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Abstract— P2P technologies are drawing increasing attention One important issue is thteustworthinessf the infor-
nowadays, and have been widely deployed on the Internet for mation exchanged in a P2P network. Since duplications
various purposes. Unlike the traditional client-server archi- and changes to data may be made independently by every
tecture, a P2P network allows all computers to communicate it is difficult to follow th th of data th h th
and share resources as equals and does not depend on a cen-PEer LIS dilficu 0. offow the pa_ 0 a_a roug e_
tral server for control. In such an environment, tracing how  network. Trustworthiness of P2P information exchange is
data is copied between peers and how data modifications especially important in scientific research. For example, in
are performed are not easy because data replications and pjoinformatics, large distributed databases are maintained
modifications are performed independently by autonomous —hr5gh the cooperation of independent research orga-
peers. This creates inconsistencies in exchanged information . ~ . but th bl d . . -
and results in a lack of trustworthiness. nizations, _ut there are problems ue to mponsgtenmgs
To provide reliable and flexible information exchange between different databases. These inconsistencies arise
facility in P2P networks, we have proposed a framework because data may be copied or modified by a researcher
for enabling traceable record exchangén this framework, a or curator and then copied or modified again by another
computer can exchange structured records with a predefined researcher. The notion dfta provenancéalso known as
schema with other peers. The framework supports dracing i L tant idea f ving thi bl 4
facility to query the lineageof the records obtained. A tracing ineagg is an importan ,' eator 59 ving - is problem [4],
query is described in Datalog and executed as a recursive [5]. Data provenance tries to provide evidence about how
query among cooperating peers in a P2P network. In the a data item was obtained from other data items and why
query execution process, the exchange and modification g specific data item exists in the database.
histories of the queried records are collected dynamically We have extended the notion of data provenance to
from relevant peers. inf fi h . P2P network. In thi text
In this paper, we focus on how to enhance the traceable Intormation e?(c ange 'n a network. In this conlex !
P2P record exchange framework using materialized views. W€ can consider questions related to the trustworthiness
First, we discuss how to constructmaterialized viewsin  of exchanged data, such as “Which peer is the original
our framework. Then we present methods for reducing creator of this data?” and “Who else has a copy of this
query processing cost and providingfault tolerance using  45t372” Such questions can be answered by storing and
the materialized views. . . . e . .
_ _ _ using the information exchange and modification histories
Index Terms—information exchange, P2P technologies, data jn the peers which participate in the exchange process. We
provenance, query processing, materialized views, fault tol- have proposed #&raceable P2P record exchange frame-
erance . .
work in which tuple-structuredecordsare exchanged [6],
[7]. In this framework, records are exchanged among
|. INTRODUCTION peers and peers can modify, store, and delete their records
Peer-to-pee(P2P) technologies already play important independently.
roles in supporting flexible information exchange and Animportant feature of the framework is that it is based
communications in large-scale networks. Flexible andn databases. To ensure traceability, each peer maintains
scalable information exchange has been already realizéts own relational tables for storing record exchange
in P2P file exchange systems such as Gnutella [1], Napand modification histories. To make the tracing process
ster [2], and ICQ [3]. P2P technologies also provide theeasy, the framework provides an abstraction layer which
foundations needed for rich information services as theyirtually integrates all distributed relations andatalog
eliminate the need for a dedicated central server, allowinpased query language for writing tracing queries in an
all computers to communicate and share resources dstuitive manner. Another feature of the framework is that
equals; in other words, all computers in the network acit employs a pay-as-you-gbapproach [8] for tracing: the
as both servers and clients. Although P2P technologiesystem performs minimum maintenance tasks for tracing
are already widely used for distributed data storage, fileand a user pays the cost when he issues a tracing query.
sharing, content delivery, collaborative computing, and so In this paper, we focus on the issue of how to use
on, there remain some important problems. the notion of a materialized view to improve our P2P
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record exchange framework for determining how data is For data provenance, some taxonomies have been pro-
exchanged among peers and why data is located on @osed. Buneman et al. [18] introduced the notions of
particular peer. One motivation is efficiency: we can usewvhere-provenanceand why-provenance The former is
materialized views to speed up query processing. Anotheaddresses the question “where did the data come from?”
essential consideration for a P2P network is reliability—and the latter “why does the data exist?” Since our
how to cope with system failure and churn. Failure and thédramework treats problems such as "which peer pro-
unexpected departure of a peer is a critical problem thatided this data?” and "Did other peers copy this data?”,
influences whether a tracing query is executed correcthit belongs to the where-provenance category. Another
We present the key approaches for solving these problemsxonomy distinguishes between thezy approach and
along with corresponding experimental results. the eager approach [5]. The former describes models
The remainder of this paper is organized as followsin which queries for tracing lineage are executed when
Section Il reviews the related work. Section Il describesnecessary, and the latter describes the case that metadata
the outline of the traceable P2P record exchange framesr annotations [17] representing lineage are continuously
work. Section IV gives the definitions of materialized maintained. Our approach to traceability is based on
views in the present context. Section V explains howhistories maintained at peers and thus belongs to the eager
materialized views are used to enhance the underlyingpproach.
framework and discusses the maintenance of materialized Data provenance is a common problem that is fre-
views. Section VI presents the experimental results. Fiquently encountered in databases that undergo many
nally, Section VII contains our conclusions and considergransformations, exchanges, and modifications [5], [19].

avenues of future research. However, the notion of data provenance has not previously
been applied to P2P information exchange, except in the
Il. RELATED WORK ORCHESTRA project [12], [13]. However, that project

A P2P Databases focuses on the schema heterogeneity issue rather then data
: provenance. In contrast, our research is devoted to data
Although itis still a relatively recent field, P2P databaseprovenance in P2P information exchange, which is quite

research has experienced rapid growth. There is a variefshportant for ensuring that the data obtained from the

of research topics, such as coping with heterogeneityyetwork can be trusted.

query processing, and indexing methods [9]. Most propos-

als focus on the heterogeneity of schema and databases.

For example, the Piazza system [10] enables the sharin%‘ Dataspace Management

of heterogeneous data in a distributed and scalable man- Dataspace managemeifbicuses on a highly flexible

ner. In order to process a query issued by a user, the queiytegration scenario [8]. This is an emerging field of

is reformulated according to mappings so that it can copdatabase research and focuses on more flexible infor-
with the heterogeneous underlying databases. The quergation integration over the network. In any applications
answering system expands the mappings relevant to thiBvolving multiple heterogeneous data sources (e.g., per-
query, and retrieves data from other peers. The PeerDBonal information management) it may not be necessary
system [11], inspired by information retrieval techniques,or practical to require full integration of information
creates a kind of data keyword thesaurus to store nangources beforehand; instead, it may be reasonable to
mappings and it facilities sharing of data without a globalperform information integration dynamically when a user
schema. One project that is highly related to our problenfequest is issued. Such integration is called thay-as-

is the QRCHESTRA project [12], [13], which aims at the Yyou-gd approach [8]. Since our approach focuses on the

collaborative sharing of evolving data in a P2P network.integration of historical information stored in distributed

In contrast to these systems, we focus on supportingeers, the “pay-as-you-go” approach is the better choice

reliable and trustful P2P record exchange, based on kecause it does not interfere with the autonomy of the

simple record exchange scenario, and do not considgreers and the tracing requests do not occur often. This
schema heterogeneity. approach has an additional benefit that it allows a flexible
tracing query representation using the Datalog query

B. Data Provenance language.

The term data provenanceor alternatively lineage
tracing, refers to the process of tracing and recording
the origins of data, transformation of databases, and Declarative networking uses a high-level declarative
the movement of data between databases. The targinguage to express overlay networks in a highly com-
field of data provenance is quite wide and covers datpact and reusable form [20]. Our query processing ap-
warehousing [14], uncertain data management [15], [16]proach uses the variation of declarative networking de-
and scientific fields, such as bioinformatics [17]. In thisscribed in [21]. As proved in thdeclarative networking
research area, one well-known project is T project, project [20], [21], declarative recursive queries are a
in which both uncertainty and lineage issues are considvery powerful tool in writing network-oriented database
ered [16]. applications such as sensor data aggregation. In contrast

D. Declarative Networking
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title | author | language| year

to their approach, our focus is on compact and under-

’ o o Pride and Prejudice Jane Austen English | 1813
standable tracing query specifications. The objective of Madame Bovary | Gustave Flauber{ French | 1857
our framework is to realize traceable record exchange in War and Peace Leo Tolstoy Russian | 1865

a P2P network and is based on the architecture introduced
in Section Ill. Datalog queries are used not only for
describing high-level tracing requirements, but also for
representing distributed query execution.

Figure 1. Example record sétovel

P2P network and incorporate interesting records in its
local database. In addition, a peer can modify and delete
E. Materialized Views its own records and can provide them for other peers

Materialized viewsare snapshots of relational views in the P2P network. Atraceability problemoccurs, for
and can be used to speed-up query processing by préstance, when a peer wishes to ask the question: “Which
computing frequently used query results. Efficient mainfeer originally created the reco(iivar and Peace,
tenance of materialized views is very important in practi-Leo Tolstoy, Russian, 1865) ?” However, find-
cal databases. A detailed survey of the maintenance &fg such lineage information for data in a P2P network
materialized views can be found in [22]. We consideris quite difficult without a supporting facility.
the incremental maintenance of materialized views in the
context of dgducti\(e datab_ases. Although some incremery  Tr5ceable P2P Record Exchange Framework
tal materialized view maintenance methods have been ] ]
already proposed in the literature, there are few papers 10 Support the notion of data provenance in P2P
that consider deductive databases [23]. For maintainin§iformation exchange, we proposed the conceptlof a
general recursive views incrementally, [24] proposed thdraceable P2P record exchange framewark([6], [7].
DRed algorithm that can handle incremental updates._ln the framework, aecord means a tuple-structured data_
However, as described later, the algorithm assumes M that obeys a predefined schema shared globally in

centralized environment, and it is quite costly to apply the® P2P network. We assume that each peer corresponds

algorithm in our context since the maintenance process {9 & USer and maintains the records owned by that user.

propagated among distributed peers. Every peer can act as a provider and a searcher. _Records
In our framework, materialized views help to reduce the?"® €xchanged between peers and peers can modify, store,

response time for tracing queries, especially for querie@nd delete their records independently. _

about past histories. So we develop a query processing To represent records and their hl_storl_cal information,

method which uses materialized views effectively and 4V€ employ a layered architecture with different abstrac-

view selection and maintenance method which considerdon levels. In the following, we briefly explain tttaree-

the trade-off between cost and benefit. In addition, matel@yer modelusing an example.

rialized views can be used as cached data for recovering &) User Layer: The user layersupports what users

information when a system failure happens. We als$€e- Each peer has its own record set in the user layer,

fault tolerance. autonomously and exchange records when required. A

peer can find desired records from other peers by issuing

[1l. SYSTEM FRAMEWORK a query.

In this section, we describe why we proposed the

traceable P2P record exchange framework and give an Peer A Peer B
overview of its present status. title | author title | author
t1 al t1 a2
t5 as t4 a4
A. Motivating Example
Consider an application in which autonomous peers Etfeer Cauthor E)t?:r Dauthor
share information about novels in a P2P network. Figure 1 3 23 1 al
shows an instance of a record dd¢bvel owned by t1 a2 t5 a5
a peer in the network. The record set consists of four . .
. . Figure 2. Record sets in user layer
attributes: titte  , author , language , and year .

Other peers also maintain thelovel records with the
same structure, but their contents are not necessarily the For ease of presentation, we simplify the example
same. The record structures shown in this example aréhown in Fig. 1 above. Assume that each peer in a
so flexible that they can be used for many other task®2pP network maintains Movel record set that has two
such as scientific information exchange. In addition, ouittributes, title and author . Figure 2 shows four
framework can be applied to file exchange, where a record
can contain metadata for a specific file. lwe use “record exchange” to distinguish our problem frdata
exchangg13], which is the problem of taking data that obeys a source
In our record exchange framework, each peer ca

i X ' ) dchema and creating data under a target schema that reflects the source
enrich its own record set by searching for records in thelata as accurately as possible.
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record sets maintained by peers A to D in the user to From[Novel] and stores information about
layer. Each peer maintains its own records and wishes records were sent from peer A to other peers.

to incorporate new records from other peers in order tqthough From[Novel] and To[Novel]  contain du-
enhance its own record set. For example, the retdrd plicated information, duplicates are stored on different
al) in peer A may have been copied from another peepeers. For example, for the tuplefom[Novel]@’'A’

and registered in its local record management system. in Fig. 3, there exists a corresponding tugt1, A,

b) Local Layer: Each peer maintains the minimum #A1, ...) in To[Novell@B’ . When the record is
amount of information that is required to represent its owrregistered at peer AFrom[Novel] at peer A and
record set and local tracing information, which consistsTo[Novel] at peer B are updated cooperatively to
of the creation (registration), modification, deletion, andpreserve consistency.
exchange histories related to the peer itself, and which The local |ayer manages the records and historical
facilitates traceability. All the information required for information for each peer. This distributed maintenance of
tracing is maintained by distributed peers in toeal  ineage preserves independence of peers while supporting
layer. When a tracing query is issued, the query isvarious types of tracing queries. When a tracing query is
processed by coordinating related peers in a distributesued, we need to collect the required information from
and recursive manner. In our framework, every peethe relevant peers. The record set in the user layer of a
maintains the following four relations in its local record peer is just a restrictediew of its local layer relations
management system implemented using an RDBMS.  that hides lineage information from the user. Figure 4

For example, peer A, shown in Fig. 2, contains the fourllustrates the relationship between the user layer and the

relations in Fig. 3. local layer.

Data[Novel|@'A’ Change[Novel|@'A’

id tittle | author from.id | to_id | time User Layer g

#AT | L a2 #A1 - . browse, search,

#A2 | 11 al #A1 | #A2 | ... @ register. delete

#A3 | t5 ab - #A3

Record pmmmmm :/ocal
From[Novel|@'A’ To[Novel]@'A’ Set ~WHERER ‘view
id | from [ from | time id to. | to. | time N
_peer| _d peer| id LocalLayer U

#Al B #B1 #A3 D #D2

Figure 3. Relations in local layer for peer A

The contents and role of each relation shown in Fig. 3
is described as follows:

- Data[Novel] : This maintains all the records held
by the peer. Every record has a unique record id for
maintenance purposes. Note that there are additional

Figure 4. Local layer vs. user layer

records compared to those in Fig. 2; they deteted c) Global Layer: To aid understanding and simplify
records and are usually hidden from the user. The¥he writing tracing queries, we provide an abstraction
are maintained to provide data provenance. layer called theglobal layer which integrates all dis-

« Change[Novel] : This is used to hold the cre- yipyted relations virtually and provides Rataloglike
ation, modification, and deletion histories. Attnbutesquery language [25] for writing tracing queries in an in-
from id andto _id express the record ids before yitiye manner. Three virtual global views are constructed
and after a modification. The attributiene repre-  py ynifying all the relations held by distributed peers.
sents the timestamp of modification. When the valugrigyre 5 shows three virtual global views for the peers
of the from _id attribute is null ), it means that  ghown in Fig. 2. These global virtual views are used as

the record was created at the peer. Similarly, whenn,itive images for describing tracing queries.
the value of the@o _id attribute is null, it means that

the record has been deleted. The Data[Novel] view in Fig. 5 unifies all the

o From[Novel] : This stores the information about Data[Novel] relations held by peers A to D. The
records which were copied from other peers. Whemeer attribute stores peer names. The combination
a record is copied from other peer, the attributeof a peer name and a record ID ensures that each
from _peer contains the peer name, and the at-record is uniquely identified in the entire P2P net-
tribute from _id has the record’s id at the original work. This uniqueness is essential for lineage tracing.
peer. Attributetime stores the timestamp informa- Change[Novel] is also a global view which uni-
tion. fies all the Change[Novel] relations in a similar

« To[Novel] : This relation plays the opposite role manner. Exchange[Novel] unifies all the underly-
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Data[Novel] View Change[Novel] View which peer originally created the record. The following
peer| id | title | au- peer| from | to_ | time ) ; . )
thor id id query fulfills this requirement:
A #A1 | t1 a2 A #A1 —
A [#A2 | t1 | al A | #AL | #A2 | ... Query Q1
A | #A3 | 15 a5 A — | #A3 | ... ID(11) — Data[Novel]CA’, I1, 't1’, 'al),
B #B1 | t1 a2 B — #B2 | ... ID(12) « ID(I11) , Change[Novel]CA’, 12, I1, )
B #B2 | t4 a4 C - #C2 | ... BReach(P, 11) < ID(12),
C #C1 | t1 al C #C1 _ Exchange[Novel](P, 'A’, 11, 12, )
BReach(P, 11) < BReach(P, 1),
C #C2 | t3 a3 C #C1 | #C3 | ...
c #c3 | 11 a2 D _ #D1 Change[Novell(P, 'A’, 11, 12, J)
BReach(P, 11) <« BReach(P, 12),
D | #D1 ) t1 | al Exchange[Novell(P1, P, I1, 12, )
D [#D2] t5 | a5 Origin(P)  — BReach(P, I,
. - Exchange[Novell( _ P, _ I, )
Exchange[Novel] View _ _ _ ~ Change[Novell(P, 11, I, ),
from_peer | to_peer | from.id | to.id | time 11 1= NULL
D C #D1 | #C1 | ... Query(P) « Origin(P)
C B #C3 #B1
E g ;ZE% zgé | andP are variables and." indicates an anonymous

variable. The relationD defined by the first two rules is
used to find the originally assigned ID at the local peer.
The relationrBReach defined by the third and fourth rules
ing From[Novel]  and To[Novel]  relations in the means “Backward Reachable”. It ref:u_rswely traverses
local layer. Attributesfrom _peer andto peer give the arrival path of tuplgtl, al) until it reaches the
the source and the destination of a record exchang@Migin- The fifth rule is used for finally determining the
respectively. Attributesrom id andto _id contain the originating peer name—it should be reachable from peer

Figure 5. Three views in the global layer

ids of the exchanged record on both peers A and should not have received the record from any other
peer. The last rule gives the final result expected by the
user. O
Er— Example 2: The example shown above focused on
backward traversals of lineage information. However, it
u trace is also possible to issue queries for forward traversals.
_ : : global Query Q2, which retrieves all the peers which have copied
Dataview  Changeview ExchangeView : o the record (t1, al) owned by peer A, can be described as
| | [ 1 [ | 1 | view follows.
>1
Local Layer / Query Q2
Reach(P, 11) < Data[Novel]CA’, 12, 't1’, 'al’),
P on P e~ Exchange[Novel]CA’, P, 12, 11, )
ata@A ange @A ata@'X’ ange@'X’ Reach(P, 11) < Reach(P, 12),
——— ——— Change[Novell(P, 12, I1, O, 11 1= NULL
From@A  To@A From@'X  To@'x’ Reach(P, 11) «+ Reach(P1, 12),
LT L LT [ ] Exchange[Novel](P1, P, 12, I1, )

Query(P) <« Reach(P, )
Peer A Peer X
The first rule is used to find which peers copied record
Figure 6. Local layer vs. global layer (tl, al) from peer A direCtly. The second and third rules
retrieve all the peers which copied the record indirectly.
After that, relationReach will contain all peer names
The global layer lies over the local layer and providesyhich copied the target record of peer A. In contrast to

three global virtual views to allow the user to write query Q1, the query result may change as time passes.
tracing queries easily. We can summarize the relationship Note that Queries 1 and 2 perform backward and

between the local layer and the global layer in Fig. 6. ¢5\yard traversals of lineage information, respectively.

However, Datalog is so flexible that we can specify

C. Query Specification various types of queries using the three global views.

When a tracing requirement occurs, we need to agPlease refer to [6], [7] for details.
gregate the relevant historical information stored in the In our framework, we limit the allowable form of
distributed peers. Since recursive processing is required tracing query. Roughly speaking, a limited class of
to collect historical information, our framework provides Datalog® programs that are safe, linear, and stratifiable
a modified version of théatalog query language [25]. is acceptable. Even with such constraints, we can still
We now give some tracing query examples. preserve the expressibility of tracing queries and can

Example 1:Suppose that peer A holds a record withsupport efficient query execution. The detail is given
titte t1 and authoral and that peer A wants to know in [26].
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D. Query Processing After receiving the intermediate results from peer A,

In the original framework as described above, each peé)reer B starts the local query process and gets Agi, .,

S s . . nd B h"%, Then th ry is forwar r
only maintains the minimum amount of information that & d BReac en the query is forwarded to pee

. . . . C and the semi-naive query evaluation iterates twice in
is required to represent its own record set and local tracmgeer C. Finallv. the querv is forwarded to peer D. In the
information in the local layer. Remember that tracing : % query b :

gueries are described in Datalog in terms of virtual view query process of peer D, the last two rules are executed

in the global layer. The first step of query processing igoecause peer D is the origin. In this case, the semi-naive

to transform the given query to suit the organization orduery evaluation iterates twice in peer D and reaches the

the local laver. This step is performed based on sim Ifixpoint. Since there are no following peers, we terminate
yer. pisp P%he process, and the results are returned back along the
transformation rules [26].

f di th. O
Example 3:For example, Query Q1 is mapped as orwarding pa

follows:
A D
Mapped Query Q1 = — ﬁer—\
ID(1) « Data[Novel]@A'(I1, 't1’, ’al), (a)EXECite‘ll—'"'t (d) terative execution
ID(12) < ID(11) , Change[NovelA'(11, 12, ) BReack™ ‘
BReach(P, 11) < ID(I2), R PR s
From[Novel|@A(12, P, I1, )
BReach(P, 11) « BReach(P, 12), i | cerc B | #B1
Change[Novel|@P(11, 12, ) P ¢ | #cs
BReach(P1, I1) «— BReach(P, 12), ﬂ.ﬁﬁ%ﬁv@s (/(0) tterative execution) crec
From[Novel]@P(12, P1, I1, ) peer B 3 D | #p1
Origin(P) «— BReach(P, 1), (b) Iterative execution BReactt™ | exec Origin™
- From[Novell@P(l, I B i A uery
~ Change[Novel]@P(11, |, ), 11 1= NULL P LN = e P &b
Query(P) <« Origin(P) BReach | —
Pl I D | #D1 c | #c3 AR Query™
c|#c3 #B1 c [ #c1 “ 7]
The symbol @ is a location specifiewhich indicates i o [ #01

the location (peer id) of the relation in the local layer.
If a constant peer name follows this symbol such as
@'A’, it means that the relation is located at peer A. Figure 7. Execution of Query Q1 based on the semi-naive method
From[Novel|@P2 represents thErom[Novel] rela-
tion at peerP2, where P2 is a variable representing a
peer name. The variable is instantiated while the query iFhis is a rough description of query processing. To
being processed. This query is mainly represented usingnderstand the remaining parts of this paper, it is not
the From[Novel] ~ and Change[Novel]  relations in  necessary to know the details of query processing. We
the local layer since it detects past histories. O  only need to understand the essential idea: a tracing query
In the second step of query processing, the mappeid executed by forwarding messages along the record
query is executed with the cooperation of the relevantxchange paths and the process is driven by the contents
peers in the P2P network. The query processing stratedy the database of each peer.
we mainly employed is thesemi-naive methqdwhich As shown in the example, the query processing is based
is @ common query processing strategy in deductiven the “pay-as-you-go” approach [8]. This means that we
databases [25]. We extended the semi-naive method tgeed to aggregate the required historical information from
cope with our situation, in which a query is executedthe distributed peers when a tracing query is issued by a

in a distributed environment. The detail of the queryyser; the user should pay the cost when he or she traces
processing method is given in [26]. information.

Example 4:Figure 7 illustrates how query Q1 is ex-
ecuted for our example. Since we do not have enough
space for describing the query processing algorithm, the  proplem Statement
process is explained intuitively. First, the initial peer A
executes the query locally and gets intermediate results One of the problems we consider éfficiency The
ID, ALeY . and BReach™v. ID is only returned as the advantages of the “pay-as-you-go” approach are that it is
ID if peer A created the record in the local databasesimple and there is no redundancy with respect to storage
BReach”V contains the information of the peers which cost. However, when we perform query processing, it is
are on the path from peer A to the origiftie™ . contains necessary to pass the requirement to all the related peers
tuples which are new in this iteration step. This drives theas the process traces the path along which the records
query process based on the semi-naive method. Since pegere exchanged. Generally, the cost for query processing
A has reached the fixpoint, it tries to find other peers tds relatively large.
continue the query process. In this case, peer B is such Another problem isfault-tolerance Unexpected fail-
a peer—the decision about which peer to choose is mad&res may occur in a P2P network due to network faults
by considering the contents &X3gY . and other reasons. In addition, a peer may leave the
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network without noticé. A failure may affect query B. Target Scope

processing because we cannot forward the query to a We assume that tracing queries do not occur frequently

missing peer. . so that it is not a wise idea to pay high maintenance costs
We should construct the framework so that it cangpy for the efficient tracing. In our case, materialized

automatically recover from partial failures without seri- \;iawws do not store all of the information in the whole

ously affecting the overall performance and continue tQop network. They are only used to store information

process a tracing query in an acceptable way. To solvVgg|q by the peers in a limited scope.

these problems, we consider using materialized views to p target scopds determined by the materialized view

enhance our traceable P2P record exchange framework,,-intenance policy. The maintenance policy employed

in this paper is based on the number lafps In this
paper, the number of hops means the number of peers
involved in the process of record exchange for the given
A. Strategies for the Construction of Materialized wews_record. Materialized views in each peer store the rela}ted
information for up tok hops around it. For example, if
Materialized viewswhich can be used to summarize, peer A received a record from peer B and peer B received
precompute, and replicate data, play important roles itthe record from peer C, peer C is in two hops from peer
databases [23]. In our case, we use them to perform dath in terms of that record. Thus, ik = 2 is used for
replication to improve the efficiency and the reliability of materialization, materialized views at peer C should store
the framework. We assume that each peer maintains fodihe information that peer A has received the record. In
materialized viewsMVData, MVChange MVFrom, and  addition, the materialized views at peer A also should
MVTo. These correspond to the Data, Change, From, anstore the information that peer C has a copy of the record.

IV. CONSTRUCTINGMATERIALIZED VIEWS

To relations in the local layer, respectively. Example 5:Figure 8 shows the target scope of the
In the following, we explain the strategies and decisiongnaterialized views for peer X in case &f = 2. We
involved in the construction of materialized views. assume that the reco(tl, al) was originally created

1) Each peer maintains four materialized views, butby peer D and then peer D published the record to the P2P

the contents of materialized views located at dif_network. Suppose that some peers copied the data at some
ferent peers may be different, For example mate_moments. A solid arrow in the figure shows the route of
rialized viewMVData@'A' may be different from the record that has been copied. In this case, peers A, B, I,

e and E are the peers in the scope of the materialized views
MVData@'B’ . )
. .. at peer X since there were record exchanges between
2) Not all of the records are stored in materialized . . L .
. hem and peer X is connected directly or indirectly in two
views, but only the exchanged records are stored, o .
For example. supnose that a record. sav #A1 wa ops. Thus, the materialized views MVData, MVChange,
created inpa ’eerT but it had not bee,n ex{:han ,ed in VFrom, and MVTo at peer X should store the related
P - : 9€d hhtormation in the local layer Data, Change, From, and
the P2P network until now. In this case, other peer

do not require the information that record #A1 issr0 relations at peers A, B, I, and E. .
recoverable and traceable; only peer A should be
responsible for #A1. In contrast, if peer B copied
record #A1 from peer A, the copying history is
important to peers A and B for tracing, and should
be recoverable.

3) The third decision is related to the replication
policy. A simple approach is to replicate the data
in a peer to some other peer(s). We take a different
approach: the peer in which a record is replicated
is decided based on the lineage, that is, the way
that the record has been copied through the P2P
network. This means that different records in the
local relations of a peer may be replicated in the
materialized views at different peers. As a result,
materialized views in one peer may store records
incorporated from many peers. As shown below, we
can execute tracing queries efficiently based on thig. Definitions of Materialized Views

policy.

Figure 8. Target scope for peer % & 2)

In the following, we show the representation of four
materialized views at peer X for the casekohops. Like

2In our scenario, each peer is rather stable in contrast to conventiong tracing query they are expressed in Datalog using the
P2P file exchange. For example, in scientific information exchange ! . . .
each peer may correspond to a research organization. In this case, Q@ta, Change and Exchange virtual views in the glObaI
unexpected failure would be a rare event, but it may happen. Iayer.
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a) MVData: MVData is a materialized view that

stores the exchanged records which are in the target scop

MVData stored at peer X can be represented as follows

Definition of MVData at peer X
RDatal(P, 11, T, A, H)
«— Data[Novel]('X', 12, T, A),
Exchange[Novel](P, 'X’, 11, 12,
H=1
11, T, A, H)
«— RDatal(P, 12, T, A, H),
Change[Novel](P, 11, 12,
11, T, A, H)
«— RDatal(P1, 12, T, A, H1),
Exchange[Novel](P, P1, 11, 12,
H=H1+1, H<=k
11, T, A, H)
«— Data[Novel]('X', 12, T, A),
Exchange[Novel]('X’, P, 12, I1,
H=1
11, T, A, H)
«— RData2(P, 12, T, A, H),
Change[Novell(P, 11, 12,
11, T, A, H)

«— RData2(P1, 12, T, A, H1),
Exchange[Novel](P1, P, 12, 11, DR
H=H1+1, H<=k
— RDatal(P, I, T, A, H)
«— RData2(P, I, T, A, H)
— RData(P, I, T, A)

I,

RDatal(P,

RDatal(P,

RData2(P,

RData2(P,

3
RData2(P,

RData(P, I, T, A)
RData(P, I, T, A)
Query(P, I, T, A)
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Definition of MVChange at peer X
RPeerl(P, 11, T, A, H)
. «— Data[Novell(X’, 12, T, A),
11, 12,

e
Exchange[Novel](P, 'X’,
H=1
RPeerl(P, 11, T, A, H)
«— RPeerl(P, 12, T, A, H),
Change[Novel](P, 11, 12,
RPeerl(P1, 11, T, A, H)
— RPeer1(P2, 12, T, A, H1),
Exchange[Novel](P1, P2, I1, 12,
H=H1+1, H<=k
RChgl(P, I1, 12, T, H)
«— RPeerl(P, -, H),
Change[Novell(P, 11, 12, T)
RPeer2(P, 11, T, A, H)
«— Data[Novell(X’, 12, T, A),
Exchange[Novel]('X’, P, 12, 11,
H=1
RPeer2(P, 11, T, A, H)
«— RPeer2(P, 12, T, A, H),
Change[Novel](P, 11, 12,
RPeer2(P, 11, T, A, H)
— RPeer2(P1, 12, T, A, H1),
Exchange[Novel](P1, P, 12, 11,
H=H1+1, H<=k
RChg2(P, 11, 12, T, H)
«— RPeer2(P, -, H),
Change[Novell(P, 11, 12, T)
— RChgi(P, I, 11, T, H)
«— RChg2(P, I, I1, T, H)
«— RChg(P, I, 11, T)

3

s

s

RChg(P, I, 11, T)
RChg(P, I, 11, T)
Query(P, I, 11, T)

Both MVData and MVChange will increase the costs
of storage and management for the operation and mainte-
nance of materialized views. However, there are benefits
to introducing them: they not only improve query process-
ing efficiency, but they can also be used for the recovery

In this program, the variable H is used to count theyt qata |ost when a peer suddenly leaves the P2P network.

number of hops. The maximum value of H should be

set to be equal td&. RDatal is the collection of the

records withink hops related to the copied record owned

by peer X.RData2 stores the information about which

peers withink hops copied the records owned by peer X.

RDatal andRData2 also store the contents of records

in these peers. Peer X executes the program and the resiiltP(\1)

of the program Query relation) is finally stored as a
materialized viewMVData at peer X.

Unfortunately, materialized viewMVData@'X’' as

constructed above is only effective for backward traversa
when we trace the lineage of a record retrospectively. For

efficient forward traversal, we also define a program that
collects information for the target record for the forward
direction. The program is similar to the example above
(although it is slightly simpler) so we omit the detalil.

Finally, the results of the two programs are unioned to

get the materialized viewlVData@'X' .

b) MVChange: This materialized view is used to

¢) MVFrom: This materialized view stores the infor-
mation about records which were copied from other peers
within k& hops. The materialized vieMVFromlocated at
peer X can be described as follows.

Definition of MVFrom at peer X

«— Data[Novel]l('X’, 11, T, A),

— ID(11), Change[Novel]('X’, 12, 11,
— ID(I),

Exchange[Novel](P, "X, I1, I,

ID(12)
FromP(P, 1)
B

IDP(I1) « FromP(P, I1),
Data[Novel](P, 11, T, A)
IDP(12) « IDP(11),
Change[Novel](P, 12, I1, )

FromH(P, I, P1, I1, -, H) < IDP(l),
Exchange[Novel](P1, P, 11, I,
FromH(P, 11, P1, 12, H)

2, H=1

— FromH(P I, P1, I1,
Change[Novel](P1, 12, 11,

FromH(P, 11, P1, 12, - H)
«— FromH(P2, I, P, I1, -, H1),

. H),

3

Exchange[Novel](P1, P, 12, I1,

H=H1+1, H<=k

Query(P, I, P1, I1, ., H)
— FromH(P, I, P1, I1,

H)

MVFrom is effective for tracing records retrospectively
in the backward direction. Thus, in contrast to MVData
and MVChange, only one program is used to construct

store the change histories of the exchanged records in thbe view. As described below, the management cost is
target scope. The definition given is for collecting infor- negligible (though an additional storage cost is incurred)
mation by backward traversal. As in the case of MVDatabecause path information caching and record insertion to
we define a similar program for forward traversal, and thehe materialized view are executed only once when the

unified query results are stored 8/Change@’'X'.

©2011 ACADEMY PUBLISHER

record is exchanged.



JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 35

d) MVTo: A similar idea can be applied to the To
relation. The materialized vieWlVTostores information Mapped Query Q1

about which peers withik hops copied records from peer | P(11)  — Data[Novel]l@'A(11, 'tl', "al),
ID(12) « ID(11) , Change[NovelA'(11, 12, J)
X. BReach(P, 11) «— ID(12),
Definition of MVTo at peer X From+[Novel|@A(12, P, I1, )
ToP(P, 11) « Data[Novel](X, 12, T, A), BReach(P, 11) < BReach(P, 12),
Exchange[Novel]('X’, P, 12, I1, ), Change+[Novel]@P(I1, 12, )
ToP(P, 12) «+ ToP(P, I1), BReach(P1, 11) «+ BReach(P, 12),
Change[Novel](P, 11, 12, ), 12 1= NULL From+[Novel]@P(12, P1, I1, J)
ToH(P, I, P1, I1, -, H) — ToP(P, 1), Origin(P)  « BReach(P, I),
Exchange[Novel](P, P1, I, I1, ).H=1 - From+[Novel]@P(l, I N
ToH(P1, 11, P2, 12, ., H) - Change+[Novel|@P(I1, I, ), 11 1= NULL
«— ToH(P, I, P1, 11, -, H1) Query(P) <« Origin(P)
Eﬁﬂ‘fj‘fﬁlﬂgﬁ”(”' P2, 11, 12, ). This query finds the origin of a target record. The dif-
Query(P, 1, P1, I1, ) ferences from the original mapping shown in Example 3
— ToH(P, I, P1, 11, - H are in the third to sixth rules. In these rules, the predicate

In contrast to MVFrom, the management cost of MVTohamesFrom and Change are replaced byrom+ and
is not negligible. This is because we need to deal witHfchange+, respectively. From+ represents a relational
future events for the management of MVTo whereas onlyiew obtained by the union of the From relation and the
past events are stored in MVFrom. For example, in Fig. 8MVFrom materialized view. For examplErom+ for peer
when the record is copied from peer | to peer E, it isX is defined by
necessary to notify peer X about the copy event. In other From+[Novell@X := From[Novell@X(11, P, 12, T)
words, not only peer | and E but also peer X is involved U MVFrom[Novel|@X(11, P, 12, T)
in the transaction of copying the record from peer | toChange+ and other views are defined in a similar man-
peer E. This introduces an additional overhead to a certainer. a
extent. The motivation for this query rewriting is to speed up
Finally, we mention our decision rule for the parameterthe process of backward traversal. The query rewriting
k, which determines the policy of materialized view is easy: as shown in the example, we simply replace
maintenance. In our approacl, is initially fixed to  predicatesData , Change, From, and To to Data+ ,
some value (e.g.k = 2), when P2P record exchange Change+, From+, andTo+.2 For this example, we can
is started. An alternative strategy would be to treads  skip some peers and can reduce the number of messages
a variable, allowing different values to be selected for exchanged between peers while query processing by using
different peers. This option is interesting, especially wherMVFrom and MVChange. The query is executed based
some peers have large storage and high processing powen the method described in Subsection 11I-D; we do not
However, to simplify the algorithms, we do not considerneed to modify the query processing strategy.
this option and leave the problem for the future. Example 6:(continued) Figure 9 illustrates the query
execution process for processing query Q1 using the
materialized views. If we use the original query without
materialized views, the query is forwarded between peers
in a step-by-step manneras— B — C — D---. In
Materialized views play an essential role for efficientcontrast, the modified query using materialized views is
query processing in current database systems. In thierwarded asA — D — G — - --.
section, we first show how we can use materialized
views for efficient query processing in our framework. I I I l
Next, we discuss how we can use materialized views t(g E-Or@-O-Or@-O-Wr@— -
cope with failures. Materialized views can be considered I I
as replicated _data .SO that We. can utilize them when Figure 9. Processing Query Q1 using materialized views=(2)
some peer fails. Finally, we discuss how to maintain
materialized views in a consistent manner.

V. USING MATERIALIZED VIEWS FOREFFICIENCY
AND FAULT-TOLERANCE

In this example, we can skip peers B and C because
the information for backward traversal using the infor-
A. Query Processing with Materialized Views mation of B and C is stored itMVChange@'A" and

o ) MVFrom@'A’. Thus, instead of query forwarding, peer

For a peer, say X, four materialized Views p yses the information in the materialized views and
MvData@ X, ' MVChange@'X',  MVFrom@'X',  gyecutes the query locally until it reaches the fixpoint,
and MVTo@'X" are locally stored as base relations. Toyen gecides the next peer (peer D in this case) to which

improve query performance using them, we performye query should be forwarded. Then, peer D follows a
query rewriting. We illustrate the outline of this procedure

using an example. 3strictly speaking, there is no gain from usibgta+[Novel]@'A’

E le 6:B d th terialized Vi andChange+[Novel]@'A’  if we consider the semantics of the query.
Xxample b:based on the materialized views, we can However, since a union operation can be efficiently processed when we

rewrite the Example Query Q1 in Section Il as follows. issue an SQL query to the underlying DBMS, the overhead is negligible.
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similar strategy and skips peers E and F. In this way th&xecution cannot continue and will lead to an incorrect

guery processing is accelerated. O result. However, we constructed materialized views with
Next we give another example. redundancy. So, even if a peer leaves a P2P network due
Example 7:Query 2 can be transformed using theto some failure, we can recover the part of its contents

materialized views as follows. In this example, peer Awhich is used for lineage tracing by collecting information

wants to detect which peer copied the record (t1, aljrom related peers.

provided by peer A. The rewriting strategy is same as For recovery purposes, we assume that a peer (say

that for Query Q1. X) specifies one peer (say Y) as itmckup peer The
Mapped Query Q2 backup peer Y maintains the information required for
Reach(P, 11) < Dat?+[N0He@g@'(A’(l2, 1, 'al), ) starting the recovery process for peer X. The backup
To+[Novel|@'A'(12, P, I1, - i i i Feri ave
Reach(P, 11) < Reach(P. 12), peer Y gontalns a special relgtldﬁlend@ Y,(Pl,
Change+[Novell@P(I2, I1, ), 11 1= NULL P2) , which contains tuples with the forr(iX’, P)
Reach(P, 11) « Reach(P1, 12), This represents the information that peer X has exchanged

To+[Novel|@P1(12, P, I1, )

Query(P) - Reach(®, ) some record with peer P. We call Pfriend of X. When

peer X specifies peer Y as its backup peer and Y accepts
The query process is illustrated in Fig. 10. In ourthe offer, the friend history of X is continually managed

original approach without materialized views, the queryin peer Y.

processing starts at peer A and the query fragments We illustrate the process of data recovery using an

generated at peer A are first forwarded to peers B andxample.

C, and then peer B forwards them to peer D and peer C Example 8:Suppose that peer X in Fig. 8 suddenly

forwards them to peers E and F, and so on. The query ikaves the P2P network due to a failure. Let the backup

executed in this way until it reaches the ends of forwardbeer of X be peer Y. We assume that the information

paths. that peer Y is the backup peer of peer X is stored in

a distributed hash table index maintained in the P2P

(A) network, and assume that some peer (say Z) is elected
© G to cover the role of peer X for tracing.
To recover lineage information which was stored in
® & ¢ peer X, peer Z executes the following progranThis
5 i Z program is written at the local layer level.
?%\ . 52 Recovery Program for Peer X
__________ From[Novell@'X'(11, P, 12, T) —
\ Friend[Novell@'Y'('X’, F),
To[Novell@F(12, X, 11, T)
------------------------ @ To[Novel]@’X’(Il’ P’ |2’ T) —
Friend[Novell@'Y'(X’, F),
; i i il i To[Novell@F(12, X, 11, T)
Figure 10. Processing Query Q2 using materialized vidws- (2) Data[Novell@X'(l, T, A) =
o ) From[Novell@'X'(l, P, o)
When the materialized views are used, peer A can MVData[Novell@P(X’, I, T, A)
perform more of the query processing locally without Data[Novell@’X’(I,TT,[ NA) 1@ X((_I o )
L . . o[Novell@'X'(l, P, o
communicating B, C, D_, E, and F since they are in the MVData[Novel[ @P(X, I, T. A)
target scope of peer A in terms of this record. Then the change[Novell@'x'(11, 12, T) —
guery execution is continued by peers G, H, | and J. In this E/Ir\%ﬂrENovel[],?‘X’l(]l@Ey(x " 7,|27)‘T)
. . R ange[Nove X, 1L, 12,
way, the number of peers involved in the query process Change[Nove]@'X'(11, 12, T) hd
is greatly reduced. a To[Novell@'X(l, P, oo
These two examples indicate that materialized views MVChange[Novel]@P(X’, 11, 12, T)

can be used to speed up query processing. Although they The first rule recovers the information of the
are special examples, they do illustrate our main idegFrom[Novel] relation originally stored in peer X.
of utilizing materialized views for efficient traversal over |t yses the information of thériend[Novel] re-

record exchange paths. In our framework, forward anqation in the backup peer Y to find friends of peer

backward traversals over record exchange paths occw |f a friend of X sent a record in the past, its

often, and their efficient processing is quite importantTo[Novel] relation contains the history of the event.

Thus, by using materialized views, we can greatly im-|n thjs rule, we collect the information needed to recover

prove performance. From[Novel]@'X’ from the friends. Similarly, the
second rule recover$o[Novell@’X" . The third and

B. Achieving Fault Tolerance Using Materialized Views fourth rules are for recovering theata[Novel]@'X’

One important issue for executing a tracing query in
a decentralized and autonomous P2P network is fault 4Strictly speaking, this is not a valid program. As shown in Queries
L. . 1 and Q2, valid programs should contain a rule which derives a
tolerance. If a peer which is located in a record exchang€gyery” = relation, which is the result of the Datalog program
path for the given query leaves the network, the quergxecution.
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relation. The third rule uses thErom[Novell@’'X’ and MVTo@'Y'. In addition, peer Z contains similar
relation which was just recovered. This rule utilizes theinformation in its materialized views. Depending on the
fact if peer X copied a record with id | from peer P, update type, a new tuple is inserted in each of the
thenMVData[Novel] at peer P holds the backup data following local relations and materialized views:

of Data[Novell@'X’ . The fourth rule follows the « update of record #X1Data@'X’' , Change@'X’
same pattern but uses th[Novell@’'X’ relation. MVData@'Y’, MVData@'Z', MVChange@'Y’,
Similarly, Change[Novel]@'X’ s recovered using the andMVChange@’Z’

fifth and sixth rules. The four recovered relations are , deletion of record #X1: Change@'X’ ,
finally stored in peer Y. MVChange@'Y’, andMVChange@'Z’

In our framework, we assume that a global name , copy of record #X1 to other peer W:

service which maps a peer name into its IP address is Data@'W', To@'X’' , From@'W’, MVData@'X’ ,

available. After the recovery is done, we modify the MVData@'Y’, MVTo@'Y’, MVTo@'Z', and
mapping so that a message to peer X is forwarded to  MVFrom@'W:

peer Y. Thus, peer Y can behave as if it is peer X, andrpis means that there are orilysertionsin the database
then the tracing facility will work correctly. | updates in our framework. O
We also recover the four materialized views (e.9., Materialized view maintenance for the insertion case is
MVData[Novell@'X" ) which were originally stored in - f5iy easy. We run the semi-naive method until the fix-
peer X, although this is not discussed here. This is Noboint. When we reach the fixpoint, the current incremental
difficult because we have already recovered the four basgsintenance is finished [24].
relations of peer X. _ Finally, we should mention the additional care that must
In"this subsection, we have described a recoverye taken with Friend relations when a copy event happens.
method to cope with a failure. As mentioned previously,consider the copy event shown in the example above:
we consider that the sudden departure of a peer is a rage tuple Friend(’X’, "W’ is inserted in the Friend

event in our framework. We assume that each peer usuallg|ation in the backup peer of X, if the tuple is not already
follows a protocol when it leaves the P2P network. If peer, that relation. Similarly a tupl&riend(W’, 'X’)

X leaves, it selects a backup peer Y. After Y copies th&g jnserted in the Friend relation in the backup peer of W.
information related to tracing from X, peer X can leave
the network without introducing a tracing problem. VI. EXPERIMENTS AND DISCUSSIONS

. o The purpose of the experiments is to observe the

C. Maintenance of Materialized Views benefit of using materialized views in a simple P2P record

View maintenance means the process for updating maxchange model. We used the two queries in Section I
terialized views in response to changes in the underlyingnd evaluate the query processing cost for different values
database. As we described above, materialized views casf parameter.
speed up query processing greatly and can provide fault The simulation model is summarized as follows. We
tolerance, but they have to be kept up to date. If somdnitially create N = 100 peers and\/ = 1 record in each
of the base relations are changed, materialized viewpeer. After that, we perform an iteration: we randomly
must be updated to ensure correctness. For maintainirgglect a peer X, and peer X randomly selects another peer
general recursive views in deductive databases, severd| then peer X selects one record randomly from Y and
methods have been proposed. For example, [24] presentspies it into its local database. We terminate the iteration
theDRed(Delete and Rederive) algorithm that can handlewhen the average length of copy paths reaches a specified
incremental updates. However, the algorithm assumes tareshold value. After this preparation is finished, we
centralized environment, and it is quite costly to apply theexecute tracing queries.
algorithm in our context because the maintenance processin this simple scenario, we do not consider record
is propagated among distributed peers. creation, modification, or deletion. The reason is that,

In our case, we can utilize the feature of our frameworkalthough such behaviors are important to modeling the
that every update can be handled as a tuple insertiomctual behavior of our framework, they do not directly
when we delete a record, we do not delete its correspondafluence the performance of query processing for tracing
ing tuple in the database but insert a tuple to indicate thaqueries. The major factor is the length of a record copy
the tuple was deleted. If database updates do not involveath, which directly influences the forward and backward
tuple deletion and modification, the view update problemtraversal cost.
becomes easier. Figure 11 shows the results when Query Q1 is executed

Example 9:Consider the case that materialized viewsbased on the strategies shown in the former section. The
are created with the parameter= 2. Assume that record performance is measured by the number of peers which
#X1 in peer X is a copy of record #Y1 in peer Y, and are involved in the query processing. We compared the
record #Y1 is a copy of record #Z1 in peer Z. We considemperformance of three approaches. The basic framework is
the updating of record #X1 in peer X. Sinke= 2, peer Y  the baseline method without materialized views. The en-
contains the information for record #X1 in its materializedhanced frameworksk(= 1, 2) are based on the proposed
views MVData@'Y’ , MVChange@'Y’, MVFrom@'Y’,  method with the corresponding parameter setting.
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Experimental results for Query Q1 we do not need to manage the information for a record
. O e o framowork which is not exchanged in the P2P network.
H P dframework (e=1) / . As described above, the parameﬂerhas.a strong
2 80 influence on the storage cost. Although the improvement
3 g | tnhancediramework(k=2) — of query processing time appeals, you may say that the
5 . selection ofk = 2 is not a good idea, considering
E 20 4 the storage cost. As an alternative strategy, we can use
2 different parameter settings for MVData, MVChange,

0 20 30 4 S & 70 80 9% 100 MVFrom, and MVTo. For example, we can uge= 1
Average length of copy paths for MvVData and MVChange and uge= 2 for MVFrom
and MVTo. In this case, we can save the storage costs for
MVData and MVChange but still support fault tolerance.
Figure 11. Query processing for Query Q1 (backward traversal) This setting also assures the validity of query results and
is effective for queries which only access From or To
) o relations and do not access MVData and MVChange. We
The experimental results indicate that the use of Mayg,ye this alternative strategy evaluation to future work.
terialized views actually contr.|butes to skipping peers. We must also mention the maintenance cost. The
The performance fork = 2 is better t.han that for evaluation of the maintenance cost is not easy because it
k=1 as we expe'cted.'AItho.ugh we did not measure, g, depends on the system settings and the environment.
the actual processing time since the factor is hlghlyRoughly speaking, the maintenance cost mainly consists

dependent on the system setting, we think that the numbey; e cost of distributed transactions. Recall the example
of peers involved in query processing directly mﬂuencesShOWn in Subsection V-C. If we update record #X1 in

the query processing time. The reason is that the amouie x e need to perform a distributed transaction
of communication between peers and the total number g mong peers X, VY, and Z. If we use a largevalue
queries issued in the peers are tightly connected with thﬁ163 communication cost may not be negligible. In the

number of peers involved, and they are the major faCtor§ituation where record exchanges occur quite frequently,

of Iihe quelnzl prr?cessu;]g cost. _ | its we may need to select a smail value for efficiency.
Igure Shows the expefimental fesults ior QueryAlthough our framework incurs a maintenance cost, it

Q2. T_he overaI_I behavior is similar to that of dery Ql',would be more efficient than the centralized approach in
The difference is that the overall query processing Cost iy nich all the histories are maintained in one or more
generally larger than that for Query Q1. This is becausg,ors In such a case, the processing cost for query

query lfrocehssmgffor forwarr]d tlr:aversa;]l_ needs _to follow rocessing and maintenance would become the bottleneck
many branches of copy paths. From this experiment, W8r the whole system.

can see that using the materialized views greatly reduce Finally, we consider the fault tolerance issue. Our

the query processing cost. method can cope with the failure of one peer. If multiple
failures occur simultaneously, we may not be able to

Experimental results for Query Q2 recover the lineage information for tracing. For example,
§ 100 | —o=Basic framework when tv_vo related peers suddenly leave tht_e network at the
§ 5 | = Enhanced framework (k=1 / same time, esp_ec_lally when a peer and its back_up peer
2 Enhanced framework (k=2) / leave together, it is hard to recover the correct I|neagg.
g ® / However, we assume that such events are quite rare in
§ 40 / our context. We would like to leave the treatment of such
E 2 4’_/-—4:. — a rare case for future research.

2 oL »
0 2 30 40 50 60 70 8 9 100 VIlI. CONCLUSIONS ANDFUTURE RESEARCH

Average length of copy paths .. . . .
For efficient query processing, data replication and

caching are popular technigues. Taking into account the
Figure 12. Query processing for Query Q2 (forward traversal) ~ Practical requirements of tracing, we added additional
features to our traceable P2P record exchange framework.
We omitted the experimental result for storage cost, buf\ithough the storage and maintenance cost will increase,
the behavior of the proposed method is obvious. If wethe query processing cost can be reduced and failure of
use the parameter settirkg= 1, the storage cost roughly peer can be overcome.
becomes3S compared to the normal storage c6stThis We have described how to define materialized views,
is because we need to maintain additional two copies dfiow to use them to improve query processing perfor-
lineage information for each record in the forward andmance, and how to cope with failures. A method for main-
backward directions. It = 2 is used, the storage cost taining materialized views was also given. Nevertheless
will reach5S because we need to consider records withirmuch work remains to be done. In particular, we need to
two hops. Note that these estimates are maximal becausensider the trade-off between query processing cost and
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maintenance cost when evaluating the total cost reductioiil4] Y. Cui and J. Widom, “Lineage tracing for general data
There are several further issues for future research which
can be summarized as follows.

. 5
« Enhancement of query expression power: We nee[zl1 )

This research was partly supported by Grants-in-Aid24]

to enhance the strategies to handle more complex

tracing queries (e.g., tracing queries that involve ag{16]

gregation requirements). The effectiveness and lim-

itations of the declarative language-based approacﬂn

will become clearer.
Efficient coupling with DBMSs: For implementing

our framework, we assume that a local record man{18]

agement system in each peer is implemented using a
conventional RDBMS. We would like to use more ef-
fectively powerful and robust DBMS functionalities
that can come from the tight coupling of the record
management system and the underlying RDBMS.

Prototype system implementation and experimentst20]

We are currently developing a prototype system of

21
our P2P record exchange framework, and we havé

also designed a P2P network simulator that can be
used for simulating our prototype system as a virtual
P2P network. These developments will have a posi-

tive feedback and help to improve our fundamental??]

framework.
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