
An Accumulated Cognitive Approach to Measure

Software Complexity

Mohammed A. Shehab, Yahya M. Tashtoush, Wegdan A. Hussien, Mohammed N. Alandoli, and Yaser

Jararweh
Jordan University of Science and Technology, Irbid, Jordan

Email: {mashehab12, wahussien13, mnalandoli13}@cit.just.edu.jo, {yahya-t, yijararweh}@just.edu.jo

Abstract—The complexity of a program or software can

create many difficulties during its lifetime. This complexity

entails increased time and effort requirements maintain the

code, or discover errors and defects. All of which will lead

to an increase in the overall cost of the project. So that,

software engineers and developers measure the complexity

of program code before they start any project. This paper

proposes a novel weighted complexity metric to measure

code complexity by using six main attributes. Two of them

are a mixture of Cyclomatic, Halsted, and Shao and Wangs

metrics. The dataset of this research consists of 15 programs

written in Java programming language, and collected from

different websites. The programs were ranked by seven

experts in Java programming language. Our metric was

able to achieve 94% accuracy for results.

Index Terms—complexity metric, cyclomatic, halsted

volume, Shao and Wangs metric, software engineering

I. INTRODUCTION

Software complexity is one of most important

concerns in software lifetime development. If the code is

complex, then the developers will likely face more

problems while developing and maintaining it. Thus,

most software companies focus on this issue prior to

commencing any project. The lower the complexity of an

application, the easier is it to measure its various other

factors. In addition, errors and defects are easier to

discover and repair, and the cost of many factors will be

reduced. Today, software engineering needs to accurately

predict the complexity of application to save millions in

maintenance time and effort [1].

Many metrics are used to measure application

complexity such as Cyclomatic Metric, Halsted Volume,

and Shao and Wangs Cognitive Functional Size [1] [2].

Each one of these metrics focuses on some features in the

source code. For example, Cyclomatic metric focuses on

some key features, such as loops and condition controls

by drawing a flow diagram for the program and

calculating the number of nodes and edges [3]. Shao and

Wangs Cognitive Functional Size uses the same

Manuscript received December 21, 2014; revised April 11, 2015.

technique to calculate program complexity, but they give

different weights for each control, depending on its

complexity [2]. On the other hand, Halsted focuses more

on number of operators and operands in program source

code. Also line of code is one of the most famous metrics

that used to calculate complexity of application by

calculate its lines of code [4].

However, the aforementioned metrics still have certain

drawbacks, so in this research we proposed a new metric

to calculate complexity of programs by using some

attributes from Cyclomatic Metric, Halstead Volume, and

Shao and Wangs Cognitive Functional Size metrics, with

new addition attributes in order to increase measurement

accuracy and minimize the drawbacks of the traditional

metrics.

The paper is ordered as follows: section 2 provides

studies on measuring complexity in software. In section 3,

we explain three traditional metrics, and in last

subsection we explain our novel metric and its attributes.

Then, we investigate the results for all four metrics, and

analyze them in the Results Discussion section 4. Finally,

conclusion and future work are outlined in Section 5.

II. RELATED WORKS

Before the 21st century, many metrics were proposed

to measure software complexity. Among the most widely

used were McCabe’s Cyclomatic complexity [5],

Halstead complexity [6], and Line of Code. On other

hand, few studies were conducted to compare between

different complexity metrics to determine which metric is

more suitable to be considered in software engineering.

Graylin Jay et al. [4] made a comparison between two

metrics to calculate the complexity of code. They used

Cyclomatic Complexity (CC) and Line of code (LOC) to

prove the stable linear relationship between these two

techniques. They used five NASA projects with different

programming languages, such as C, C++, and Java, to be

the dataset for their research. Finally, they found that

these two measurements are severely underestimated and

CC does not have any different features from the LOC.

Min Zhang et al. [7] studied the performance of three

complexity metrics. They selected McCabes Cyclomatic

27

Journal of Advances in Information Technology Vol. 6, No. 1, February 2015

doi: 10.12720/jait.6.1.27-33
2015 J. Adv. Inf. Technol. ©

Complexity (CC), Halsteads Complexity (HC), and

Douces Spatial Complexity (DSP). Their experiment is

based on four hypotheses using data from Eclipse JDT

which is an open source application. As a result, they

conclude that the three complexity metrics show different

performance results during their hypotheses testing, and

finally they recommended combining Cyclomatic and

Halstead metrics for better judgments on software

complexity.

At the beginning of 21th century, researchers started

new studies to measure software complexity based on

cognitive informatics. They believed that complexity

metrics that are based on cognitive informatics would

offer promising solutions to measure software

complexity.

D. I. De Silva et al. [1] study the applicability of three

software complexity metrics: McCabe’s Cyclomatic

complexity (CC), Halstead’s complexity (HC), and Shao

and Wang’s (SW) cognitive functional size (CFS). In

their study, they used ten different programs of the same

programming language (java) and determined which one

of the three complexity metrics is most appropriate for

software manufacturing. In addition to manually

calculating the ranking of the ten programs complexity

based on the three metrics, they applied Quota sampling

method by selecting five big companies and randomly

asked six programmers from each company to rank the

complexity of the ten programs. Finally, the Spearman’s

rank correlation coefficient is conducted to compare

between the ranks from the manual calculation of the

three metrics and the questionnaire of the thirty

programmers. As a result, they confirmed that Shao and

Wang’s (SW) cognitive functional size is the best metric

to be used.

D. I. De Silva et al. [8] made a comparison to test

relationship between three cognitive complexity metrics:

Kushwaha and Misra (KM’s) cognitive information

complexity measure (CICM), Shao and Wang’s (SW’s)

cognitive functional size (CFS), and Misra’s cognitive

weight complexity measure (CWCM). As in [?] they

used the same ten java programs and asked thirty expert

developers from five huge companies to rank the

programs from least to highest complexity. Finally, the

Spearman’s rank correlation coefficient is conducted to

compare between the ranks resulted from the manual

calculation of the three metrics and thirty experts

judgments. As a result, they confirmed that Shao and

Wang’s (SW) cognitive functional size is the best metric

to be considered in real world.

III. METHODOLOGY

Methodology In this section, we discuss the three old

complexity metrics: Cyclomatic, Halsted Volume, and

Shao and Wang’s Cognitive Functional Size. After that,

we discuss the new complexity metric and how works to

calculate complexity of program. The dataset of this

work was collected from a number of different websites

[9] [10], this dataset is a collection of fifteen programs

that are written in Java programming language. We

choose one programming language to avoid any

complexity differences in the syntax of different

programming languages. Table I shows the statistical of

dataset collection.

TABLE I. THE STATISTICS OF DATASET COLLECTIONS

 Min Max

Line of code 18 677

A. Cyclomatic Metric

Figure 1. Cyclomatic direct graph

Cyclomatic is one of the most popular complexity

metrics that uses a flow chart to represent application

execution steps. There are many techniques to calculate

program Cyclomatic complexity. The first one by a direct

graph that has a number of nodes and edges. There are

two types of nodes in this direct graph: normal nodes and

predict nodes. The normal nodes are nodes that have one

output, and those nodes are used to represent loops and

end of function domain. On the other hand, the predict

nodes are nodes which have two or more outputs and are

used to represent a control keywords such as an IF

statement, SWITCH, and TRY-CATCH statement [4].

Fig. 1 shows this representation. After drawing the direct

graph of an application, the Cyclomatic complexity of

application was calculated by (1).

 (1)

where:

E is the number of edges in direct graph.

N is the number of normal nodes.

P is the number of predict nodes

However, this is the traditional Cyclomatic calculation,

and Microsoft uses another method to calculate it. The

Microsoft method counts the number of IF, TRY, and

loop keywords to get the Cyclomatic complexity [11]. In

this paper, we use Microsoft method by build a simple

compiler to detect and count those keywords

automatically. Table II shows Cyclomatic complexity

results for all dataset.

28

Journal of Advances in Information Technology Vol. 6, No. 1, February 2015

2015 J. Adv. Inf. Technol. ©

TABLE II. CYCLOMATIC COMPLEXITY OF ALL DATASETS

Program Name
Cyclomatic

complexity
Rank

Bitmap 0 15

Factorial 1 14

md5 hashing algorithm 2 13

breadth first search algorithm 4 11.5

Date format 4 11.5

heap sort algorithm 5 10

depth first search algorithm 7 8.5

huffman codes 7 8.5

priority algorithm 8 7

Dijkstra's algorithm 10 6

A-Star 20 4.5

CSV to HTML translation 20 4.5

Self-organizing map (SOM) 23 3

Decision tree 30 2

Fuzzy Logic 76 1

B.

Halsted

Volume Metric

Halsted volume is a traditional metric to calculate

program complexity. This metric focuses

on operators

and operands in application [1] [12]. Using these two

attributes, Halsted

volume can be used to calculate the

complexity volume of program V as shown in (2) Where

N can be calculated by (3).

 (2)

 (3)

where:

n1 Number of distinct operators in application

n2 Number of distinct operators in application

N1

Total of operators in application

N2 Total of operands in application

In addition, test effort can be calculated by using (4)

after calculating program level

using (5) [12].

Nevertheless, Halsted is not quite optimally accurate,

because there are

many factors which can affect program

complexity, like number of functions, number

of loops,

IF statement, and so on. We used number of operators to

be one attribute in

this research for the new metric. The

Halsted volume results for each program in dataset

shown in Table III.

 (4)

 (5)

TABLE III. HALSTED VOLUME OF ALL DATASETS

Program Name Halsted

volume

Rank

Bitmap 240 15

Factorial 548 14

Date format 2274 13

md5 hashing algorithm 4123 12

huffman codes 5121 11

Dijkstra's algorithm 8447 10

breadth first search algorithm 10405 9

CSV to HTML translation 10569 8

depth first search algorithm 11050 7

heap sort algorithm 12714 6

Self-organizing map (SOM) 16238 5

Decision tree 20596 4

A-Star 26498 3

priority algorithm 28834 2

Fuzzy Logic 236828 1

C. Shao and Wangs Cognitive Functional Size

TABLE IV. SHAO AND WANGS COGNITIVE FUNCTIONAL SIZE

Category Control name Flow diagram Weight

Sequence

Sequence step

1

Branch
If – else control

2

Switch control

Number
of cases

Iteration

Loops controls

3

Embedded

Call functions

2

Recursion

function

3

This complexity metric is similar to Cyclomatic metric

in which both metrics use a flow chart to represent

program steps. As mentioned earlier, this flow chart is a

direct graph that has number of nodes and edges, but

Shao and Wangs metric has two different techniques to

29

Journal of Advances in Information Technology Vol. 6, No. 1, February 2015

2015 J. Adv. Inf. Technol. ©

calculate program complexity. The first is that Shao and

Wangs do not have predicted nodes, unlike Cyclomatic.

The second difference is that each control in the program

code has a different weight. Table IV shows how Shao

and Wangs give a different weight for each control [2].

These differences in control weights give Shao and

Wangs metric better accuracy to calculate complexity of

application code than Cyclomatic metric. This is because

some controls are more complex than others, such as

loops and recursion functions [1]. Table V shows Shao

and Wangs Cognitive Functional Size results for all

programs in dataset.

TABLE V. COGNITIVE FUNCTIONAL SIZE OF ALL DATASETS

Program Name Shao and Wang’s

Cognitive Functional

Size

Rank

Bitmap 3 15

Date format 4 13.5

Factorial 4 13.5

md5 hashing

algorithm

7 12

breadth first search

algorithm

16 10.5

heap sort algorithm 16 10.5

huffman codes 23 9

depth first search

algorithm

24 8

Dijkstra's algorithm 31 7

CSV to HTML

translation

34 6

A-Star 41 5

Self-organizing

map (SOM)

64 4

Decision tree 68 3

priority algorithm 79 2

Fuzzy Logic 136 1

D. New Complexity Metric

In this section, we describe our new approach to

calculate program complexity. We developed this metric

by using some methods from Cyclomatic, Halsted

Volume, and Shao Wangs metrics to cover any

shortcomings in these metrics. The new metric has six

attributes:

Flow chart

 If statement

 Switch statement

 Iteration statements

 Recursion function

– Number of operations in program code

– Number of external libraries and functions

– Number of function arguments

– Number of variables declaration

 _ Local variables

 _ Global variables

– Number of calling functions (only for local functions)

We use the same technique of creating a flow chart,

like Cyclomatic, but with different weights for each

control, similar to Shao and Wangs metric. We used the

same weights that were used in Shao and Wangs metric

such as: loops, IF statement, recursion functions, and

number of cases for SWITCH statement. By using this

additional technique, we avoid the flaw in Cyclomatic

metric where it gives the same weight for all controls,

since WHILE loops and recursion functions are more

complex than other controls. Table VI shows the weights

for all flow chart controls.

TABLE VI. WEIGHTS OF FLOW CHART ATTRIBUTE OF NEW

APPROACH

Flow chart controls Weight

If statement 2

Switch statement Number of cases

Iteration statements “Loops” 3

Recursion function 3

The second attribute in the new metric is the number

of operations in program code. We use this attribute from

Halsted Volume, and calculate it using (6). This attribute

also has I/O operation with logical and arithmetical

operations [12].

 (60)

where N is the total number of all operations of program

code [12].

Next, we add four new attributes for our new metric to

improve its accuracy. We use the number of external

libraries and functions, the number of function arguments,

the number of variable declarations, and the number of

calling functions. For variable declarations, we divided

this attribute to two sub-attributes: local and global. This

it because global variables are more complex than local

variables and all functions can effect on their values, and

thus tracking them requires more effort than local

variables. The last attribute is for local functions only,

because the external functions will be calculated by

external libraries and functions attribute. Table VII shows

the weights that we used for the new metric.

TABLE VII. ADDITION ATTRIBUTES IN THE NEW METRIC

Control Weight

External library or function 1

Function arguments Number of arguments + 1 for

function declaration

Function call (for local
functions only)

1

Variables declaration (local) 1

Variables declaration (global) 2

30

Journal of Advances in Information Technology Vol. 6, No. 1, February 2015

2015 J. Adv. Inf. Technol. ©

Then the total complexity of program is measured by

getting the summation of all six attributes. Table VIII

shows the results of the new metric.

TABLE VIII. NEW METRIC RESULTS FOR ALL DATASETS

Program Name New Metric Rank

Factorial 7 15

Date format 25 14

Bitmap 27 13

breadth first search algorithm 28 12

md5 hashing algorithm 30 11

CSV to HTML translation 49 10

heap sort algorithm 54 8.5

huffman codes 54 8.5

depth first search algorithm 63 6.5

priority algorithm 63 6.5

Dijkstra's algorithm 83 5

A-Star 98 4

Self-organizing map (SOM) 120 3

Decision tree 164 2

Fuzzy Logic 290 1

IV. EXPERIMENTS AND RESULTS

In this section, we discuss the experiment setup in the

first subsection, after which we analyze the results of this

work. In the experiment setup, we talk about the dataset,

statistics, and how we rank programs by their complexity.

After that, we study and analyze the results of code

complexity for each metric.

A. Experiment Setup

This section discussed the experiment setup of the

dataset in this research. First, we rank all programs in

dataset from 1 to 15 by asking seven experts in Java

programming language. After that, we calculate the

average of all ranks for each program as shown on Table

IX.

Next, we built a simple program to calculate the four

complexity metrics: Cyclomatic complexity, Halsted

volume, Shao and Wangs Cognitive Functional Size, and

finally, our new metric. We built a simple compiler to

calculate all the metric results values automatically. Then

we calculate Spearman’s rank correlation coefficient for

each metric to measure the accuracy of metrics. We

calculate a codes complexity using each metric, and

organize them in ascending order, and give each program

a rank. Finally, we calculate Spearman’s rank correlation

coefficient between each metric with the expert’s

rankings to get the closest ranking metric to expert’s

rankings.

Program name Average

complexity

Spearman

rank

Factorial 1.142857 15

Date format 2.428571 14

Bitmap 2.571429 13

CSV to HTML translation 4.571429 12

breadth first search

algorithm

6 11

depth first search algorithm 6.428571 10

heap sort algorithm 6.714286 8.5

md5 hashing algorithm 6.714286 8.5

huffman codes 7.571429 7

Dijkstra's algorithm 7.857143 6

priority algorithm 8.714286 5

Decision tree 10.14286 3.5

A-Star 10.14286 3.5

Self-organizing map

(SOM)

10.28571 2

Fuzzy Logic 12 1

B. Results Discussion

As shown in Table X, the worst ranking was for

Halsted volume metric 81%. This is because Halsted

metric does not mention many important controls such as

loops. Because of that, Halsted cannot detect the real

complexity for a program. Also, Cyclomatic metric got

approximately 82% of accuracy. This result arose

because Cyclomatic does not focus on weight or

difficulties of code controls. There is a difference

between iteration controls, branch controls, and recursion

functions.

However, Shao and Wangs metric is more accurate

than Cyclomatic and Halsted metrics. Shao and Wangs

got about 85% accuracy. This is because Shao and

Wangs use a weighted technique to calculate code

complexity. This technique can cover any disadvantages

in Cyclomatic and Halsted metrics, but Shao and Wangs

do not give any weights for logical, input/output, and

arithmetic operations.

Our new metric gives the best accuracy with 94%, and

that means an increase in accuracy of 9%. This is due to

our new metric having more attributes to cover the

shortcomings of previous methods, and its ability to

detect complex code inside program. We mix the

attributes of two main metrics: Cyclomatic, and Shao and

Wangs. We use the flow-chart technique more

specifically, Microsoft technique to detect Cyclomatic

[11] with Shao and Wangs weights as shown in Table VI.

Thus, our new technique gains the advantages of both

metrics. In addition, we use Halsted volume by adding a

number of operations as attribute to avoid the

disadvantage of Cyclomatic and Shao and Wangs metrics.

31

Journal of Advances in Information Technology Vol. 6, No. 1, February 2015

TABLE IX. AVERAGE RANK OF DATASET PROGRAMS BY SEVEN

EXPERTS IN JAVA PROGRAMING LANGUAGE

2015 J. Adv. Inf. Technol. ©

Finally, the new metric can detect the external functions

and libraries. Also, we give different weights for

variables declaration, since global variables are more

complex than local ones. Function calling for local

functions, as well as the number of function arguments,

can give the developer an approximate number for

function complexity. Altogether, the six attributes give

this new metric higher accuracy than the three metrics

separately.

TABLE X. SPEARMAN’S CORRELATION COEFFICIENT FOR ALL

COMPLEXITY METRICS

Program name Experts Cyclomatic
Halsted

volume

Shao

Wang’s

New

metric

Factorial 15 14 14 13.5 15

Date format 14 11.5 13 13.5 14

Bitmap 13 15 15 15 13

CSV to HTML

translation
12 4.5 8 6 10

breadth first

search algorithm
11 11.5 9 10.5 12

depth first

search algorithm
10 8.5 7 8 6.5

heap sort

algorithm
8.5 10 6 10.5 8.5

md5 hashing

algorithm
8.5 13 12 12 11

huffman codes 7 8.5 11 9 8.5

Dijkstra's

algorithm
6 6 10 7 5

priority

algorithm
5 7 2 2 6.5

Decision tree 3.5 2 4 3 2

A-Star 3.5 4.5 3 5 4

Self-organizing

map (SOM)
2 3 5 4 3

Fuzzy Logic 1 1 1 1 1

Spearman's

correlation

coefficient

1 0.816071 0.814286 0.850893
0.94196

4

Fig. 2 shows the results of Spearman’s correlation

coefficient of the four metrics.

Figure 2. Spearman’s correlation coefficient to the four metrics

V. CONCLUSION AND FUTURE WORK

Software complexity is one of most important factors

in software engineering. Complexity of a program can be

affected by many other factors in software engineering

and software lifetime. If any program has a high

complexity in its code, then developers prefer to stop

supporting, or they risk losing a lot more time and effort

for maintaining, testing, re-engineering etc. To reduce

risks related to software complexity, most software

engineers measure the complexity of program as a

feasibility study before start any project.

In this paper, we proposed a new metric to calculate

code complexity by utilizing and combining a number of

older metrics: Cyclomatic metric, Halsted Volume, and

Shao and Wangs Cognitive Functional Size. This new

metric has six main attributes: flow chart with different

weights for each control, similar to Shao and Wangs

metric; number of operations, similar to Halsted Volume,

but with the addition of I/O operations; number of

function arguments; number of external functions and

libraries; number of functions calling for local functions

only; and finally, number of variables declaration with

different weights for local and global variables. We

programed a tool to calculate all four metrics results

automatically. The dataset of this work was 15 programs

were written in Java programming language.

We collected them from several different websites, and

gave them to be ranked by 7 experts in Java

programming language. The results for this paper show

that the new metric has the highest accuracy among the 4

metrics tested, with an accuracy of 94%. Shao and

Wangs had better results than

Cyclomatic and Halsted volume, with an accuracy of

85%. While Cyclomatic and Halsted volume got 82%

and 81% respectively. For future work, we may wish to

consider adding new attributes for OO programming

complexity.

REFERENCES

[1] D. I. D. Silva, N. Koadagoda, and H. Perera, “Applicability of

three complexity metrics,” in Proc. International Conference on
Advances in ICT for Emerging Regions, 2012.

[2] J. Shao and Y. Wang, “A new measure of software complexity

based on cognitive weights,” Canadian Journal of Electrical and
Computer Engineering, no. 0840-8688, p. 6, 2003.

[3] U. Tiwar and S. Kumar, “Cyclomatic complexity metric for

component based software,” ACM, vol. 39, no. 0004-5411, p. 6,

2014.

[4] G. Jay, J. E. Hale, R. K. Smith, D. Hale, N. A. Kraf, and C. Ward,

“Cyclomatic complexity and lines of code: Empirical evidence of
a stable linear relationship,” J. Software Engineering &

Applications, p. 7, 2009.

[5] T. J. McCabe, “A complexity measure,” IEEE Computer Society,
vol. SE-2, no. 4, p. 12, 1976.

[6] M. Halstead, “Elements of software science,” Elsevier North-

Holland, 1997.
[7] M. Zhang and N. Baddoo, ”Performance comparison of software

complexity metrics in an open source project,” in Proc. 14th

European Conference Software Process Improvement, Potsdam,
Germany, 2007.

[8] D. D. Silva, N. Weerawarna, K. Kuruppu, N. Ellepola, and N.

Kodagoda, ”Applicability of three cognitive complexity metrics,”
in Proc. 2013 8th International Conference on Computer

Science&Education, Colombo, 2013.

32

Journal of Advances in Information Technology Vol. 6, No. 1, February 2015

2015 J. Adv. Inf. Technol. ©

[9] Rosetta code. (2014). [Online]. Available:
http://rosettacode.org/wiki/Rosetta Code

[10] Github.com. (2014). [Online]. Available: https://github.com

[11] Z. Naboulsi. (2014). MSDN. Microsoft. [Online]. Available:
http://blogs.msdn.com/b/zainnab/archive/2011/05/17/code-

metrics-cyclomaticcomplexityaspx?utm source=feedburner&utm

medium=feed&utm campaign=
Feed:+zainnab+(Visual+Studio+Tips+and+Tricks)

[12] R. Pressman, “Metrics for source code,” in Software Engineering

Seven Edition, McGraw-Hill, 2010, pp. 638-639-640.
[13] Source forge. Sourceforge. (2014). [Online]. Available:

http://sourceforge.net

[14] Code project. (2014). [Online]. Available:
http://www.codeproject.com

Mohammed Shehab is a Research Associate at

Computer Science Department at Jordan

University of Science and Technology. His M.Sc.

degree has been received from at Jordan

University of Science and Technology in

Computer Science and his B.Sc. degree has been

received from Muta’h University also in

Computer Science. His main research interests

include Data Mining, Software engineering,

Image processing and Machine learning.

Yahya M. Tashtoush is Associate Professor at

the College of Computer and Information

Technology, Jordan University of Science and

Technology, Irbid, Jordan. He received his B.Sc.

and M.Sc. degrees in Electrical Engineering from

Jordan University of Science and Technology,

Irbid, Jordan in 1995 and 1999. He received his

Ph.D. degree in Computer Engineering from the

University of Alabama in Huntsville and the University of Alabama at

Birmingham, AL, USA in 2006. His current research interests are

Software Engineering, Artificial Intelligence, Robotics, and Wireless

Sensor Networks.

Yaser Jararweh (Jordan University of Science

and Technology, Jordan)

received his Ph.D. in

Computer Engineering from University of

Arizona in 2010. He is currently an assistant

professor of computer sciences at Jordan

University of Science and Technology, Jordan.

He has co-authored about fifty technical papers in

established journals and conferences in fields

related to cloud computing, HPC, SDN and Big

Data. He was one of the TPC Co-Chair, IEEE Globecom 2013

International Workshop on Cloud Computing Systems, and Networks,

and Applications (CCSNA). He is a steering committee member for

CCSNA 2014 and CCSNA 2015 with ICC. He is the General Co-Chair

in IEEE International Workshop on Software Defined Systems SDS -

2014 and SDS 2015. He is also chairing many IEEE events such as

ICICS, SNAMS, BDSN, IoTSMS and many others. Dr. Jararweh

served as a guest editor for many special issues in different established

journals. Also, he is the steering committee chair of the IBM Cloud

Academy Conference.

Mohammed Al-andoli

is a master student at

Computer Science Department at Jordan

University of Science and Technology. His B.Sc.

degree has been received from Muta'h University

in Computer Information Systems. His main

research interests include natural language

processing,

data mining and machine learning.

Wegdan Abdulqader Hussien

is a master

student at Computer Science Department at

Jordan University of Science and Technology.

His B.Sc. degree has been received from Aden

University in Computer Science and Engineering.

His main research interests include Wireless

Sensor Networks, Computer Security and Data

Mining.

[15] Compiler. (2014). [Online]. Available: https://compilr.com/

33

Journal of Advances in Information Technology Vol. 6, No. 1, February 2015

2015 J. Adv. Inf. Technol. ©

https://compilr.com/

