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Abstract— High-dimensional time series data need
dimension-reduction strategies to improve the efficiency
of computation and indexing. In this paper, we present a
dimension-reduction framework for time series. Generally,
recent data are much more interesting and significant for
predicting future data than old ones. Our basic idea is
to reduce to data dimensionality by keeping more detail
on recent-pattern data and less detail on older data. We
distinguish our work from other recent-biased dimension-
reduction techniques by emphasizing on recent-pattern
data and not just recent data. We experimentally evaluate
our approach with synthetic data as well as real data.
Experimental results show that our approach is accurate
and effective as it outperforms other well-known techniques.

Index Terms— Time series analysis, dimensionality reduc-
tion, data mining.

I. INTRODUCTION

Time series is a sequence of time-stamped data points,
which account for a large proportion of the data stored
in today’s scientific and financial databases. Examples
of a time series include stock price, exchange rate,
temperature, humidity, power consumption, and event
logs. Time series are typically large and of high di-
mensionality. To improve the efficiency of computation
and indexing, dimension-reduction techniques are needed
for high-dimensional data. Among the most widely used
techniques are PCA (also known as SVD), DFT, and
DWT. Other recently proposed techniques are Landmarks
[29], PAA [21], APCS [20], PIP [15], Major minima and
maxima [13], and Magnitude and shape approximation
[27]. These techniques were developed to reduce the
dimensionality of the time series by considering every
part of a time series equally. In many applications such
as the stock market, however, recent data are much
more interesting and significant than old data, “recent-
biased analysis” (the term originally coined by Zhao
and Zhang [35]) thus emerges. The recently proposed
techniques include Tilt time frame [8], Logarithmic tilted-
time window [16], Pyramidal time frame [2], SWAT [5],
Equi-segmented scheme [35], and Vari-segmented scheme
[35].

Generally, a time series reflects the behavior of the
data points (monitored event), which tends to repeat
periodically and creates a pattern that alters over time
due to countless factors. Hence the data that contains
the recent pattern are more significant than just recent

data and even more significant than older data. This
change of behavioral pattern provides the key to our
proposed framework in dimension reduction. Since the
pattern changes over time, the most recent pattern is more
significant than older ones. In this paper, we introduce a
new recent-pattern biased dimension-reduction framework
that gives more significance to the recent-pattern data (not
just recent data) by keeping it with finer resolution, while
older data is kept at coarser resolution. With our frame-
work, the traditional dimension-reduction techniques such
as SVD, DFT, DWT, Landmarks, PAA, APCS, PIP, Major
minima and maxima, and Magnitude and shape approx-
imation can be used. As many applications [1] [7] [10]
[24] generate data streams (e.g., IP traffic streams, click
streams, financial transactions, text streams at application
level, sensor streams), we also show that it is simple to
handle a dynamic data stream with our framework.

We distinguish this paper from other previously pro-
posed recent-biased dimension-reduction techniques by
the following contributions:

1) We develope a new framework for dimension reduc-
tion by keeping more detail on data that contains the
most recent pattern and less detail on older data.

2) Within this framework, we also propose Hellinger
distance-based algorithms for recent periodicity de-
tection and recent-pattern interval detection.

II. BACKGROUND AND RELATED WORK

This section reviews traditional dimension reduction
methods and briefly describes related work in the recent-
biased dimension reduction.

A. Dimension Reduction

With advances in data collection and storage capabili-
ties, the amount of the data that needs to be processed is
increasing rapidly. To improve the efficiency of computa-
tion and indexing when dealing with high-dimensional
time series or large datasets, dimension reduction is
needed. The classical methods include PCA, DFT, and
DWT:

PCA (Principal Component Analysis) [14] is a popular
linear dimension-reduction technique that minimizes the
mean square error of approximating the data. It is also
known as the singular value decomposition (SVD), the
Karhunen-Loeve transform, the Hotelling transform, and
the empirical orthogonal function (EOF) method. PCA
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is an eigenvector-based multivariate analysis that seeks to
reduce dimension of the data by transforming the original
data to a few orthogonal linear combinations (the PCs)
with the largest variance.

DFT (Discrete Fourier Transform) has been used for the
dimensionality reduction [3] [31] [22] [9] by transforming
the original time series (of length N ) without changing in-
formation content to the frequency domain representation
and retaining a few low-frequency coefficients (p, where
p < N ) to reconstruct the series. Fast Fourier transform
(FFT) is a popular algorithm to compute DFT with time
complexity of O(N logN).

DWT (Discrete Wavelet Transform) is similar to
DFT except that it transforms the time series into
time/frequency domain and its basis function is not a si-
nusoid but generated by the mother wavelet. Haar wavelet
[6] is one of the most widely used class of wavelets with
time complexity of O(N).

Other proposed techniques include Landmarks, PAA,
APCS, PIP, Major minima and maxima, and Magnitude
and shape approximation:

Landmark model has been proposed by Perng et al.
[29] to reduce dimensionality of time series. The idea
is to reduce the time series to the points (time, events)
of greatest importance, namely ”landmarks”. The n-th
order landmark of a curve is defined for the point whose
n-th order derivative is zero. Hence local maxima and
minima are first-order landmarks, and inflection points
are second-order landmarks. Compared with DFT and
DWT, landmark model retains all peaks and bottoms that
normally filtered out by both DFT and DWT.

Keogh et al. [21] have proposed PAA (Piecewise Ag-
gregate Approximation) as a dimension-reduction tech-
nique that reduces the time series to the mean values of
the segmented equi-length sections. PAA has an advan-
tage over DWT as it is independent of the length of the
time series (DWT is only defined for sequences whose
length is an integral power of two).

The concept of PAA has later been modified to improve
the quality of approximation by Keogh et al. [20] who
propose APCS (Adaptive Piecewise Constant Approxi-
mation) that allows segments to have arbitrary lengths.
Hence two numbers are recorded for each segment; mean
value and length.

PIP (Perpetually Important Points) has been introduced
by Fu et al. [15] to reduce dimensionality of the time
series by replacing the time series with PIPs, which are
defined as highly fluctuated points.

Fink et al. [13] have proposed a technique for fast
compression and indexing of time series by keeping major
minima and maxima and discarding other data points. The
indexing is based on the notion of major inclines.

Ogras and Ferhatosmanoglu [27] have introduced a
dimension-reduction technique that partitions the high
dimensional vector space into orthogonal subspaces by
taking into account both magnitude and shape information
of the original vectors.

B. Recent-biased Dimension Reduction

Besides the global dimension reduction, in many ap-
plications such as stock prices, recent data are much
more interesting and significant than old data. Thus, the
dimension-reduction techniques that emphasize more on
the recent data by keeping recent data with fine resolution
and old data with coarse resolution have been proposed
such as Tilt time frame, Logarithmic tilted-time window,
Pyramidal time frame, SWAT, Equi-segmented scheme,
and Vari-segmented scheme:

Tilt time frame has been introduced by Chen et al. [8]
to minimize the amount of data to be kept in the memory
or stored on the disks. In the tilt time frame, time is reg-
istered at different levels of granularity. The most recent
time is registered at the finest granularity, while the more
distant time is registered at coarser granularity. The level
of coarseness depends on the application requirements.

Similar to the tilt time frame concept but with more
space-efficient, Giannella et al. have proposed the loga-
rithmic tilted-time window model [16] that partitions the
time series into growing tilted-time window frames at an
exponential rate of two e.g., 2, 4, 8, 16, and so forth.

The concept of the pyramidal time frame has been
introduced by Aggarwal et al. in [2]. With this technique,
data are stored at different levels of granularity depending
upon the recency, which follows a pyramidal pattern.

SWAT (Stream Summarization using Wavelet-based
Approximation Tree) [5] has been proposed by Bulut and
Singh to process queries over data streams that are biased
towards the more recent values. SWAT is a Haar wavelet-
based scheme that keeps only a single coefficient at each
level.

Zhao and Zhang have proposed the equi-segmented
scheme and the vari-segmented scheme in [35]. The
idea of the equi-segmented scheme is to divide the time
series into equi-length segments and apply a dimension
reduction technique to each segment, and keep more co-
efficients for recent data while fewer coefficients are kept
for old data. Number of coefficients to be kept for each
segment is set to

⌊
N/2i

⌋
where N is the length of the

time series and segment gets older with the increase of i.
For the vari-segmented scheme, the time series is divided
into variable length segments with larger segments for
older data and smaller segments for more recent data (the
length of segment i is set to 2i). The same number of
coefficients are then kept for all segments after applying
a dimension reduction technique to each segment.

III. RECENT-PATTERN BIASED

DIMENSION-REDUCTION FRAMEWORK

Time series data analysis comprises methods that at-
tempt either to understand the context of the data points or
to make forecasts based on observations (data points). In
many applications, recent data receive more attention than
old ones. Generally, a time series reflects the behavior of
the data points (monitored event), which tends to repeat
periodically and creates a pattern that alters over time due
to countless factors. Hence the data that contains recent
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pattern are more significant than just recent data and even
more significant than older data. Typically, future behavior
is more relevant to the recent behavior than older ones.
Our main goal in this work is to reduce dimensionality
of a time series with the basic idea of keeping data that
contains recent pattern with high precision and older data
with low precision. Since the change in behavior over
time creates changes in the pattern and the periodicity
rate, we thus need to detect the most recent periodicity
rate, which will lead to identifying the most recent pattern.
Hence a dimension reduction technique can then be
applied. This section presents our novel framework for
dimension reduction for time series data, which includes
new algorithms for recent periodicity detection, recent-
pattern interval detection, and dimension reduction.

A. Recent Periodicity Detection

Unlike other periodicity detection techniques ( [4], [11],
[12], [19], [23], and [33]) that attempt to detect the global
periodicity rates, our focus here is to find the “most
recent” periodicity rate of time series data. Let X denote
a time series with N time-stamped data points, and xi

be the value of the data at time-stamp i. The time series
X can be represented as X = x0, x1, x2, ..., xN , where
x0 is the value of the most recent data point and xN is
the value of the oldest data point. Let Φ(k) denote the
recent-pattern periodicity likelihood (given by (1)) that
measures the likelihood of selected recent time segment
(k) being the recent period of the time series, given
that the time series X can be sliced into equal-length
segments Xk

0 , X
k
1 , X

k
2 , ..., X

k
�N/k�−1, each of length k,

where Xk
i = xik, xik+1, xik+2, ..., xik+k−1.

Φ(k) =

∑�N/k�−1
i=1 (1− d2H(X̂k

0 , X̂
k
i ))

�N/k� − 1
, (1)

where d2H(A,B) is Hellinger distance [32], which is
widely used for estimating a distance (difference) be-
tween two probability measures (e.g., probability den-
sity functions (pdf), probability mass functions (pmf)).
Hellinger distance between two probability measures A
and B can be computed by (2). A and B are M -tuple
{a1, a2, a3, ..., aM} and {b1, b2, b3, ..., bM} respectively,
and satisfy am ≥ 0,

∑
m am = 1, bm ≥ 0, and

∑
m bm =

1. Hellinger distance of 0 implies that A = B whereas
disjoint A and B yields the maximum distance of 1.

d2H(A,B) =
1

2

M∑
m=1

(
√
am −

√
bm)2. (2)

In our case, X̂k
0 and X̂k

i are Xk
0 and Xk

i after nor-
malization, respectively, such that they satisfy the above
conditions. Thus, Φ(k) has the values in the range [0, 1]
as 0 and 1 imply the lowest and the highest recent-pattern
periodicity likelihood, respectively.

Definition 1. If a time series X of
length N can be sliced into equal-length
segmentsXp

0 , X
p
1 , X

p
2 , ..., X

p
�N/p�−1, each of length

p, where Xp
i = xip, xip+1, xip+2, ..., xip+p−1, and

p = argmaxΦ(k)
k

, then p is said to be the recent

periodicity rate of X .

The basic idea of this algorithm is to find the time
segment (k) that has the maximum Φ(k), where k =
2, 3, ..., �N/2�. If there is a tie, smaller k is chosen to
favor shorter periodicity rates, which are more accurate
than longer ones since they are more informative [12]. The
detailed algorithm is given in Fig. 1. Note that Φ(1) = 1
since d2H(X̂1

0 , X̂
1
i ) = 0, hence k begins at 2.

p = PERIODICITY(X)
Input: Time series (X) of length N
Output: Recent periodicity rate (p)
1. FOR k = 2 to �N/2�
2. Compute Φ(k);
3. END FOR
4. p = k that maximizes Φ(k);
5. IF |k|> 1
6. p = min(k);
7. END IF
8. Return p as the recent periodicity rate;

Figure 1. Algorithm for the recent periodicity detection.

B. Recent-Pattern Interval Detection

After obtaining the recent periodicity rate p, our next
step towards dimension reduction for a time series X is
to detect the time interval that contains the most recent
pattern. This interval is a multiple of p. We base our
detection on the shape of the pattern and the amplitude
of the pattern.

For the detection based on the shape of the pattern,
we construct three Hellinger distance-based matrices to
measure the differences within the time series as follows:

1) Di
1 = [d1(1), d1(2), ..., d1(i)] is the matrix whose

elements are Hellinger distances between the pat-
tern derived from the Xp

0 to Xp
j−1 (X̄p

0→j−1), which
can be simply computed as a mean time series over
time segments 0 to j − 1 given by (4), and the
pattern captured within the time segment j (Xp

j ) as
follows:

d1(j) = d2H( ˆ̄X
p

0→j−1, X̂
p
j ), (3)

where

X̄p
0→j−1 =

1

j

j−1∑
n=0

xnp,
1

j

j−1∑
n=0

xnp+1, ...,
1

j

j−1∑
n=0

xnp+p−1.

(4)
Again, the hat on top of the variable indicates the
normalized version of the variable.

2) Di
2 = [d2(1), d2(2), ..., d2(i)] is the matrix whose

elements are Hellinger distance between the most
recent pattern captured in the first time segment
(Xp

0 ) and the pattern occupied within the time
segment j (Xp

j ) as follows:

d2(j) = d2H(X̂p
0 , X̂

p
j ). (5)
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rshape = SHAPE RPI(D�N/p�−1
1 ,D�N/p�−1

2 ,D�N/p�−1
3 )

Input: Three distance matrices (D�N/p�−1
1 ,D�N/p�−1

2 , D�N/p�−1
3 ).

Output: Shape-based recent-pattern interval (rshape).
1. Initialize rshape to N
2. FOR i = 2 to �N/p� − 1
3. IF SIG CHANGE(Di

1,d1(i+1)) + SIG CHANGE(Di
2,d2(i+1)) + SIG CHANGE(Di

3,d3(i+1)) ≥ 2
4. rshape = ip;
5. EXIT FOR LOOP
6. END IF
7. END FOR
8. Return rshape as the recent-pattern interval based on the shape;

Figure 2. Algorithm for detecting the recent-pattern interval based on the shape of the pattern.

3) Di
3 = [d3(1), d3(2), ..., d3(i)] is the matrix whose

elements are Hellinger distance between the adja-
cent time segments as follows:

d3(j) = d2H(X̂p
j−1, X̂

p
j ). (6)

These three matrices provide the information on how
much the behavior of the time series changes across all
time segments. The matrix Di

1 collects the degree of
difference that Xp

j introduces to the recent segment(s) of
the time series up to j = i, where j = 1, 2, 3, ..., �N/p�−
1. The matrix Di

2 records the amount of difference that
the pattern occupied in the time segmentXp

j makes to the
most recent pattern captured in the first time segmentXp

0

up to j = i. The matrix Di
3 keeps track of the differ-

ences between the patterns captured in the adjacent time
segmentsXp

j−1 and Xp
j up to j = i.

To identify the recent-pattern interval based on the
shape of the pattern, the basic idea here is to detect
the first change of the pattern that occurs in the time
series as we search across all the time segments Xp

j in an
increasing order of j starting from j = 1 to �N/p� − 1.
Several changes might have been detected as we search
through entire time series, however our focus is to detect
the most recent pattern. Therefore, if the first change is
detected, the search is over. The change of pattern can
be observed from the significant changes of these three
matrices. The significant change is defined as follows.

Definition 2. If µDi
k

and σDi
k

is the mean and the
standard deviation of Di

k and µDi
k
+ 2σDi

k
≤ dk(i + 1),

then Xp
i+1 is said to make the significant change based

on its shape.

With the detected significant changes in these distance
matrices, the recent-pattern interval based on the shape
of the pattern can be defined as follows. The detailed
algorithm is given in Fig. 2.

Definition 3. If Xp
i+1 introduces a significant change to

at least two out of three matrices (Di
1,Di

2, and Di
3), then

the recent-pattern interval based on the shape (rshape) is
said to be ip time units.

For this shape-based recent-pattern interval detection,
the Hellinger distances are computed by taking the nor-

y = SIG CHANGE(Di
k,dk(i+ 1))

Input: Distance matrix (Di
k) and the corresponding

distance elementdk(i+ 1).
Output: Binary output (y) of 1 implies that there
is a significant change made by Xp

i+1 and 0 implies
otherwise.
1. IF µDi

k
+ 2σDi

k
≤ dk(i+ 1)

2. y = 1;
3. ELSE
4. y = 0;
5. END IF

Figure 3. Algorithm for detecting the significant change.

malized version of the patterns in the time segments.
Since normalization rescales the amplitude of the patterns,
the patterns with similar shapes but significantly different
amplitudes will not be detected (see an example illustrated
in Fig. 4).

Figure 4. An example of misdetection for the recent-pattern interval
based on the shape of the pattern. SHAPE RPI(algorithm given in Fig.
3) would detect the change of the pattern at the 5th time segment (Xp

5
)

whereas the actual significant change takes place at the 3rd time segment
(Xp

3
).

To handle this shortcoming, we propose an algorithm to
detect the recent-pattern interval based on the amplitude
of the pattern. The basic idea is to detect the significant
change in the amplitude across all time segments. To
achieve this goal, let Ai = [a(1), a(2), ..., a(i)] denote
a matrix whose elements are mean amplitudes of the
patterns of each time segment up to time segment i, which
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can be easily computed by (7).

a(k) =
1

p

p−1∑
n=0

x(k−1)p+n. (7)

Similar to the previous case of distance matrices, the
significant change in this amplitude matrix can be defined
as follows.

Definition 4. If µAi and σAi is the mean and the standard
deviation of Ai and µAi + 2σAi ≤ a(i + 1), then
Xp

i+1 is said to make the significant change based on
its amplitude.

Likewise, with the detected significant change in the
amplitude matrix, the recent-pattern interval based on the
amplitude of the pattern can be defined as follows. The
detailed algorithm is given in Fig. 5.

Definition 5. If Xp
i+1 makes a significant change in the

matrix (Ai), then the recent-pattern interval based on the
amplitude (ramp) is said to be ip time units.

ramp = AMP RPI(A�N/p�−1)
Input: The amplitude matrix (A�N/p�−1).
Output: Amplitude-based recent-pattern interval
(ramp).
1. Initialize ramp to N
2. FOR i = 2 to �N/p� − 1
3. IF SIG CHANGE(Ai,a(i+ 1)) = 1
4. ramp = ip;
5. EXIT FOR LOOP
6. END IF
7. END FOR
8. Return ramp as the recent-pattern interval based on

the amplitude;

Figure 5. Algorithm for detecting the recent-pattern interval based on
the amplitude of the pattern.

Finally, the recent-pattern interval can be detected by
considering both shape and amplitude of the pattern.
Based on the above algorithms for detecting the interval
of the most recent pattern based on the shape and the
amplitude of the pattern, the final recent-pattern interval
can be defined as follows.

Definition 6. If rshape is the recent-pattern interval based
on the shape of the pattern and ramp is the recent-pattern
interval based on the amplitude of the pattern, then the
final recent-pattern interval(R) is the lowest value among
rshape and ramp − i.e., R = min(rshape, ramp).

C. Dimension Reduction

Our main goal in this work is to reduce dimensionality
of a time series. The basic idea is to keep more details
for recent-pattern data, while older data kept at coarser
level.

Based on the above idea, we propose a dimension-
reduction scheme for time series data that applies a

dimension reduction technique to each time segment and
then keeps more coefficients for data that carries recent-
behavior pattern and fewer coefficients for older data.

Let Ci represent the number of coefficients retained
for the time segment Xp

i . Since our goal is to keep
more coefficients for the recent-pattern data and fewer
coefficients for older data, a sigmoid function (given by
(8)) is generated and centered at R time units (where the
change of behavior takes place).

f(t) =
1

1 + α−t/p
. (8)

The decay factor (α) is automatically tuned to change
adaptively with the recent-pattern interval (R) by being
set to α = p/R, such that a slower decay rate is applied
to a longer R and vice versa. The number of coefficients
for each time segment can be computed as the area under
the sigmoid function over each time segment (given by
(9)), so the value of Ci is within the range [1, p].

Ci =

⌈∫
Xp

i

f(t)dt

⌉
. (9)

Ci decreases according to the area under the sigmoid
function across each time segment as i increases, hence
C0 ≥ C1 ≥ C2 ≥ ... ≥ C�N/p�−1.

Several dimension reduction techniques can be used in
our framework. Among the most widely popular tech-
niques are DFT and DWT. For DFT, we keep the first
Ci coefficients that capture the low-frequency part of the
time series for each time segment (some other techniques
for selecting DFT coefficients such as selecting the largest
Ci coefficients to preserve the energy [26] or selecting the
first largest Ci coefficients [34] can also be applied here).
For DWT, the number of coefficients can be computed by
(9) and rounded to the closest integer v, where v =

⌈
p
2j

⌉
and j = {0, 1, 2, ..., log2 p}, i.e., v ∈ {p, p2 , p

22 ,
p
23 , ..., 1}.

A larger v is chosen if there is a tie.

Figure 6. Recent-pattern biased dimension-reduction scheme for time
series data. A time series is partitioned into equal-length segments of
length p (recent periodicity rate) and more coefficients are taken for
recent-pattern data and fewer coefficients are taken for older data based
on the decay rate of a sigmoid function (f(t)). For this example, recent-
pattern interval (R) is assumed to be (i+ 1)p.

With this scheme, a time series data can be reduced
by keeping the more important portion of data (recent-
pattern data) with high precision and the less important
data (old data) with low precision. As future behavior is
generally more relevant to the recent behavior than old
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Z = DIMENSION REDUCTION(X)
Input: A time series (X) of length N .
Output: A reduced time series (Z).
1. p = PERIODICITY(X);
2. Partition X into equal-length segments, each of length p;
3. Compute matrices D

�N/p�−1
1 , D�N/p�−1

2 , D�N/p�−1
3 , and A�N/p�−1;

4. rshape = SHAPE RPI(D�N/p�−1
1 ,D�N/p�−1

2 ,D�N/p�−1
3 );

5. ramp = AMP RPI(A�N/p�−1);
6. R = min(rshape, ramp);
7. Place a sigmoid function f(t) at R;
8. FOR each segment i
9. Coefs = apply dimension-reduction technique for segment i;
10. Compute Ci;
11. zi = first Ci Coefs;
12. END FOR
13. Z = {z0, z1, z2, ..., z�N/p�−1}; /* Series of selected coefficients */
14. Return Z as the reduced time series;

Figure 7. Algorithm for detecting the recent-pattern interval based on the amplitude of the pattern.

ones, maintaining the old data at low detail levels might
as well reduces the noise of the data, which would benefit
predictive modeling. This scheme is shown in Fig. 6, and
the detailed algorithm is given in Fig. 7.

Note that if no significant change of pattern is found
in the time series, our proposed framework will work
similarly to equi-segmented scheme as our R is initially
set to N (by default, see Fig. 2, Fig. 5 and Definition
6). Hence the entire series is treated as a recent-pattern
data, i.e., more coefficients are kept for recent data and
fewer for older data according to (the left-hand side from
the center of) the sigmoid function with decay factor
α = p/R.

It is simple to handle dynamic data streams with our
framework. When new data arrive, they are kept in a new
segment X l

new until there are p new data points, i.e.,
l = p. If R = sp, then only the first s + 1 segments
(Xp

new, X̃
p
0 , X̃

p
1 , ..., X̃

p
s−1) need to be processed while

other segments remain unchanged. Note that X̃p
i denotes

a reconstructed segment i. The new reconstructed segment
X̃p

new will then become a new X̃p
0 , and other segments’

order are incremented by one (e.g., X̃p
0 becomes X̃p

1 ). If
the original time series has N data points, then the new
reconstructed time series is of length N + p. An example
is given in Fig. 8.

IV. PERFORMANCE ANALYSIS

This section contains the experimental results to show
the accuracy and effectiveness of our proposed algorithms.
In our experiments, we exploit synthetic data as well as
real data.

The synthetic data are used to inspect the accuracy of
the proposed algorithms for detecting the recent period-
icity rate and the recent-pattern interval. This experiment
aims to estimate the ability of proposed algorithms in
detecting p and R that are artificially embedded into the
synthetic data at different levels of noise in the data (mea-
sured in terms of SNR (signal-to-noise ratio) in dB). For a

Figure 8. An example of processing a dynamic data stream. (1) Original
data has 7p data points. (2) Suppose that R = 3p. (3) New data
points are kept in a new segment Xl

new until l = p, then the first
R+ p data points are processed with other data points unchanged. (4)
The reconstructed time series of length 8p. (5) The new reconstructed
segment X̃

p
new becomes a new X̃

p
0

, and other segments’ order are
incremented by one.

synthetic time series with known p and R, our algorithms
compute estimated periodicity rate (p̃) and recent-pattern
interval (R̃) and compare with the actual p and R to see if
the estimated values are matched to the actual values. We
generate 100 different synthetic time series with different
values of p and R. The error rate is then computed
for each SNR level (0dB to 100dB) as the number of
incorrect estimates (Miss) per total number of testing data,
i.e. Miss/100. The results of this experiment are shown
in Fig. 9. The error rate decreases with increasing SNR
as expected. Our recent periodicity detection algorithm
performs with no error above 61dB while our recent-
pattern interval detection algorithm performs perfectly
above 64dB. Therefore, based on this experiment, our
proposed algorithms are effective at SNR level above
64dB.

We implement our algorithms on three real time series
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Figure 9. Experimental result of the error rate at different SNR levels
of 100 synthetic time series (with known p and R).

data. The first data contains the number of phone calls
(both made and received) on time-of-the-day scales on a
monthly basis over a period of six months (January 7th,
2008 to July 6th, 2008) of a mobile phone user [30].
The second data contains a series of monthly water usage
(ml/day) in London, Ontario, Canada from 1966 to 1988
[17]. The third data contains Quarterly S&P 500 index
values taken from 1900-1996 [25]. Figure 10 shows a time
series of a mobile phone usage with computed p = 24
and R = 3p = 72 based on our algorithms. Likewise,
Fig. 11 shows a time series of a monthly water usage
with computed p = 12 and R = 2p = 24. Similarly,
Fig. 12 depicts a time series of quarterly S&P 500 index
values during 1900-1996 with computed p = 14 and R =
3p = 42. Based on a visual inspection, one can clearly
identify that the recent periodicity rates are 24, 12, and
14; and recent-pattern intervals are 3p, 2p, and 3p for
Fig. 10, Fig. 11, and Fig. 12, respectively, which shows
the effectiveness of our algorithms.
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Figure 10. A monthly mobile phone usage over six months (January
7th, 2008 to July 6th, 2008) with detected p = 24 and R = 3p = 72.

We implement our recent-pattern biased dimension-
reduction algorithm on these three real time series data.
Due to the space limitation, the experimental results are
only illustrated with DFT and DWT as the dimension-
reduction techniques. As the results, the 144-point mobile
phone data has been reduced to 75 data points using
DFT, which is 48% reduction, and reduced to 70 points
using Haar DWT, which is 51% reduction. For the water
usage data, since it has a relatively short recent-pattern
interval compared to the length of its entire series thus
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Figure 11. A monthly water usage during 1966-1988 with detected
p = 12 and R = 2p = 24.
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Figure 12. Quarterly S&P 500 index values taken from 1900-1996 with
detected p = 14 and R = 3p = 42.

we are able to reduce much more data. In fact, there are
276 data points of water usage data before the dimension
reduction and only 46 data points are retained afterward
by using DFT and 52 data points kept using DWT, which
is 83% and 81% reduction, respectively. Likewise, for
the S&P 500 data, we are able reduce 83% of data by
keeping 66 DFT coefficients and 81% by keeping 72
DWT coefficients from the original data of length 378.

The reconstructed time series using DFT and DWT for
mobile phone data, water usage data, and S&P 500 data
are shown in Fig. 13(a) and (b), Fig. 14(a) and (b), and
Fig. 15(a) and (b), respectively.
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Figure 13. (a) The reconstructed time series of the mobile phone data of
75 selected DFT coefficients from the original data of 144 data points,
which is 48% reduction. (b) The reconstructed time series of the mobile
phone data with 51% reduction by keeping 70 DWT coefficients from
the original data of 144 data points.
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Figure 14. (a) The reconstructed time series of the water usage data of
46 selected DFT coefficients from the original data of 276 data points,
which is 83% reduction. (b) The reconstructed time series of the water
usage data with 81% reduction by keeping 52 DWT coefficients from
the original data of 276 data points.

To compare the performance of our proposed frame-
work with other recent-biased dimension-reduction tech-
niques, a criterion is designed to measure the effectiveness
of the algorithm after dimension reduction as following.

Definition 7. If X and X̃ are the original and recon-
structed time series, respectively, then the “recent-pattern
biased error rate” is defined as

ErrRPB(X, X̃) = B · d2H(X̂, ˆ̃X)

=
1

2

�N/p�−1∑
i=0

b(i)

(√
x̂i −

√
ˆ̃xi

)2

,

(10)
where B is a recent-pattern biased vector (which is a
sigmoid function in our case).

Definition 8. If X and X̃ are the original and recon-
structed time series, respectively and ErrRPB(X, X̃) is
the recent-pattern biased error rate, then the Reduction-
to-Error Ratio (RER) is defined as

RER =
Percentage Reduction

ErrRPB(X, X̃)
. (11)

We compare the performance of our recent-pattern
biased dimension-reduction algorithm (RP-DFT/DWT) to
equi-DFT/DWT, vari-DFT/DWT (with k = 8 [35]), and
SWAT as we apply these algorithms on the mobile phone,
water usage, and S&P 500 data.

Table 1 shows the values of percentage reduction,
recent-pattern biased error rate, and RER for each algo-
rithm based on DFT. It shows that SWAT has the highest
reduction rates as well as the highest error rates in all
three data. For the mobile phone data, the values of the
percentage reduction are the same for our RP-DFT and
equi-DFT because R is exactly a half of the time series
hence the sigmoid function is placed at the half point of
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Figure 15. (a) The reconstructed time series of the S&P 500 data of
66 selected DFT coefficients from the original data of 378 data points,
which is 83% reduction. (b) The reconstructed time series of the S&P
500 data with 81% reduction by keeping 72 DWT coefficients from the
original data of 378 data points.

the time series (N/2) that makes it similar to equi-DFT
(in which the number of coefficients is exponentially de-
creased). The error rate of our RP-DFT is however better
than equi-DFT by keeping more coefficients particularly
for the “recent-pattern data” and fewer for older data
instead of keeping more coefficients for just recent data
and fewer for older data. As a result, RP-DFT performs
with the best RER among others. For the water usage
data, even though RP-DFT has a higher error rate than
equi-DFT, R is a relatively short portion with respect to
the entire series thus RP-DFT is able to achieve much
higher reduction rate, which results in a better RER and
the best among others. For S&P 500 data, our RP-DFT
is able to reduce more data than equi-DFT and vari-DFT
with the lowest error rate, hence it has the highest RER.

Likewise, Table 2 shows the values of percentage
reduction, recent-pattern biased error rate, and RER for
each algorithm based on DWT. Similar to the results
of the DFT-based algorithms, our proposed RP-DWT
performs with the best RER among other algorithms
in all three data. One may notice that the values of
the percentage reduction are different from DFT-based
algorithms. This is due to the rounding process of Ci

to the closest integer v (described in Section 3.3).
Furthermore, we perform additional experiments on 30

more real time series , which represent data in finance,
health, chemistry, hydrology, industry, labour market,
macro-economic, and physics. These data are publicly
available at the “Time Series Data Library [18],” which
has been created by professor Rob J. Hyndman from
Monash University. Our RP-DFT/DWT also show better
performance than other techniques for all 30 time series
data (the results are shown in the Appendix).

In addition to the results of the performance compar-
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TABLE I.
PERFORMANCE COMPARISON OF OUR PROPOSED RP-DFT AND OTHER WELL-KNOWN TECHNIQUES (EQUI-DFT, VARI-DFT, AND SWAT)

BASED ON PERCENTAGE REDUCTION, RECENT-PATTERN BIASED ERROR RATE (ErrRBP ), AND RER FROM THE REAL DATA.

Data Percentage Reduction ErrRBP RER

RP-DFT equi-DFT vari-DFT SWAT RP-DFT equi-DFT vari-DFT SWAT RP-DFT equi-DFT vari-DFT SWAT

Mobile phone 0.479 0.479 0.750 0.972 0.0175 0.0301 0.0427 0.192 27.458 15.915 17.573 5.078

Water usage 0.837 0.479 0.739 0.986 0.00712 0.00605 0.0168 0.0641 117.550 79.201 43.996 15.375

S&P 500 0.829 0.479 0.742 0.989 0.00735 0.00739 0.00895 0.0811 112.891 64.875 82.899 12.210

TABLE II.
PERFORMANCE COMPARISON OF OUR PROPOSED RP-DWT AND OTHER WELL-KNOWN TECHNIQUES (EQUI-DWT, VARI-DWT, AND SWAT)

BASED ON PERCENTAGE REDUCTION, RECENT-PATTERN BIASED ERROR RATE (ErrRBP ), AND RER FROM THE REAL DATA.

Data Percentage Reduction ErrRBP RER

RP-DWT equi-DWT vari-DWT SWAT RP-DWT equi-DWT vari-DWT SWAT RP-DWT equi-DWT vari-DWT SWAT

Mobile phone 0.514 0.500 0.750 0.972 0.0167 0.0283 0.0401 0.192 30.794 17.683 18.689 5.078

Water usage 0.812 0.493 0.739 0.986 0.00650 0.00561 0.0159 0.0650 124.852 87.854 46.565 15.152

S&P 500 0.810 0.495 0.742 0.989 0.00728 0.00711 0.00856 0.0811 111.182 69.561 87.783 12.211

ison on the real data, we generate 100 synthetic data to
further evaluate our algorithm compared to the others.
After applying each algorithm to these 100 different syn-
thetic time series, Table 3 and Table 4 show the average
values of percentage reduction, recent-pattern biased error
rate, and RER for each algorithm based on DFT and
DWT, respectively. These tables show that our proposed
algorithm (both DFT-based and DWT-based) yields better
RER than others.

TABLE III.
PERFORMANCE COMPARISON OF OUR PROPOSED RP-DFT AND

OTHER WELL-KNOWN TECHNIQUES (EQUI-DFT, VARI-DFT, AND

SWAT) BASED ON THE AVERAGE PERCENTAGE REDUCTION,

RECENT-PATTERN BIASED ERROR RATE (ErrRBP ), AND RER

FROM 100 SYNTHETIC DATA.

Algorithm Percentage Reduction ErrRBP RER

RP-DFT 0.758 0.0209 36.268

equi-DFT 0.481 0.0192 25.052

vari-DFT 0.748 0.0385 19.429

SWAT 0.975 0.109 8.945

TABLE IV.
PERFORMANCE COMPARISON OF OUR PROPOSED RP-DWT AND

OTHER WELL-KNOWN TECHNIQUES (EQUI-DWT, VARI-DWT, AND

SWAT) BASED ON THE AVERAGE PERCENTAGE REDUCTION,

RECENT-PATTERN BIASED ERROR RATE (ErrRBP ), AND RER

FROM 100 SYNTHETIC DATA.

Algorithm Percentage Reduction ErrRBP RER

RP-DWT 0.745 0.0192 38.802

equi-DWT 0.488 0.0190 25.682

vari-DWT 0.748 0.0341 21.935

SWAT 0.975 0.108 9.028

V. CONCLUSION

Dimensionality reduction is an essential process of
many high-dimensional data analysis. In this paper, we
present a new recent-pattern biased dimension-reduction
framework for time series data. With our framework, more
details are kept for recent-pattern data, while older data
are kept at coarser level. Unlike other recently proposed
dimension reduction techniques for recent-biased time
series analysis, our framework emphasizes on keeping
the data that carries the most recent pattern, which is
the most important data portion in the time series with
a high resolution while retaining older data with a lower
resolution. We show that several dimension-reduction
techniques such DFT and DWT can be used with our
framework. Moreover, we also show that it is simple
and efficient to handle dynamic data streams with our
framework. Our experiments on synthetic data as well
as real data demonstrate that our proposed framework is
very efficient and it outperforms other well-known recent-
biased dimension reduction techniques. As our future
directions, we will continue to examine various aspects
of our framework to improve its performance.
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APPENDIX

ADDITIONAL RESULT FOR PERFORMANCE

COMPARISON

The following are the additional results for performance
comparison of our proposed method (RP-DFT/DWT) with
equi-DFT/DWT, vari-DFT/DWT, and SWAT; using 30
different real time series, which represent data in finance,
health, chemistry, hydrology, industry, labour market,
macro-economic, and physics. These time series data
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were taken from the “Time Series Data Library [18],”.
Tables V and VI show the results based on DFT and
DWT, respectively where Table VII gives brief description
of these data. Our proposed framework shows better
performance than other techniques for all 30 time series
data.
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TABLE V.
PERFORMANCE COMPARISON OF OUR PROPOSED RP-DFT AND OTHER WELL-KNOWN TECHNIQUES (EQUI-DFT, VARI-DFT, AND SWAT)

BASED ON PERCENTAGE REDUCTION, RECENT-PATTERN BIASED ERROR RATE (ErrRBP ), AND RER FROM 30 ADDITIONAL REAL DATA.

Data Percentage Reduction ErrRBP RER

RP-DFT equi-DFT vari-DFT SWAT RP-DFT equi-DFT vari-DFT SWAT RP-DFT equi-DFT vari-DFT SWAT

1 0.471 0.494 0.738 0.963 0.0163 0.0306 0.0376 0.1696 28.974 16.156 19.644 5.676

2 0.331 0.493 0.744 0.949 0.0053 0.0133 0.0158 0.1408 62.464 37.043 47.194 6.738

3 0.345 0.479 0.714 0.952 0.0122 0.0470 0.1055 0.1968 28.201 10.203 6.768 4.838

4 0.316 0.485 0.749 0.984 0.0104 0.0272 0.0549 0.2320 30.446 17.814 13.640 4.242

5 0.818 0.481 0.740 0.989 0.0140 0.0108 0.0142 0.0207 58.611 44.555 52.130 47.714

6 0.235 0.485 0.749 0.984 0.0075 0.0464 0.0492 0.2334 31.375 10.454 15.231 4.217

7 0.951 0.479 0.749 0.999 0.0177 0.0168 0.0176 0.0214 53.822 28.600 42.583 46.767

8 0.904 0.479 0.749 0.999 0.0059 0.0057 0.0064 0.0099 153.961 84.512 117.506 101.118

9 0.315 0.482 0.745 0.975 0.0154 0.0268 0.0504 0.2010 20.485 18.019 14.800 4.848

10 0.622 0.493 0.730 0.946 0.0074 0.0070 0.0098 0.0156 84.252 70.943 74.488 60.764

11 0.478 0.482 0.736 0.980 0.0020 0.0028 0.0062 0.0206 235.127 172.483 118.015 47.460

12 0.381 0.484 0.735 0.982 0.0267 0.0570 0.0713 0.1784 14.253 8.481 10.304 5.506

13 0.377 0.483 0.742 0.987 0.0073 0.0131 0.0219 0.1298 51.375 36.699 33.859 7.602

14 0.350 0.479 0.720 0.960 0.0120 0.0447 0.0943 0.1598 29.046 10.714 7.632 6.009

15 0.378 0.482 0.736 0.980 0.0163 0.0279 0.0424 0.2064 23.148 17.248 17.372 4.746

16 0.410 0.479 0.747 0.993 0.0115 0.0303 0.0600 0.3440 35.586 15.835 12.443 2.888

17 0.417 0.479 0.750 0.958 0.0093 0.0151 0.0275 0.2178 44.835 31.777 27.246 4.399

18 0.496 0.479 0.750 0.992 0.0011 0.0011 0.0021 0.0043 466.390 437.727 355.765 233.486

19 0.681 0.490 0.745 0.957 0.0075 0.0069 0.0103 0.0279 90.373 70.876 72.485 34.337

20 0.357 0.479 0.743 0.986 0.0052 0.0073 0.0177 0.2222 68.927 65.709 42.051 4.441

21 0.739 0.479 0.745 0.979 0.0021 0.0020 0.0025 0.0382 358.734 240.248 300.908 25.631

22 0.828 0.479 0.745 0.990 0.0037 0.0030 0.0036 0.1191 223.294 157.506 209.507 8.314

23 0.330 0.485 0.730 0.978 0.0018 0.0043 0.0055 0.1873 187.689 113.363 133.004 5.220

24 0.323 0.487 0.735 0.981 0.0022 0.0041 0.0058 0.2034 147.656 119.216 126.773 4.824

25 0.301 0.485 0.730 0.978 0.0021 0.0032 0.0063 0.2184 142.674 152.220 116.428 4.475

26 0.397 0.479 0.750 0.972 0.0026 0.0142 0.0237 0.2111 151.063 33.807 31.685 4.606

27 0.323 0.491 0.748 0.969 0.0072 0.0141 0.0259 0.2149 44.891 34.872 28.884 4.508

28 0.332 0.479 0.747 0.993 0.0226 0.1095 0.1136 0.2594 14.646 4.378 6.574 3.830

29 0.909 0.480 0.749 0.999 0.0128 0.0107 0.0123 0.0165 71.207 45.014 60.800 60.476

30 0.350 0.479 0.743 0.986 0.0033 0.0050 0.0077 0.0791 104.790 95.906 95.947 12.463
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TABLE VI.
PERFORMANCE COMPARISON OF OUR PROPOSED RP-DWT AND OTHER WELL-KNOWN TECHNIQUES (EQUI-DWT, VARI-DWT, AND SWAT)

BASED ON PERCENTAGE REDUCTION, RECENT-PATTERN BIASED ERROR RATE (ErrRBP ), AND RER FROM ADDITIONAL 30 REAL DATA.

Data Percentage Reduction ErrRBP RER

RP-DWT equi-DWT vari-DWT SWAT RP-DWT equi-DWT vari-DWT SWAT RP-DWT equi-DWT vari-DWT SWAT

1 0.434 0.505 0.738 0.963 0.0186 0.0256 0.0295 0.1710 23.283 19.752 24.986 5.629

2 0.303 0.500 0.744 0.949 0.0042 0.0116 0.0166 0.1428 72.848 43.193 44.743 6.644

3 0.298 0.476 0.714 0.952 0.0118 0.0438 0.1295 0.1813 25.161 10.866 5.515 5.254

4 0.308 0.502 0.749 0.984 0.0133 0.0279 0.0477 0.2320 23.062 17.995 15.686 4.242

5 0.832 0.501 0.740 0.989 0.0138 0.0106 0.0139 0.0213 60.150 47.412 53.225 46.422

6 0.296 0.502 0.749 0.984 0.0075 0.0463 0.0495 0.2370 39.486 10.850 15.145 4.153

7 0.953 0.500 0.749 0.999 0.0157 0.0154 0.0160 0.0194 60.789 32.369 46.875 51.600

8 0.902 0.500 0.749 0.999 0.0059 0.0052 0.0054 0.0099 152.863 95.681 138.949 101.118

9 0.446 0.497 0.745 0.975 0.0152 0.0235 0.0462 0.2113 29.358 21.147 16.116 4.612

10 0.622 0.500 0.730 0.946 0.0078 0.0074 0.0096 0.0156 79.501 67.430 75.748 60.764

11 0.439 0.492 0.736 0.980 0.0020 0.0028 0.0080 0.0206 215.898 176.285 92.084 47.460

12 0.403 0.504 0.735 0.982 0.0286 0.0562 0.0665 0.1784 14.083 8.975 11.052 5.506

13 0.426 0.497 0.742 0.987 0.0083 0.0114 0.0263 0.1298 51.036 43.611 28.187 7.602

14 0.380 0.480 0.720 0.960 0.0118 0.0507 0.0811 0.1598 32.077 9.468 8.879 6.009

15 0.439 0.492 0.736 0.980 0.0163 0.0218 0.0360 0.2064 26.883 22.594 20.449 4.746

16 0.380 0.498 0.747 0.993 0.0112 0.0303 0.0615 0.3440 33.952 16.448 12.144 2.888

17 0.438 0.500 0.750 0.958 0.0102 0.0165 0.0320 0.2178 42.852 30.365 23.415 4.399

18 0.496 0.500 0.750 0.992 0.0011 0.0012 0.0021 0.0043 444.962 420.208 357.143 232.963

19 0.670 0.500 0.745 0.957 0.0062 0.0065 0.0096 0.0245 108.643 76.868 77.568 39.113

20 0.369 0.497 0.743 0.986 0.0052 0.0080 0.0184 0.2342 71.344 62.277 40.454 4.212

21 0.734 0.495 0.745 0.979 0.0025 0.0019 0.0026 0.0382 295.906 256.706 281.440 25.631

22 0.821 0.498 0.745 0.990 0.0032 0.0027 0.0030 0.1090 258.705 182.266 248.850 9.082

23 0.292 0.506 0.730 0.978 0.0017 0.0042 0.0055 0.1873 167.909 120.118 132.497 5.220

24 0.265 0.507 0.735 0.981 0.0016 0.0043 0.0066 0.2034 168.254 118.823 111.972 4.824

25 0.369 0.506 0.730 0.978 0.0024 0.0035 0.0061 0.2184 155.310 145.351 119.010 4.475

26 0.450 0.500 0.750 0.972 0.0103 0.0132 0.0217 0.2111 43.689 37.774 34.549 4.606

27 0.307 0.504 0.748 0.969 0.0072 0.0150 0.0307 0.2101 42.722 33.653 24.339 4.611

28 0.277 0.498 0.747 0.993 0.0201 0.1042 0.1155 0.2594 13.793 4.782 6.464 3.830

29 0.909 0.501 0.749 0.999 0.0104 0.0126 0.0143 0.0173 87.039 39.605 52.464 57.865

30 0.433 0.496 0.743 0.986 0.0028 0.0048 0.0077 0.0817 154.643 103.812 95.947 12.071
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TABLE VII.
DATA DESCRIPTION.

Data Brief Description [18]

1 I.C.I. Closing prices 25 Aug ’72-19 Jan ’73 (Financial Times).

2 Dow Jones utility index Aug 28-Dec 18 ’72 (Wall Street Journal).

3 Monthly returns for AT&T, Jan 1961 through Dec. 1967.

4 Monthly interest rates Government Bond Yield 2-year securities, Reserve Bank of Australia.

5 IBM common stock closing prices: daily, 17th May 1961 to 2nd November 1962.

6 IBM common stock closing prices: daily, 29th June 1959 to 30th June 1960.

7 Daily closing price of IBM stock, Jan. 1st 1980 - Oct. 8th 1992.

8 Daily S & P 500 index of stocks, Jan. 1st 1980 - Oct. 8th 1992.

9 Monthly closings of the Dow-Jones industrial index, Aug. 1968 - Aug. 1981.

10 Annual yield of grain on Broadbalk field at Rothamsted 1852-1925.

11 Chemical concentration readings.

12 Chemical process temperature readings.

13 Chemical process viscosity readings.

14 Chemical process: viscocity data.

15 Chemical process concentration readings.

16 SacClearwater river at Kamiah, Idaho. 1911 – 1965.

17 Mean monthly flow, tree river, 1969 – 1976.

18 Monthly temperature, coppermine, 1933 – 1976.

19 Monthly demand repair parts large/heavy equip. Iowa 1972 – 1979.

20 Carbon dioxide output from gas furnace: percent of output gas. Sampling interval 9 seconds.

21 Motor vehiclesengines and parts/CPI, Canada, 1976-1991.

22 Monthly U.S. female (20 years and over) unemployment figures (10**3) 1948-1981.

23 Wisconsin employment time series, food and kindred products, Jan. 1961 - OCt. 1975.

24 Civilian labour force in Australia each month: thousands of persons. Feb 1978 - Aug 1995.

25 Wisconsin employment time series, fabricated metals, Jan. 1961 - OCt. 1975.

26 Quarterly gross fixed capital expenditure - public, Australia: millions of dollars, 1989/90 prices.

Sep 1959 - Jun 1995.

27 Quarterly gross fixed capital expenditure - private equipment, Australia: millions of dollars,

1984/85 prices. Sep 1959 - Mar 1991.

28 Daily brightness of a variable star on 600 successive midnights.

29 Monthly means of daily relative sunspot numbers, Jan 1749 - Mar 1977.

30 Annual sunspot numbers 1700-1979.

180 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 4, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER


	4

