations, in 

that they are both data providers and data consumers. 

These protocols are therefore not applicable in a situation 

where data custodian only provides the data, and data 

recipient (say, a researcher) does not provide or have 

access to data but only wishes to perform statistical 

analysis methods and/or receives analytical information. 

In the existing secure protocols with client-server 

approach, every time a query is submitted, data owner 

will use the original data to perform the analysis 

requested. This may increase the risk of data leakages and 

privacy breaches. In our method instead the original data 

will be put off the network after encryption and all the 

analysis methods will be done on the encrypted 

information. This will increase the security confidence of 

the protocols and will justify our solution in many 

applications, which need high level of privacy-preserving 

of the original individual data, like health information 

records. To follow this approach, a homomorphic 

encryption is needed to support both addition and 

multiplication operations. Therefore, popular 

homomorphic cryptosystems like Paillier, RSA, and 

Elgamal could not be used. On the other hand, the only 

practical and fully homomorphic encryption system, 

Ferrer, suffers from some existing cryptanalysis and 

could not be utilized in secure protocols, as it is presented. 

To prevent those types of attacks we apply this 

cryptosystem in a distributed configuration among two or 

more parties. By using this configuration, no single party 

has informed about the original data and its encryption 

value, and all the computations are done jointly on the 

encrypted information by all the parties involved in the 

protocol. 

Following the Yao’s protocol for secure computations 

[6], which is called the Millionaires problem, using 

garbled circuit, this method has been used as the base 

technique in some papers. The most recent work using 

that technique is done by Ben-david et al. [8], called 

FairplayMP, which is a generalization of an earlier work, 

Fairplay - a secure two-party computation system [9]. 

The main issues of this technique are the number of gates 

required for each operation, and number of data inputs 

provided by the parties involved. Regarding the number 

of gates for the final circuit, although it is claimed that 

the circuit depth has insignificant effect on the overall 

runtime of the protocol, the number of gates even for a 

very simple computation like an auction among 10 

bidders will result a compiled circuit with 1380 gates. 

Thus for a more complex computation, such as the 

statistical analysis methods mentioned in this paper, we 

will face with circuits of very large number of gates. 

Another issue, regarding the number of input data, is that 

the proposed method will not be efficiently applicable 

when each party has a large number of inputs. This is 

because every single input owned by each party has to be 

shared among all the other parties, bit by bit. This needs a 

huge number of initial communications between the 

parties, which is not efficient and applicable for real-

world applications with large datasets. 

Comparing our work to all the existing methods on 

secure multi-party computation techniques and privacy-

preserving statistical analysis methods, the main 

advantages are de-centralization of original data, keeping 

the original data off the network, and performing all the 

computations, to extract the query result, among the data 

owners in a distributed way using homomorphic 

encryption and secure building blocks to preserve data 

privacy. 

III. PRIVACY-PRESERVING BUILDING BLOCKS AND 

PRELIMINARIES 

Inside the main protocol we need to perform some 

secure mathematical operation, such as addition, dot 

product, as well as secure comparison. In this section, we 

first explain the cryptosystem we use inside the protocol. 

Then, we show the Secure Addition (SA) building block 

that we later use inside the main protocol. Secure 

Comparison will be explained inside the main protocol, 

and readers can refer to [10] for the detail of Secure Dot 

Product (SDP). 

The encryption technique used in this privacy-

preserving protocol is homomorphic encryption. Among 

the existing homomorphic cryptosystems, such as Paillier 

[11], RSA [12], and Elgamal [13] we use Paillier, which 

is an additive homomorphic encryption, i.e. it maps 

addition of plaintexts to the multiplication of their 

corresponding ciphertexts. We also utilize Secure 

Multiparty Addition [7], to add the feature of 

multiplicative homomorphism in our proposed method. 

As it mentioned above, in Paillier cryptosystem for any 

two plaintext messages  and , and their encryptions, 

 and , (1) is maintained: 

       (1) 

in which  and  indicate encryption and decryption, 

respectively. This cryptosystem has also the following 

characteristic:  

  (2) 

A. Secure Multiparty Addition (SMA) 

By using SMA, n parties  having their own 

private input shares, , will securely compute 

their private output shares, , such that: 

          (3) 

This sub-protocol preserves the privacy of the inputs 

and outputs of the data owners. Mathematical operations 

in this protocol are modular. For instance, if the 

operations are done in mod , then 

 because . 

In real-world applications, however the number selected 

for mod is huge, to make sure that the protocol is secure. 

In our protocols, n is the multiplication of two primes, 

with the length of 1024 in binary system. 
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B. Dealing with Real Numbers 

Note that in the public key cryptosystems all 

operations are done on integer numbers. Therefore, to 

overcome this restriction when we are dealing with real 

numbers in the applications, we should scale the numbers 

before the encryption. Then, the final results should be 

rescaled back to reach the correct values after the 

decryption. Following are two examples:  

Suppose two numbers,  and , are 

the original data. In the setup phase 

, , 

and the scaling factor . Then  and  will be 

encrypted, and  and  will be stored. Now, 

in the operation phase we want to compute their mean 

value. Following would be the major steps: 

   is 

computed and sent back for decryption. After the 

decryption, the final result will be multiplied by 10
-d

 and 

divided by 2 to reach the mean value. 

 

Now, suppose we want to compute . Following 

would be the major steps: 

  and  will be decrypted 

  will be computed 

  

  will be computed 

  and  are returned 

 After the decryption, the final result will be 

multiplied by : 

 

C. Preliminaries 

First we discuss about the protocol's configuration in 

terms of the parties involved and their communications. 

In the main scenario we have three types of parties 

involved, Central Data Custodian (CDC), Data User (DU), 

and two or more Data Providers (DP). DPs are working in 

between the two other parties, by receiving the private 

shares of data from the CDC and performing the 

distributed computations to extract and send the query 

results requested by the DU. 

Following notations are used in the rest of the paper: 

: Raw data stored by CDC 

 : Encryption using the public key initiated by 

 

 : Decryption using the private key initiated by 

 

The main characteristics of the protocol are as follows: 

 The protocol ensures that the DU cannot get 

access to or view any individual raw data. 

 CDC gives service to the DU through two or more 

DPs. 

 DPs have no access to the original data. 

We assume that there is no collusion among all the 

DPs, and otherwise the original data could be 

compromised. However, even if all except one DP are 

illegally collaborated, they won’t be able to reach the 

original data owned by the CDC. Security and collusion 

attack analysis will be discussed more in detail at the end 

of this section. There are two main steps in the protocol: 

1) Setup phase (Secure data distribution) 

In the setup phase CDC creates and transfers the 

private shares to the DPs and sends metadata and data 

map to the DU. Fig. 1 illustrates the setup phase of the 

protocol. 

Secure data distribution: In this step each data item  

will be privately distributed among  data providers, 

, as follows: 

 Each DP generates a set of public and private keys, 

and broadcasts her public key. 

 CDC randomly selects numbers , and 

calculates  such that: 

    (4) 

 CDC encrypts each private share using the 

corresponding public key received from the DPs, 

and sends  to , for . 

 Each DP decrypts the received value from the 

CDC and privately stores in her own dataset. 

 CDC will also send the metadata and data map to 

the DU, which will be later used to make queries 

by the DU. 

2) Operation phase (Secure shared analysis) 

In the second phase, queries requested by the DU will 

be performed on the secure data by the DPs and the final 

result will be received by the DU. Fig. 2 illustrates the 

operation phase of the protocol. 

 DU will create her query and will send it to the 

DPs interfaces. 

 According to the query, the DPs will perform the 

query using Paillier cryptosystem and secure 

building blocks. 

 At the end of the computations, the DU will 

receive the final result wrapped with her private 

random value from DPs, and will extract the query 

result by unwrapping the received value.  

IV. PRIVACY-PRESERVING LOGISTIC REGRESSION 

 

Figure 1.  Setup Phase (Secure Data Distribution) 
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Figure 2.  Operation Phase (Secure Shared Analysis) 

Without loss of generality in the following algorithms 

we assume there are two DPs,  and , and they 

could be simply generalized to apply for more than two 

DPs. Note that to store the categorical data, we first 

create a map such that each possible type is shown by a 

number, and then data is privately shared among the DPs. 

To model a categorical dependent variable using two or 

more independent variables, logistic regression is used 

instead of linear regression when the variables have 

discrete categorical values, and it is actually a 

generalization of linear models. 

In this model, maximum likelihood estimation is 

utilized to estimate the parameters that best fit the data. 

Suppose there is a dataset with  independent samples, 

and a random variable  with two possible values,  

and . The number of distinct possible combinations is 

denoted by , and is the number of samples with the 

combination  (population ). Also,  is a column vector 

with  elements representing the number of records with 

 value for , shows the probability of being  

for the -th population, i.e. , and 

denotes the number of independent variables. We also 

show the design matrix of independent variables by , 

which is composed of  rows and  columns, with 

the value  for the first element in each row. We have to 

compute a vector  with  elements, one for each 

independent variable, plus one intercept. By using the 

Newton-Raphson method and the steps in [14] we will 

reach to computation of  using (5). 

           (5) 

In (5) ,  is the initial approximation for , 

and  is a diagonal  matrix with the 

elements  on its diagonal and zero elsewhere.  

This computation will be iterated until there is no 

change between the corresponding elements in and 

, by considering a specific threshold.  

 

,  

,          
(6)

 

Before continuing the protocol, we show the secure 

computation of matrix multiplication when each matrix is 

privately shared between two parties. Suppose there are 

two matrices,  and , as follows: 

, 

 

In which , . Now, we compute 

  such that: 

 

In matrix , , such that: 

 

 
(7)

 

The first and last terms of (7) will be locally computed 

by each corresponding DP. SDP is utilized to securely 

compute the second and third terms as follows: 

          
  (8)

 

           

(9)

 

such that . Therefore, matrix R 
will be 

converted to the summation of two matrices, each of 

which belongs to one DP:
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(10)

 

Inside the algorithm of computing the logistic 

regression, we also need to find the inverse of a matrix in 

the form of the summation of two private matrices each 

of which belongs to one DP, same as the above matrix . 

For this building block we utilize the privacy-preserving 

protocol proposed by Han et al. in [15], by which the two 

DPs are jointly compute their private shares as follows: 

              
(11)

 

Now, back to the main protocol, each has to be 

jointly computed by the DPs, in a way that no party 

revealed her private data to the others. Therefore, we 

have to use a privacy-preserving computation to apply on 

(11). For instance , the probability of being  for 

the -th population is computed from the samples, which 

their information is distributed among the DPs. Thus, 

 and  are not owned by a single party. In the 

first matrix operation of (5), ,  is distributed 

among the DPs. Therefore, by using the above secure 

building block  could be jointly computed by the 

DPs and will be converted to two separate private shares 

as follows: 

      (12) 

Note that to compute , SDP could be used. Next 

step is to compute , which is now converted to 

. For this part, as mentioned above, proposed 

protocol in [15] will be used, such that at the end each 

has her own private matrix, , such that: 

    
(13)

 

For the second part of (5), i.e. , secure 

matrix multiplication is used for  and , and 

consequently  will be converted to the addition 

of two separate and private matrices owned by the DPs, 

such that: 

     (14) 

Now, we have the following matrix operation: 

 

      

(15)

 

By using privacy-preserving matrix multiplication for 

 and  in (15), the whole equation will be 

converted to the summation of two separate matrices, 

each one privately owned by one DP as follows: 

 (16) 

Therefore,  is jointly adjusted at the end of each 

iteration, by the DPs: 

        
(17)

 

in which  is also the summation of two separate 

matrices privately owned by the DPs. Now, by comparing 

the corresponding items in  and , DPs can figure 

out the termination of the iteration. To compare the two 

vectors, we can use the Euclidean distance (2-norm 

distance). However, because each vector is privately 

shared between the two DPs, a privacy-preserving 

method has to be applied. The two DPs will perform the 

following algorithm to compute the 2-norm distance 

between two vectors, say and : 

 

 

  

        (18) 

when . 

According to (18), DPs have to run a SDP to get their 

own private shares for   as follows: 

                         (19) 

Each  , sets her private share as  

                
(20)

 

Now, we have to compare the computed distance, 

, with some constant  as the threshold value for 

the termination of the loop. Following are the steps for 

this secure comparison: 

Secure Comparison: 

  encrypts her private value, , and sends 

 to . 

  generates a private random number, , 

encrypts her private value and the constant value, 

 , and sends  

to . 
  decrypts the received value and compares it 

with zero. If the decrypted value is less than zero, 

it means that the 2-norm distance between the two 

vectors is less than . 
After computing the final shares of the regression 

coefficients vector , now it has to be securely sent to the 

DU. Therefore, DPs will perform following steps: 

 DU generates a vector of random numbers: 

    
(21)

 

And sends their encryptions to . 

  encrypts items of her private vector  and 

sends the following list to : 
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 (22) 

  decrypts each item of the received list, adds 

the corresponding item from her vector  to it 

and sends the following list to the DU: 

  (23) 

 DU subtracts each of the random numbers of the 

vector  from the corresponding item in the 

received list to find the final vector for the 

regression coefficient, . 

V. SECURITY AND COMPLEXITY ANALYSIS 

A. Security Analysis 

Our assumption is that all the trusted third parties 

involved are semi-honest, i.e. each party properly follows 

all the steps of the protocol, communicates and exchanges 

correct data with other parties, while she may utilize the 

intermediate information to reach others’ private data. 

Simulation paradigm [16,17] along with the composition 

theorem are used for the security proof of the protocol. 

By using the simulation paradigm, a protocol is known 

secure if all the received data by a party can also be 

obtained by her input and output. Thus, for each party  

we have to find a simulator  such that its output is 

computationally indistinguishable [16] from that party’s 

view using the secure protocol. Composition theorem is 

also utilized in the security proof of the protocols because 

they are usually complex and each protocol is composed 

of some sub-protocols such that the input of one sub-

protocol is the output of the previous one. Here, we 

analyze the security of the setup phase, which is the 

fundamental part of the protocol, secure distribution of 

the original data to the DPs by the CDC. Then we 

investigate the security of the algorithms in the operation 

phase. We also show the security analysis of the secure 

two-party multiplication that we have used as a secure 

building block in some algorithms. Security proof of the 

SDP could be found in its corresponding paper [10]. 

Finally, we discuss collusion attacks between the parties.  

Setup phase: In this step, each data value is securely 

distributed by CDC among the DPs. Therefore, we have 

to create one simulator for each party involved in this 

step. 

Data distribution: CDC in this phase has the original 

data  as her private input, and will create private shares 

 for the DPs. Thus, the simulator  for this 

party in the protocol would be: 

Input:  

Process: Selecting random numbers  

Computing  such that  

Output:  

: During the setup phase, Each  will 

only receive a share of the data. Therefore, the simulator 

 for this party is: 

Input: A random number  

Process: Nothing 

Output: Nothing 

Secure Two-party Addition: Suppose, there are two 

parties,  and , each of which has a private input,  

and  respectively. We denote the protocol of secure 

two-party addition by and the desired functionality of 

 by , such that: 

         (24) 

Furthermore, we show the first and second elements of 

 by  and , which are the 

private outputs of  and  respectively. Also, the view 

of  (respectively ) during the execution of  on 

 are denoted by    

(respectively  ). Therefore, we have 

(25) and (26): 

   (25) 

   
(26)

 

Note, that as the ’s point of view,  is just a 

random number generated by and received from  to that 

party. We say that protocol  privately computes , if 

two polynomial-time algorithms  and  exist, such that: 

  (27) 

(28) 

In (28), symbol  means that the two ensembles in 

both sides of the equivalence symbol are computationally 

indistinguishable. 

Proof: For , suppose  is corrupted by an 

adversary. Thus, the adversary knows all the items in the 

set of ’s view in the protocol , i.e. the set of 

. Obviously, simulator  would be 

trivially as follows: 

Input:  

Process: Computing  

Output:  

For the simulator , suppose  is corrupted by an 

adversary. ’s view in  is the set of   

in which, as it is previously 

indicated,   is considered a random number 

received by . Therefore, the simulator  has to 

generate a random number and send it to  each time  

needs to get a message from . Thus,  could be as 

follows: 

Input:  

Process: Generating a random number  

Output:  
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As it is shown above we can conclude that the 

incoming messages of  and  in the protocol  and 

incoming messages of and from and , 

respectively, are indistinguishable. 

A very similar proof could be shown for multi-party 

case and other protocols in this paper, by utilizing 

composition theorem [10], [18], which is used in the 

protocols that contain secure building blocks as sub-

protocols. 

Collusion attacks: One security problem in all 

distributed privacy-preserving protocols is the risk of 

colluding two or more parties involved in the protocols 

against the other parties. In our protocol this might 

happen between two or more DPs to reach the original 

data, which is securely kept by CDC. However, collusion 

of all the trusted third parties is needed to compromise 

the original information kept by the CDC. 

B. Complexity Analysis 

To analyze the complexity of the algorithm presented 

in the main protocol for logistic regression, we separate 

different operations performed by the parties involved. 

The main operations are: 

1. Messages sent from one party. A message means one 

block of values sent from one party to another party 

2. Values sent from one party, i.e. each single value sent 

by a party to another party 

3. Encryption 

4. Decryption 

5. Local mathematical operations, such as addition, 

multiplication, etc. 

The first two operations are considered as the 

communication costs and the rest of the operations are 

related to the computational costs. We investigate the 

complexity of the algorithm proposed in the main 

protocol, which helps to understand its performance for 

using in the any dataset. In the following tables we 

assume that there are  records in the dataset,  is the 

selected power, and  and  are defined in the logistic 

regression algorithm. Table I shows the complexity 

analysis for the secure building blocks. Using the 

complexity of the secure building blocks, the main 

algorithm of the protocol could be analyzed in terms of 

complexity. Table II illustrates communication costs for 

the algorithm, in terms of the number of messages 

exchanged between the parties involved. Number of 

encryptions and decryptions, and also local computations 

are shown on the Tables III and IV, respectively. Note, 

that most of the local computations are negligible 

comparing with other computational costs and 

communication costs and could be performed offline and 

in parallel. Although the encryptions and decryptions are 

also performed locally, we separate them from the rest of 

the local computations because of the time needed for 

these types of operations, and some of them have to be 

sequentially done in certain steps, such as the decryptions. 

In Table V, the number of each distributed operation is 

shown for the algorithms.  denotes secure dot 

product of two -dimensional vectors. 

TABLE I. COMPLEXITY ANALYSES OF THE SECURE BUILDING 

BLOCKS. 

Algor

ithm 

Sent 

Messages  

Sent 

Values  
Enc Dec  

Local 

Operations 

SA 2 2 2 1 *: 1, ^: 1 

SDP 2 n+1 n+1 1 *: n, ^: n 

TABLE II. COMMUNICATION COSTS OF THE ALGORITHM. 

Algorithm Sent Messages  Sent Values  

Logistic 

Regression   

TABLE III. COMPUTATIONAL COSTS OF THE ALGORITHMS 

(ENCRYPTIONS AND DECRYPTIONS). 

Algorithm Encryptions Decryptions 

Logistic 

Regression   

TABLE IV. COMPUTATIONAL COSTS OF THE ALGORITHMS (LOCAL 

COMPUTATIONS). 

Algorithm Local Computations 

Logistic Regression  

TABLE V.
 

DISTRIBUTED OPERATIONS BETWEEN THE PARTIES.
 

Algorithm
 

Number of distributed operations
 

Logistic Regression
  

VI.
 

EXPERIMENTAL RESULTS
 

To measure the performance of the methods we have 

implemented the protocol and its secure building blocks 

using
 

Java programming language. To investigate the 

performance of the proposed protocols, we first 

implement the secure building blocks. To have a high 

performance when dealing with very large numbers we 

use BigInteger class,
 
which provides efficient arithmetic 

operations for very large numbers. We have used Mac OS 

X, Intel
® 

Core
™ 

i5 2.60GHz, 8 GB DDR3 RAM
 
for the 

experiment. Table VI shows the performance of the 

encryption, decryption and secure building blocks. The 

encryption key length is 1024 bits. Table VII
 
illustrates 

the overall time for the protocol. The number of records 

is 100,000 and the number of variables is 10. To have a 

better performance we can optimize the distributed 

operations among the parties, especially between the two 

DPs, in one or more of the following ways:
 

1.
 

Initial encryptions in each DP and random number 

generations can
 
be done

 
in advance. This approach is 

used in the secure building blocks, such as
 
SDP.

 

2.
 

Previously computed values could be stored and used 

for the future requests.
 

3.
 

Block data transferring between the DPs. 
 

VII.
 

CONCLUSION AND FUTURE WORK
 

We have proposed secure method
 
for the computation 

of logistic
 
regression that is

 
used in many applications, 

especially
 
in health records,

 
which need to maintain the 

privacy of the patient's information. During the execution 

of the protocol, the original cleartext of the data will be 

kept off the network, and the computation is done by two
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or more semi-trusted third parties on the private 

distributed data, and the final results will only be 

decrypted and sent back to the end-user. As a future work, 

we are currently extending our research to cover other 

important statistical methods, which are extensively used 

in health research. Also, collaboration of the multiple 

data custodians could be done homogenously or 

heterogeneously. We are also working on other 

homomorphic cryptosystems to use in our secure 

protocols for a better performance in terms of speed and 

coverage of various mathematical operations. 

TABLE VI. PERFORMANCE RESULTS FOR SECURE BUILDING BLOCKS. 

Algorithm Time (in Seconds)  

Encryption or Decryption 0.00157 

SA  0.00314 

SDP 13.677 

TABLE VII. PERFORMANCE RESULTS FOR THE PROTOCOLS. 

Algorithm Overall Time (in Seconds) 

Logistic 

Regression 
3524 
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