
Using Materialized Views to Enhance
a Traceable P2P Record Exchange Framework

Fengrong LI1 and Yoshiharu ISHIKAWA2,1,3

1Graduate School of Information Science, Nagoya University
2Information Technology Center, Nagoya University

Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
3National Institute of Informatics, Chiyoda-ku, Tokyo 101-8430, Japan

E-mail: lifr@db.itc.nagoya-u.ac.jp, ishikawa@itc.nagoya-u.ac.jp

Abstract— P2P technologies are drawing increasing attention
nowadays, and have been widely deployed on the Internet for
various purposes. Unlike the traditional client-server archi-
tecture, a P2P network allows all computers to communicate
and share resources as equals and does not depend on a cen-
tral server for control. In such an environment, tracing how
data is copied between peers and how data modifications
are performed are not easy because data replications and
modifications are performed independently by autonomous
peers. This creates inconsistencies in exchanged information
and results in a lack of trustworthiness.

To provide reliable and flexible information exchange
facility in P2P networks, we have proposed a framework
for enabling traceable record exchange. In this framework, a
computer can exchange structured records with a predefined
schema with other peers. The framework supports atracing
facility to query the lineageof the records obtained. A tracing
query is described in Datalog and executed as a recursive
query among cooperating peers in a P2P network. In the
query execution process, the exchange and modification
histories of the queried records are collected dynamically
from relevant peers.

In this paper, we focus on how to enhance the traceable
P2P record exchange framework using materialized views.
First, we discuss how to constructmaterialized viewsin
our framework. Then we present methods for reducing
query processing cost and providingfault tolerance using
the materialized views.

Index Terms— information exchange, P2P technologies, data
provenance, query processing, materialized views, fault tol-
erance

I. I NTRODUCTION

Peer-to-peer(P2P) technologies already play important
roles in supporting flexible information exchange and
communications in large-scale networks. Flexible and
scalable information exchange has been already realized
in P2P file exchange systems such as Gnutella [1], Nap-
ster [2], and ICQ [3]. P2P technologies also provide the
foundations needed for rich information services as they
eliminate the need for a dedicated central server, allowing
all computers to communicate and share resources as
equals; in other words, all computers in the network act
as both servers and clients. Although P2P technologies
are already widely used for distributed data storage, file
sharing, content delivery, collaborative computing, and so
on, there remain some important problems.

One important issue is thetrustworthinessof the infor-
mation exchanged in a P2P network. Since duplications
and changes to data may be made independently by every
peer, it is difficult to follow the path of data through the
network. Trustworthiness of P2P information exchange is
especially important in scientific research. For example, in
bioinformatics, large distributed databases are maintained
through the cooperation of independent research orga-
nizations, but there are problems due to inconsistencies
between different databases. These inconsistencies arise
because data may be copied or modified by a researcher
or curator and then copied or modified again by another
researcher. The notion ofdata provenance(also known as
lineage) is an important idea for solving this problem [4],
[5]. Data provenance tries to provide evidence about how
a data item was obtained from other data items and why
a specific data item exists in the database.

We have extended the notion of data provenance to
information exchange in a P2P network. In this context,
we can consider questions related to the trustworthiness
of exchanged data, such as “Which peer is the original
creator of this data?” and “Who else has a copy of this
data?” Such questions can be answered by storing and
using the information exchange and modification histories
in the peers which participate in the exchange process. We
have proposed atraceable P2P record exchange frame-
work in which tuple-structuredrecordsare exchanged [6],
[7]. In this framework, records are exchanged among
peers and peers can modify, store, and delete their records
independently.

An important feature of the framework is that it is based
on databases. To ensure traceability, each peer maintains
its own relational tables for storing record exchange
and modification histories. To make the tracing process
easy, the framework provides an abstraction layer which
virtually integrates all distributed relations and aDatalog-
based query language for writing tracing queries in an
intuitive manner. Another feature of the framework is that
it employs a “pay-as-you-go” approach [8] for tracing: the
system performs minimum maintenance tasks for tracing
and a user pays the cost when he issues a tracing query.

In this paper, we focus on the issue of how to use
the notion of a materialized view to improve our P2P

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 27

© 2011 ACADEMY PUBLISHER
doi:10.4304/jait.2.1.27-39

record exchange framework for determining how data is
exchanged among peers and why data is located on a
particular peer. One motivation is efficiency: we can use
materialized views to speed up query processing. Another
essential consideration for a P2P network is reliability—
how to cope with system failure and churn. Failure and the
unexpected departure of a peer is a critical problem that
influences whether a tracing query is executed correctly.
We present the key approaches for solving these problems,
along with corresponding experimental results.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III describes
the outline of the traceable P2P record exchange frame-
work. Section IV gives the definitions of materialized
views in the present context. Section V explains how
materialized views are used to enhance the underlying
framework and discusses the maintenance of materialized
views. Section VI presents the experimental results. Fi-
nally, Section VII contains our conclusions and considers
avenues of future research.

II. RELATED WORK

A. P2P Databases

Although it is still a relatively recent field, P2P database
research has experienced rapid growth. There is a variety
of research topics, such as coping with heterogeneity,
query processing, and indexing methods [9]. Most propos-
als focus on the heterogeneity of schema and databases.
For example, the Piazza system [10] enables the sharing
of heterogeneous data in a distributed and scalable man-
ner. In order to process a query issued by a user, the query
is reformulated according to mappings so that it can cope
with the heterogeneous underlying databases. The query
answering system expands the mappings relevant to the
query, and retrieves data from other peers. The PeerDB
system [11], inspired by information retrieval techniques,
creates a kind of data keyword thesaurus to store name
mappings and it facilities sharing of data without a global
schema. One project that is highly related to our problem
is the ORCHESTRA project [12], [13], which aims at the
collaborative sharing of evolving data in a P2P network.
In contrast to these systems, we focus on supporting
reliable and trustful P2P record exchange, based on a
simple record exchange scenario, and do not consider
schema heterogeneity.

B. Data Provenance

The term data provenance, or alternatively lineage
tracing, refers to the process of tracing and recording
the origins of data, transformation of databases, and
the movement of data between databases. The target
field of data provenance is quite wide and covers data
warehousing [14], uncertain data management [15], [16],
and scientific fields, such as bioinformatics [17]. In this
research area, one well-known project is theTrio project,
in which both uncertainty and lineage issues are consid-
ered [16].

For data provenance, some taxonomies have been pro-
posed. Buneman et al. [18] introduced the notions of
where-provenanceand why-provenance. The former is
addresses the question “where did the data come from?”
and the latter “why does the data exist?” Since our
framework treats problems such as ”which peer pro-
vided this data?” and ”Did other peers copy this data?”,
it belongs to the where-provenance category. Another
taxonomy distinguishes between thelazy approach and
the eager approach [5]. The former describes models
in which queries for tracing lineage are executed when
necessary, and the latter describes the case that metadata
or annotations [17] representing lineage are continuously
maintained. Our approach to traceability is based on
histories maintained at peers and thus belongs to the eager
approach.

Data provenance is a common problem that is fre-
quently encountered in databases that undergo many
transformations, exchanges, and modifications [5], [19].
However, the notion of data provenance has not previously
been applied to P2P information exchange, except in the
ORCHESTRA project [12], [13]. However, that project
focuses on the schema heterogeneity issue rather then data
provenance. In contrast, our research is devoted to data
provenance in P2P information exchange, which is quite
important for ensuring that the data obtained from the
network can be trusted.

C. Dataspace Management

Dataspace managementfocuses on a highly flexible
integration scenario [8]. This is an emerging field of
database research and focuses on more flexible infor-
mation integration over the network. In any applications
involving multiple heterogeneous data sources (e.g., per-
sonal information management) it may not be necessary
or practical to require full integration of information
sources beforehand; instead, it may be reasonable to
perform information integration dynamically when a user
request is issued. Such integration is called the “pay-as-
you-go” approach [8]. Since our approach focuses on the
integration of historical information stored in distributed
peers, the “pay-as-you-go” approach is the better choice
because it does not interfere with the autonomy of the
peers and the tracing requests do not occur often. This
approach has an additional benefit that it allows a flexible
tracing query representation using the Datalog query
language.

D. Declarative Networking

Declarative networking uses a high-level declarative
language to express overlay networks in a highly com-
pact and reusable form [20]. Our query processing ap-
proach uses the variation of declarative networking de-
scribed in [21]. As proved in thedeclarative networking
project [20], [21], declarative recursive queries are a
very powerful tool in writing network-oriented database
applications such as sensor data aggregation. In contrast

28 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

to their approach, our focus is on compact and under-
standable tracing query specifications. The objective of
our framework is to realize traceable record exchange in
a P2P network and is based on the architecture introduced
in Section III. Datalog queries are used not only for
describing high-level tracing requirements, but also for
representing distributed query execution.

E. Materialized Views

Materialized viewsare snapshots of relational views
and can be used to speed-up query processing by pre-
computing frequently used query results. Efficient main-
tenance of materialized views is very important in practi-
cal databases. A detailed survey of the maintenance of
materialized views can be found in [22]. We consider
the incremental maintenance of materialized views in the
context of deductive databases. Although some incremen-
tal materialized view maintenance methods have been
already proposed in the literature, there are few papers
that consider deductive databases [23]. For maintaining
general recursive views incrementally, [24] proposed the
DRed algorithm that can handle incremental updates.
However, as described later, the algorithm assumes a
centralized environment, and it is quite costly to apply the
algorithm in our context since the maintenance process is
propagated among distributed peers.

In our framework, materialized views help to reduce the
response time for tracing queries, especially for queries
about past histories. So we develop a query processing
method which uses materialized views effectively and a
view selection and maintenance method which considers
the trade-off between cost and benefit. In addition, mate-
rialized views can be used as cached data for recovering
information when a system failure happens. We also
mention how we can use materialized views to provide
fault tolerance.

III. SYSTEM FRAMEWORK

In this section, we describe why we proposed the
traceable P2P record exchange framework and give an
overview of its present status.

A. Motivating Example

Consider an application in which autonomous peers
share information about novels in a P2P network. Figure 1
shows an instance of a record setNovel owned by
a peer in the network. The record set consists of four
attributes: title , author , language , and year .
Other peers also maintain theirNovel records with the
same structure, but their contents are not necessarily the
same. The record structures shown in this example are
so flexible that they can be used for many other tasks
such as scientific information exchange. In addition, our
framework can be applied to file exchange, where a record
can contain metadata for a specific file.

In our record exchange framework, each peer can
enrich its own record set by searching for records in the

title author language year
Pride and Prejudice Jane Austen English 1813
Madame Bovary Gustave Flaubert French 1857
War and Peace Leo Tolstoy Russian 1865

Figure 1. Example record setNovel

P2P network and incorporate interesting records in its
local database. In addition, a peer can modify and delete
its own records and can provide them for other peers
in the P2P network. Atraceability problemoccurs, for
instance, when a peer wishes to ask the question: “Which
peer originally created the record(War and Peace,
Leo Tolstoy, Russian, 1865) ?” However, find-
ing such lineage information for data in a P2P network
is quite difficult without a supporting facility.

B. Traceable P2P Record Exchange Framework

To support the notion of data provenance in P2P
information exchange, we proposed the concept of a
traceable P2P record exchange frameworkin [6], [7].1

In the framework, arecord means a tuple-structured data
item that obeys a predefined schema shared globally in
a P2P network. We assume that each peer corresponds
to a user and maintains the records owned by that user.
Every peer can act as a provider and a searcher. Records
are exchanged between peers and peers can modify, store,
and delete their records independently.

To represent records and their historical information,
we employ a layered architecture with different abstrac-
tion levels. In the following, we briefly explain thethree-
layer modelusing an example.

a) User Layer: The user layersupports what users
see. Each peer has its own record set in the user layer,
but their contents are not the same. Peers can behave
autonomously and exchange records when required. A
peer can find desired records from other peers by issuing
a query.

Peer A
title author
t1 a1
t5 a5

Peer B
title author
t1 a2
t4 a4

Peer C
title author
t3 a3
t1 a2

Peer D
title author
t1 a1
t5 a5

Figure 2. Record sets in user layer

For ease of presentation, we simplify the example
shown in Fig. 1 above. Assume that each peer in a
P2P network maintains aNovel record set that has two
attributes, title and author . Figure 2 shows four

1We use “record exchange” to distinguish our problem fromdata
exchange[13], which is the problem of taking data that obeys a source
schema and creating data under a target schema that reflects the source
data as accurately as possible.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 29

© 2011 ACADEMY PUBLISHER

record sets maintained by peers A to D in the user
layer. Each peer maintains its own records and wishes
to incorporate new records from other peers in order to
enhance its own record set. For example, the record(t1,
a1) in peer A may have been copied from another peer
and registered in its local record management system.

b) Local Layer: Each peer maintains the minimum
amount of information that is required to represent its own
record set and local tracing information, which consists
of the creation (registration), modification, deletion, and
exchange histories related to the peer itself, and which
facilitates traceability. All the information required for
tracing is maintained by distributed peers in thelocal
layer. When a tracing query is issued, the query is
processed by coordinating related peers in a distributed
and recursive manner. In our framework, every peer
maintains the following four relations in its local record
management system implemented using an RDBMS.

For example, peer A, shown in Fig. 2, contains the four
relations in Fig. 3.

Data[Novel]@’A’
id title author

#A1 t1 a2
#A2 t1 a1
#A3 t5 a5

Change[Novel]@’A’
from id to id time

#A1 − . . .
#A1 #A2 . . .
− #A3 . . .

From[Novel]@’A’
id from from time

peer id
#A1 B #B1 . . .

To[Novel]@’A’
id to to time

peer id
#A3 D #D2 . . .

Figure 3. Relations in local layer for peer A

The contents and role of each relation shown in Fig. 3
is described as follows:

• Data[Novel] : This maintains all the records held
by the peer. Every record has a unique record id for
maintenance purposes. Note that there are additional
records compared to those in Fig. 2; they aredeleted
records and are usually hidden from the user. They
are maintained to provide data provenance.

• Change[Novel] : This is used to hold the cre-
ation, modification, and deletion histories. Attributes
from id and to id express the record ids before
and after a modification. The attributetime repre-
sents the timestamp of modification. When the value
of the from id attribute is null (−), it means that
the record was created at the peer. Similarly, when
the value of theto id attribute is null, it means that
the record has been deleted.

• From[Novel] : This stores the information about
records which were copied from other peers. When
a record is copied from other peer, the attribute
from peer contains the peer name, and the at-
tribute from id has the record’s id at the original
peer. Attributetime stores the timestamp informa-
tion.

• To[Novel] : This relation plays the opposite role

to From[Novel] and stores information about
records were sent from peer A to other peers.

Although From[Novel] and To[Novel] contain du-
plicated information, duplicates are stored on different
peers. For example, for the tuple ofFrom[Novel]@’A’
in Fig. 3, there exists a corresponding tuple(#B1, A,
#A1, . . .) in To[Novel]@’B’ . When the record is
registered at peer A,From[Novel] at peer A and
To[Novel] at peer B are updated cooperatively to
preserve consistency.

The local layer manages the records and historical
information for each peer. This distributed maintenance of
lineage preserves independence of peers while supporting
various types of tracing queries. When a tracing query is
issued, we need to collect the required information from
the relevant peers. The record set in the user layer of a
peer is just a restrictedview of its local layer relations
that hides lineage information from the user. Figure 4
illustrates the relationship between the user layer and the
local layer.

Record Set

From
Change
To

Local Layer
Data

browse, search,register, delete
User Layer

localview

Figure 4. Local layer vs. user layer

c) Global Layer: To aid understanding and simplify
the writing tracing queries, we provide an abstraction
layer called theglobal layer which integrates all dis-
tributed relations virtually and provides aDatalog-like
query language [25] for writing tracing queries in an in-
tuitive manner. Three virtual global views are constructed
by unifying all the relations held by distributed peers.
Figure 5 shows three virtual global views for the peers
shown in Fig. 2. These global virtual views are used as
intuitive images for describing tracing queries.

The Data[Novel] view in Fig. 5 unifies all the
Data[Novel] relations held by peers A to D. The
peer attribute stores peer names. The combination
of a peer name and a record ID ensures that each
record is uniquely identified in the entire P2P net-
work. This uniqueness is essential for lineage tracing.
Change[Novel] is also a global view which uni-
fies all the Change[Novel] relations in a similar
manner. Exchange[Novel] unifies all the underly-

30 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

Data[Novel] View
peer id title au-

thor
A #A1 t1 a2
A #A2 t1 a1
A #A3 t5 a5
B #B1 t1 a2
B #B2 t4 a4
C #C1 t1 a1
C #C2 t3 a3
C #C3 t1 a2
D #D1 t1 a1
D #D2 t5 a5

Change[Novel] View
peer from to time

id id
A #A1 − . . .
A #A1 #A2 . . .
A − #A3 . . .
B − #B2 . . .
C − #C2 . . .
C #C1 − . . .
C #C1 #C3 . . .
D − #D1 . . .

Exchange[Novel] View
from peer to peer from id to id time

D C #D1 #C1 . . .
C B #C3 #B1 . . .
B A #B1 #A1 . . .
A D #A3 #D2 . . .

Figure 5. Three views in the global layer

ing From[Novel] and To[Novel] relations in the
local layer. Attributesfrom peer and to peer give
the source and the destination of a record exchange,
respectively. Attributesfrom id and to id contain the
ids of the exchanged record on both peers.

From@’A’
Change@’A’
To@’A’

Local Layer
Data@’A’

traceGlobal Layer
globalvirtualview

From@’X’
Change@’X’
To@’X’

Data@’X’…
Peer A Peer X

Exchange ViewChange ViewData View

Figure 6. Local layer vs. global layer

The global layer lies over the local layer and provides
three global virtual views to allow the user to write
tracing queries easily. We can summarize the relationship
between the local layer and the global layer in Fig. 6.

C. Query Specification

When a tracing requirement occurs, we need to ag-
gregate the relevant historical information stored in the
distributed peers. Since recursive processing is required
to collect historical information, our framework provides
a modified version of theDatalog query language [25].
We now give some tracing query examples.

Example 1:Suppose that peer A holds a record with
title t1 and authora1 and that peer A wants to know

which peer originally created the record. The following
query fulfills this requirement:

Query Q1
ID(I1) ← Data[Novel](’A’, I1, ’t1’, ’a1’),
ID(I2) ← ID(I1) , Change[Novel](’A’, I2, I1,)
BReach(P, I1) ← ID(I2),

Exchange[Novel](P, ’A’, I1, I2,)
BReach(P, I1) ← BReach(P, I),

Change[Novel](P, ’A’, I1, I2,)
BReach(P, I1) ← BReach(P, I2),

Exchange[Novel](P1, P, I1, I2,)
Origin(P) ← BReach(P, I),

¬ Exchange[Novel](, P, , I,)
¬ Change[Novel](P, I1, I,),
I1 != NULL

Query(P) ← Origin(P)

I and P are variables and ‘’ indicates an anonymous
variable. The relationID defined by the first two rules is
used to find the originally assigned ID at the local peer.
The relationBReach defined by the third and fourth rules
means “Backward Reachable”. It recursively traverses
the arrival path of tuple(t1, a1) until it reaches the
origin. The fifth rule is used for finally determining the
originating peer name—it should be reachable from peer
A and should not have received the record from any other
peer. The last rule gives the final result expected by the
user. 2

Example 2:The example shown above focused on
backward traversals of lineage information. However, it
is also possible to issue queries for forward traversals.
Query Q2, which retrieves all the peers which have copied
the record (t1, a1) owned by peer A, can be described as
follows.

Query Q2
Reach(P, I1) ← Data[Novel](’A’, I2, ’t1’, ’a1’),

Exchange[Novel](’A’, P, I2, I1,)
Reach(P, I1) ← Reach(P, I2),

Change[Novel](P, I2, I1,), I1 != NULL
Reach(P, I1) ← Reach(P1, I2),

Exchange[Novel](P1, P, I2, I1,)
Query(P) ← Reach(P,)

The first rule is used to find which peers copied record
(t1, a1) from peer A directly. The second and third rules
retrieve all the peers which copied the record indirectly.
After that, relationReach will contain all peer names
which copied the target record of peer A. In contrast to
query Q1, the query result may change as time passes.2

Note that Queries 1 and 2 perform backward and
forward traversals of lineage information, respectively.
However, Datalog is so flexible that we can specify
various types of queries using the three global views.
Please refer to [6], [7] for details.

In our framework, we limit the allowable form of
a tracing query. Roughly speaking, a limited class of
Datalog¬ programs that are safe, linear, and stratifiable
is acceptable. Even with such constraints, we can still
preserve the expressibility of tracing queries and can
support efficient query execution. The detail is given
in [26].

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 31

© 2011 ACADEMY PUBLISHER

D. Query Processing

In the original framework as described above, each peer
only maintains the minimum amount of information that
is required to represent its own record set and local tracing
information in the local layer. Remember that tracing
queries are described in Datalog in terms of virtual views
in the global layer. The first step of query processing is
to transform the given query to suit the organization of
the local layer. This step is performed based on simple
transformation rules [26].

Example 3:For example, Query Q1 is mapped as
follows:

Mapped Query Q1
ID(I1) ← Data[Novel]@’A’(I1, ’t1’, ’a1’),
ID(I2) ← ID(I1) , Change[Novel]’A’(I1, I2,)
BReach(P, I1) ← ID(I2),

From[Novel]@A(I2, P, I1,)
BReach(P, I1) ← BReach(P, I2),

Change[Novel]@P(I1, I2,)
BReach(P1, I1) ← BReach(P, I2),

From[Novel]@P(I2, P1, I1,)
Origin(P) ← BReach(P, I),

¬ From[Novel]@P(I, , ,),
¬ Change[Novel]@P(I1, I,), I1 != NULL

Query(P) ← Origin(P)

The symbol ‘@’ is a location specifierwhich indicates
the location (peer id) of the relation in the local layer.
If a constant peer name follows this symbol such as
@’A’ , it means that the relation is located at peer A.
From[Novel]@P2 represents theFrom[Novel] rela-
tion at peerP2, where P2 is a variable representing a
peer name. The variable is instantiated while the query is
being processed. This query is mainly represented using
the From[Novel] and Change[Novel] relations in
the local layer since it detects past histories. 2

In the second step of query processing, the mapped
query is executed with the cooperation of the relevant
peers in the P2P network. The query processing strategy
we mainly employed is thesemi-naive method, which
is a common query processing strategy in deductive
databases [25]. We extended the semi-naive method to
cope with our situation, in which a query is executed
in a distributed environment. The detail of the query
processing method is given in [26].

Example 4:Figure 7 illustrates how query Q1 is ex-
ecuted for our example. Since we do not have enough
space for describing the query processing algorithm, the
process is explained intuitively. First, the initial peer A
executes the query locally and gets intermediate results
ID, ∆new

BReach and BReachnew. ID is only returned as the
ID if peer A created the record in the local database.
BReachnew contains the information of the peers which
are on the path from peer A to the origin.∆new

BReach contains
tuples which are new in this iteration step. This drives the
query process based on the semi-naive method. Since peer
A has reached the fixpoint, it tries to find other peers to
continue the query process. In this case, peer B is such
a peer—the decision about which peer to choose is made
by considering the contents of∆new

BReach.

After receiving the intermediate results from peer A,
peer B starts the local query process and gets new∆new

BReach

and BReachnew. Then the query is forwarded to peer
C and the semi-naive query evaluation iterates twice in
peer C. Finally, the query is forwarded to peer D. In the
query process of peer D, the last two rules are executed
because peer D is the origin. In this case, the semi-naive
query evaluation iterates twice in peer D and reaches the
fixpoint. Since there are no following peers, we terminate
the process, and the results are returned back along the
forwarding path. 2

newBReach∆P IB #B1

peer A(a) Execute Q1_init

exec_query@B
newBReach∆P IC #C3

peer B
P IB #B1C #C3

newBReach

newBReach
(b) Iterative execution

P IB #B1
exec_query@C

peer D
newBReach(d) Iterative execution

newOriginPDnewQuery∆ PD
newQueryPD

I#A1
ID

P IB #B1C #C3C #C1D #D1

(c) Iterative execution
exec_query@DnewBReach∆P ID #D1

P IB #B1C #C3C #C1D #D1
peer C

newBReach

Figure 7. Execution of Query Q1 based on the semi-naive method

This is a rough description of query processing. To
understand the remaining parts of this paper, it is not
necessary to know the details of query processing. We
only need to understand the essential idea: a tracing query
is executed by forwarding messages along the record
exchange paths and the process is driven by the contents
in the database of each peer.

As shown in the example, the query processing is based
on the “pay-as-you-go” approach [8]. This means that we
need to aggregate the required historical information from
the distributed peers when a tracing query is issued by a
user; the user should pay the cost when he or she traces
information.

E. Problem Statement

One of the problems we consider isefficiency. The
advantages of the “pay-as-you-go” approach are that it is
simple and there is no redundancy with respect to storage
cost. However, when we perform query processing, it is
necessary to pass the requirement to all the related peers
as the process traces the path along which the records
were exchanged. Generally, the cost for query processing
is relatively large.

Another problem isfault-tolerance. Unexpected fail-
ures may occur in a P2P network due to network faults
and other reasons. In addition, a peer may leave the

32 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

network without notice.2 A failure may affect query
processing because we cannot forward the query to a
missing peer.

We should construct the framework so that it can
automatically recover from partial failures without seri-
ously affecting the overall performance and continue to
process a tracing query in an acceptable way. To solve
these problems, we consider using materialized views to
enhance our traceable P2P record exchange framework.

IV. CONSTRUCTINGMATERIALIZED V IEWS

A. Strategies for the Construction of Materialized Views

Materialized views, which can be used to summarize,
precompute, and replicate data, play important roles in
databases [23]. In our case, we use them to perform data
replication to improve the efficiency and the reliability of
the framework. We assume that each peer maintains four
materialized views:MVData, MVChange, MVFrom, and
MVTo. These correspond to the Data, Change, From, and
To relations in the local layer, respectively.

In the following, we explain the strategies and decisions
involved in the construction of materialized views.

1) Each peer maintains four materialized views, but
the contents of materialized views located at dif-
ferent peers may be different. For example, mate-
rialized viewMVData@’A’ may be different from
MVData@’B’ .

2) Not all of the records are stored in materialized
views, but only the exchanged records are stored.
For example, suppose that a record, say #A1, was
created in a peer A, but it had not been exchanged in
the P2P network until now. In this case, other peers
do not require the information that record #A1 is
recoverable and traceable; only peer A should be
responsible for #A1. In contrast, if peer B copied
record #A1 from peer A, the copying history is
important to peers A and B for tracing, and should
be recoverable.

3) The third decision is related to the replication
policy. A simple approach is to replicate the data
in a peer to some other peer(s). We take a different
approach: the peer in which a record is replicated
is decided based on the lineage, that is, the way
that the record has been copied through the P2P
network. This means that different records in the
local relations of a peer may be replicated in the
materialized views at different peers. As a result,
materialized views in one peer may store records
incorporated from many peers. As shown below, we
can execute tracing queries efficiently based on this
policy.

2In our scenario, each peer is rather stable in contrast to conventional
P2P file exchange. For example, in scientific information exchange,
each peer may correspond to a research organization. In this case, an
unexpected failure would be a rare event, but it may happen.

B. Target Scope

We assume that tracing queries do not occur frequently
so that it is not a wise idea to pay high maintenance costs
only for the efficient tracing. In our case, materialized
views do not store all of the information in the whole
P2P network. They are only used to store information
held by the peers in a limited scope.

A target scopeis determined by the materialized view
maintenance policy. The maintenance policy employed
in this paper is based on the number ofhops. In this
paper, the number of hops means the number of peers
involved in the process of record exchange for the given
record. Materialized views in each peer store the related
information for up tok hops around it. For example, if
peer A received a record from peer B and peer B received
the record from peer C, peer C is in two hops from peer
A in terms of that record. Thus, ifk = 2 is used for
materialization, materialized views at peer C should store
the information that peer A has received the record. In
addition, the materialized views at peer A also should
store the information that peer C has a copy of the record.

Example 5:Figure 8 shows the target scope of the
materialized views for peer X in case ofk = 2. We
assume that the record(t1, a1) was originally created
by peer D and then peer D published the record to the P2P
network. Suppose that some peers copied the data at some
moments. A solid arrow in the figure shows the route of
the record that has been copied. In this case, peers A, B, I,
and E are the peers in the scope of the materialized views
at peer X since there were record exchanges between
them and peer X is connected directly or indirectly in two
hops. Thus, the materialized views MVData, MVChange,
MVFrom, and MVTo at peer X should store the related
information in the local layer Data, Change, From, and
To relations at peers A, B, I, and E. 2

D

A
XH

G
F I

B

E
C

(t1,a1)created@’D’
Figure 8. Target scope for peer X (k = 2)

C. Definitions of Materialized Views

In the following, we show the representation of four
materialized views at peer X for the case ofk hops. Like
a tracing query, they are expressed in Datalog using the
Data, Change and Exchange virtual views in the global
layer.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 33

© 2011 ACADEMY PUBLISHER

a) MVData: MVData is a materialized view that
stores the exchanged records which are in the target scope.
MVData stored at peer X can be represented as follows.

Definition of MVData at peer X
RData1(P, I1, T, A, H)

← Data[Novel](’X’, I2, T, A),
Exchange[Novel](P, ’X’, I1, I2,),

H=1
RData1(P, I1, T, A, H)

← RData1(P, I2, T, A, H),
Change[Novel](P, I1, I2,)

RData1(P, I1, T, A, H)
← RData1(P1, I2, T, A, H1),

Exchange[Novel](P, P1, I1, I2,),
H=H1+1, H<=k

RData2(P, I1, T, A, H)
← Data[Novel](’X’, I2, T, A),

Exchange[Novel](’X’, P, I2, I1,),
H=1

RData2(P, I1, T, A, H)
← RData2(P, I2, T, A, H),

Change[Novel](P, I1, I2,)
RData2(P, I1, T, A, H)

← RData2(P1, I2, T, A, H1),
Exchange[Novel](P1, P, I2, I1,),

H=H1+1, H<=k
RData(P, I, T, A) ← RData1(P, I, T, A, H)
RData(P, I, T, A) ← RData2(P, I, T, A, H)
Query(P, I, T, A) ← RData(P, I, T, A)

In this program, the variable H is used to count the
number of hops. The maximum value of H should be
set to be equal tok. RData1 is the collection of the
records withink hops related to the copied record owned
by peer X.RData2 stores the information about which
peers withink hops copied the records owned by peer X.
RData1 andRData2 also store the contents of records
in these peers. Peer X executes the program and the result
of the program (Query relation) is finally stored as a
materialized viewMVData at peer X.

Unfortunately, materialized viewMVData@’X’ as
constructed above is only effective for backward traversal
when we trace the lineage of a record retrospectively. For
efficient forward traversal, we also define a program that
collects information for the target record for the forward
direction. The program is similar to the example above
(although it is slightly simpler) so we omit the detail.
Finally, the results of the two programs are unioned to
get the materialized viewMVData@’X’ .

b) MVChange: This materialized view is used to
store the change histories of the exchanged records in the
target scope. The definition given is for collecting infor-
mation by backward traversal. As in the case of MVData,
we define a similar program for forward traversal, and the
unified query results are stored asMVChange@’X’.

Definition of MVChange at peer X
RPeer1(P, I1, T, A, H)

← Data[Novel](’X’, I2, T, A),
Exchange[Novel](P, ’X’, I1, I2,),

H=1
RPeer1(P, I1, T, A, H)

← RPeer1(P, I2, T, A, H),
Change[Novel](P, I1, I2,)

RPeer1(P1, I1, T, A, H)
← RPeer1(P2, I2, T, A, H1),

Exchange[Novel](P1, P2, I1, I2,),
H=H1+1, H<=k

RChg1(P, I1, I2, T, H)
← RPeer1(P, , , , H),

Change[Novel](P, I1, I2, T)
RPeer2(P, I1, T, A, H)

← Data[Novel](’X’, I2, T, A),
Exchange[Novel](’X’, P, I2, I1,),

H=1
RPeer2(P, I1, T, A, H)

← RPeer2(P, I2, T, A, H),
Change[Novel](P, I1, I2,)

RPeer2(P, I1, T, A, H)
← RPeer2(P1, I2, T, A, H1),

Exchange[Novel](P1, P, I2, I1,),
H=H1+1, H<=k

RChg2(P, I1, I2, T, H)
← RPeer2(P, , , , H),

Change[Novel](P, I1, I2, T)
RChg(P, I, I1, T) ← RChg1(P, I, I1, T, H)
RChg(P, I, I1, T) ← RChg2(P, I, I1, T, H)
Query(P, I, I1, T) ← RChg(P, I, I1, T)

Both MVData and MVChange will increase the costs
of storage and management for the operation and mainte-
nance of materialized views. However, there are benefits
to introducing them: they not only improve query process-
ing efficiency, but they can also be used for the recovery
of data lost when a peer suddenly leaves the P2P network.

c) MVFrom: This materialized view stores the infor-
mation about records which were copied from other peers
within k hops. The materialized viewMVFrom located at
peer X can be described as follows.

Definition of MVFrom at peer X
ID(I1) ← Data[Novel](’X’, I1, T, A),
ID(I2) ← ID(I1), Change[Novel](’X’, I2, I1,)
FromP(P, I1) ← ID(I),

Exchange[Novel](P, ’X’, I1, I,)
IDP(I1) ← FromP(P, I1),

Data[Novel](P, I1, T, A)
IDP(I2) ← IDP(I1),

Change[Novel](P, I2, I1,)
FromH(P, I, P1, I1, , H) ← IDP(I),

Exchange[Novel](P1, P, I1, I,), H=1
FromH(P, I1, P1, I2, , H)

← FromH(P I, P1, I1, , H) ,
Change[Novel](P1, I2, I1,)

FromH(P, I1, P1, I2, , H)
← FromH(P2, I, P, I1, , H1),

Exchange[Novel](P1, P, I2, I1,),
H=H1+1, H<=k

Query(P, I, P1, I1, , H)
← FromH(P, I, P1, I1, , H)

MVFrom is effective for tracing records retrospectively
in the backward direction. Thus, in contrast to MVData
and MVChange, only one program is used to construct
the view. As described below, the management cost is
negligible (though an additional storage cost is incurred)
because path information caching and record insertion to
the materialized view are executed only once when the
record is exchanged.

34 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

d) MVTo: A similar idea can be applied to the To
relation. The materialized viewMVTostores information
about which peers withink hops copied records from peer
X.

Definition of MVTo at peer X
ToP(P, I1) ← Data[Novel](’X’, I2, T, A),

Exchange[Novel](’X’, P, I2, I1,),
ToP(P, I2) ← ToP(P, I1),

Change[Novel](P, I1, I2,), I2 != NULL
ToH(P, I, P1, I1, , H) ← ToP(P, I),

Exchange[Novel](P, P1, I, I1,),H=1
ToH(P1, I1, P2, I2, , H)

← ToH(P, I, P1, I1, , H1)
Exchange[Novel](P1, P2, I1, I2,),
H=H1+1, H<=k

Query(P, I, P1, I1, , H)
← ToH(P, I, P1, I1, , H)

In contrast to MVFrom, the management cost of MVTo
is not negligible. This is because we need to deal with
future events for the management of MVTo whereas only
past events are stored in MVFrom. For example, in Fig. 8,
when the record is copied from peer I to peer E, it is
necessary to notify peer X about the copy event. In other
words, not only peer I and E but also peer X is involved
in the transaction of copying the record from peer I to
peer E. This introduces an additional overhead to a certain
extent.

Finally, we mention our decision rule for the parameter
k, which determines the policy of materialized view
maintenance. In our approach,k is initially fixed to
some value (e.g.,k = 2), when P2P record exchange
is started. An alternative strategy would be to treatk as
a variable, allowing differentk values to be selected for
different peers. This option is interesting, especially when
some peers have large storage and high processing power.
However, to simplify the algorithms, we do not consider
this option and leave the problem for the future.

V. USING MATERIALIZED V IEWS FOREFFICIENCY

AND FAULT-TOLERANCE

Materialized views play an essential role for efficient
query processing in current database systems. In this
section, we first show how we can use materialized
views for efficient query processing in our framework.
Next, we discuss how we can use materialized views to
cope with failures. Materialized views can be considered
as replicated data so that we can utilize them when
some peer fails. Finally, we discuss how to maintain
materialized views in a consistent manner.

A. Query Processing with Materialized Views

For a peer, say X, four materialized views
MVData@’X’ , MVChange@’X’, MVFrom@’X’,
and MVTo@’X’ are locally stored as base relations. To
improve query performance using them, we perform
query rewriting. We illustrate the outline of this procedure
using an example.

Example 6:Based on the materialized views, we can
rewrite the Example Query Q1 in Section III as follows.

Mapped Query Q1
ID(I1) ← Data[Novel]@’A’(I1, ’t1’, ’a1’),
ID(I2) ← ID(I1) , Change[Novel]’A’(I1, I2,)
BReach(P, I1) ← ID(I2),

From+[Novel]@A(I2, P, I1,)
BReach(P, I1) ← BReach(P, I2),

Change+[Novel]@P(I1, I2,)
BReach(P1, I1) ← BReach(P, I2),

From+[Novel]@P(I2, P1, I1,)
Origin(P) ← BReach(P, I),

¬ From+[Novel]@P(I, , ,),
¬ Change+[Novel]@P(I1, I,), I1 != NULL

Query(P) ← Origin(P)

This query finds the origin of a target record. The dif-
ferences from the original mapping shown in Example 3
are in the third to sixth rules. In these rules, the predicate
namesFrom and Change are replaced byFrom+ and
Change+ , respectively. From+ represents a relational
view obtained by the union of the From relation and the
MVFrom materialized view. For example,From+ for peer
X is defined by

From+[Novel]@X := From[Novel]@X(I1, P, I2, T)
∪ MVFrom[Novel]@X(I1, P, I2, T) .

Change+ and other views are defined in a similar man-
ner. 2

The motivation for this query rewriting is to speed up
the process of backward traversal. The query rewriting
is easy: as shown in the example, we simply replace
predicatesData , Change , From, and To to Data+ ,
Change+ , From+, andTo+.3 For this example, we can
skip some peers and can reduce the number of messages
exchanged between peers while query processing by using
MVFrom and MVChange. The query is executed based
on the method described in Subsection III-D; we do not
need to modify the query processing strategy.

Example 6: (continued) Figure 9 illustrates the query
execution process for processing query Q1 using the
materialized views. If we use the original query without
materialized views, the query is forwarded between peers
in a step-by-step manner asA → B → C → D · · ·. In
contrast, the modified query using materialized views is
forwarded asA → D → G → · · ·.

CBA FED IHG J … …
Figure 9. Processing Query Q1 using materialized views (k = 2)

In this example, we can skip peers B and C because
the information for backward traversal using the infor-
mation of B and C is stored inMVChange@’A’ and
MVFrom@’A’. Thus, instead of query forwarding, peer
A uses the information in the materialized views and
executes the query locally until it reaches the fixpoint,
then decides the next peer (peer D in this case) to which
the query should be forwarded. Then, peer D follows a

3Strictly speaking, there is no gain from usingData+[Novel]@’A’
andChange+[Novel]@’A’ if we consider the semantics of the query.
However, since a union operation can be efficiently processed when we
issue an SQL query to the underlying DBMS, the overhead is negligible.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 35

© 2011 ACADEMY PUBLISHER

similar strategy and skips peers E and F. In this way the
query processing is accelerated. 2

Next we give another example.
Example 7:Query 2 can be transformed using the

materialized views as follows. In this example, peer A
wants to detect which peer copied the record (t1, a1)
provided by peer A. The rewriting strategy is same as
that for Query Q1.

Mapped Query Q2
Reach(P, I1) ← Data+[Novel]@’A’(I2, ’t1’, ’a1’),

To+[Novel]@’A’(I2, P, I1,)
Reach(P, I1) ← Reach(P, I2),

Change+[Novel]@P(I2, I1,), I1 != NULL
Reach(P, I1) ← Reach(P1, I2),

To+[Novel]@P1(I2, P, I1,)
Query(P) ← Reach(P,)

The query process is illustrated in Fig. 10. In our
original approach without materialized views, the query
processing starts at peer A and the query fragments
generated at peer A are first forwarded to peers B and
C, and then peer B forwards them to peer D and peer C
forwards them to peers E and F, and so on. The query is
executed in this way until it reaches the ends of forward
paths.

B CD
A

I FEHG J
X

… …
… … … …… …… … … …… …K… …

Figure 10. Processing Query Q2 using materialized views (k = 2)

When the materialized views are used, peer A can
perform more of the query processing locally without
communicating B, C, D, E, and F since they are in the
target scope of peer A in terms of this record. Then the
query execution is continued by peers G, H, I and J. In this
way, the number of peers involved in the query process
is greatly reduced. 2

These two examples indicate that materialized views
can be used to speed up query processing. Although they
are special examples, they do illustrate our main idea
of utilizing materialized views for efficient traversal over
record exchange paths. In our framework, forward and
backward traversals over record exchange paths occur
often, and their efficient processing is quite important.
Thus, by using materialized views, we can greatly im-
prove performance.

B. Achieving Fault Tolerance Using Materialized Views

One important issue for executing a tracing query in
a decentralized and autonomous P2P network is fault
tolerance. If a peer which is located in a record exchange
path for the given query leaves the network, the query

execution cannot continue and will lead to an incorrect
result. However, we constructed materialized views with
redundancy. So, even if a peer leaves a P2P network due
to some failure, we can recover the part of its contents
which is used for lineage tracing by collecting information
from related peers.

For recovery purposes, we assume that a peer (say
X) specifies one peer (say Y) as itsbackup peer. The
backup peer Y maintains the information required for
starting the recovery process for peer X. The backup
peer Y contains a special relationFriend@’Y’(P1,
P2) , which contains tuples with the form(’X’, P) .
This represents the information that peer X has exchanged
some record with peer P. We call P afriend of X. When
peer X specifies peer Y as its backup peer and Y accepts
the offer, the friend history of X is continually managed
in peer Y.

We illustrate the process of data recovery using an
example.

Example 8:Suppose that peer X in Fig. 8 suddenly
leaves the P2P network due to a failure. Let the backup
peer of X be peer Y. We assume that the information
that peer Y is the backup peer of peer X is stored in
a distributed hash table index maintained in the P2P
network, and assume that some peer (say Z) is elected
to cover the role of peer X for tracing.

To recover lineage information which was stored in
peer X, peer Z executes the following program.4 This
program is written at the local layer level.

Recovery Program for Peer X
From[Novel]@’X’(I1, P, I2, T) ←

Friend[Novel]@’Y’(’X’, F),
To[Novel]@F(I2, ’X’, I1, T)

To[Novel]@’X’(I1, P, I2, T) ←
Friend[Novel]@’Y’(’X’, F),
To[Novel]@F(I2, ’X’, I1, T)

Data[Novel]@’X’(I, T, A) ←
From[Novel]@’X’(I, P, ,),
MVData[Novel]@P(’X’, I, T, A)

Data[Novel]@’X’(I, T, A) ←
To[Novel]@’X’(I, P, ,),
MVData[Novel]@P(’X’, I, T, A)

Change[Novel]@’X’(I1, I2, T) ←
From[Novel]@’X’(I, P, ,),
MVChange[Novel]@P(’X’, I1, I2, T)

Change[Novel]@’X’(I1, I2, T) ←
To[Novel]@’X’(I, P, ,),
MVChange[Novel]@P(’X’, I1, I2, T)

The first rule recovers the information of the
From[Novel] relation originally stored in peer X.
It uses the information of theFriend[Novel] re-
lation in the backup peer Y to find friends of peer
X. If a friend of X sent a record in the past, its
To[Novel] relation contains the history of the event.
In this rule, we collect the information needed to recover
From[Novel]@’X’ from the friends. Similarly, the
second rule recoversTo[Novel]@’X’ . The third and
fourth rules are for recovering theData[Novel]@’X’

4Strictly speaking, this is not a valid program. As shown in Queries
Q1 and Q2, valid programs should contain a rule which derives a
‘‘Query’’ relation, which is the result of the Datalog program
execution.

36 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

relation. The third rule uses theFrom[Novel]@’X’
relation which was just recovered. This rule utilizes the
fact if peer X copied a record with id I from peer P,
thenMVData[Novel] at peer P holds the backup data
of Data[Novel]@’X’ . The fourth rule follows the
same pattern but uses theTo[Novel]@’X’ relation.
Similarly, Change[Novel]@’X’ is recovered using the
fifth and sixth rules. The four recovered relations are
finally stored in peer Y.

In our framework, we assume that a global name
service which maps a peer name into its IP address is
available. After the recovery is done, we modify the
mapping so that a message to peer X is forwarded to
peer Y. Thus, peer Y can behave as if it is peer X, and
then the tracing facility will work correctly. 2

We also recover the four materialized views (e.g.,
MVData[Novel]@’X’) which were originally stored in
peer X, although this is not discussed here. This is not
difficult because we have already recovered the four base
relations of peer X.

In this subsection, we have described a recovery
method to cope with a failure. As mentioned previously,
we consider that the sudden departure of a peer is a rare
event in our framework. We assume that each peer usually
follows a protocol when it leaves the P2P network. If peer
X leaves, it selects a backup peer Y. After Y copies the
information related to tracing from X, peer X can leave
the network without introducing a tracing problem.

C. Maintenance of Materialized Views

View maintenance means the process for updating ma-
terialized views in response to changes in the underlying
database. As we described above, materialized views can
speed up query processing greatly and can provide fault
tolerance, but they have to be kept up to date. If some
of the base relations are changed, materialized views
must be updated to ensure correctness. For maintaining
general recursive views in deductive databases, several
methods have been proposed. For example, [24] presents
theDRed(Delete and Rederive) algorithm that can handle
incremental updates. However, the algorithm assumes a
centralized environment, and it is quite costly to apply the
algorithm in our context because the maintenance process
is propagated among distributed peers.

In our case, we can utilize the feature of our framework
that every update can be handled as a tuple insertion;
when we delete a record, we do not delete its correspond-
ing tuple in the database but insert a tuple to indicate that
the tuple was deleted. If database updates do not involve
tuple deletion and modification, the view update problem
becomes easier.

Example 9:Consider the case that materialized views
are created with the parameterk = 2. Assume that record
#X1 in peer X is a copy of record #Y1 in peer Y, and
record #Y1 is a copy of record #Z1 in peer Z. We consider
the updating of record #X1 in peer X. Sincek = 2, peer Y
contains the information for record #X1 in its materialized
views MVData@’Y’ , MVChange@’Y’, MVFrom@’Y’,

and MVTo@’Y’. In addition, peer Z contains similar
information in its materialized views. Depending on the
update type, a new tuple is inserted in each of the
following local relations and materialized views:

• update of record #X1:Data@’X’ , Change@’X’ ,
MVData@’Y’ , MVData@’Z’ , MVChange@’Y’,
andMVChange@’Z’

• deletion of record #X1: Change@’X’ ,
MVChange@’Y’, andMVChange@’Z’

• copy of record #X1 to other peer W:
Data@’W’ , To@’X’ , From@’W’, MVData@’X’ ,
MVData@’Y’ , MVTo@’Y’, MVTo@’Z’, and
MVFrom@’W’.

This means that there are onlyinsertionsin the database
updates in our framework. 2

Materialized view maintenance for the insertion case is
fairly easy. We run the semi-naive method until the fix-
point. When we reach the fixpoint, the current incremental
maintenance is finished [24].

Finally, we should mention the additional care that must
be taken with Friend relations when a copy event happens.
Consider the copy event shown in the example above:
A tuple Friend(’X’, ’W’) is inserted in the Friend
relation in the backup peer of X, if the tuple is not already
in that relation. Similarly a tupleFriend(’W’, ’X’)
is inserted in the Friend relation in the backup peer of W.

VI. EXPERIMENTS AND DISCUSSIONS

The purpose of the experiments is to observe the
benefit of using materialized views in a simple P2P record
exchange model. We used the two queries in Section III
and evaluate the query processing cost for different values
of parameterk.

The simulation model is summarized as follows. We
initially createN = 100 peers andM = 1 record in each
peer. After that, we perform an iteration: we randomly
select a peer X, and peer X randomly selects another peer
Y; then peer X selects one record randomly from Y and
copies it into its local database. We terminate the iteration
when the average length of copy paths reaches a specified
threshold value. After this preparation is finished, we
execute tracing queries.

In this simple scenario, we do not consider record
creation, modification, or deletion. The reason is that,
although such behaviors are important to modeling the
actual behavior of our framework, they do not directly
influence the performance of query processing for tracing
queries. The major factor is the length of a record copy
path, which directly influences the forward and backward
traversal cost.

Figure 11 shows the results when Query Q1 is executed
based on the strategies shown in the former section. The
performance is measured by the number of peers which
are involved in the query processing. We compared the
performance of three approaches. The basic framework is
the baseline method without materialized views. The en-
hanced frameworks (k = 1, 2) are based on the proposed
method with the corresponding parameter setting.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 37

© 2011 ACADEMY PUBLISHER

020406080100120

10 20 30 40 50 60 70 80 90 100Number of i
nvolved pee
rs

Average length of copy paths

Experimental results for Query Q1Basic frameworkEnhanced framework (k=1)Enhanced framework (k=2)

Figure 11. Query processing for Query Q1 (backward traversal)

The experimental results indicate that the use of ma-
terialized views actually contributes to skipping peers.
The performance fork = 2 is better than that for
k = 1 as we expected. Although we did not measure
the actual processing time since the factor is highly
dependent on the system setting, we think that the number
of peers involved in query processing directly influences
the query processing time. The reason is that the amount
of communication between peers and the total number of
queries issued in the peers are tightly connected with the
number of peers involved, and they are the major factors
of the query processing cost.

Figure 12 shows the experimental results for Query
Q2. The overall behavior is similar to that of Query Q1.
The difference is that the overall query processing cost is
generally larger than that for Query Q1. This is because
query processing for forward traversal needs to follow
many branches of copy paths. From this experiment, we
can see that using the materialized views greatly reduced
the query processing cost.

020406080100120

10 20 30 40 50 60 70 80 90 100Number of i
nvolved pee
rs

Average length of copy paths

Experimental results for Query Q2Basic frameworkEnhanced framework (k=1)Enhanced framework (k=2)

Figure 12. Query processing for Query Q2 (forward traversal)

We omitted the experimental result for storage cost, but
the behavior of the proposed method is obvious. If we
use the parameter settingk = 1, the storage cost roughly
becomes3S compared to the normal storage costS. This
is because we need to maintain additional two copies of
lineage information for each record in the forward and
backward directions. Ifk = 2 is used, the storage cost
will reach5S because we need to consider records within
two hops. Note that these estimates are maximal because

we do not need to manage the information for a record
which is not exchanged in the P2P network.

As described above, the parameterk has a strong
influence on the storage cost. Although the improvement
of query processing time appeals, you may say that the
selection of k = 2 is not a good idea, considering
the storage cost. As an alternative strategy, we can use
different parameter settings for MVData, MVChange,
MVFrom, and MVTo. For example, we can usek = 1
for MVData and MVChange and usek = 2 for MVFrom
and MVTo. In this case, we can save the storage costs for
MVData and MVChange but still support fault tolerance.
This setting also assures the validity of query results and
is effective for queries which only access From or To
relations and do not access MVData and MVChange. We
leave this alternative strategy evaluation to future work.

We must also mention the maintenance cost. The
evaluation of the maintenance cost is not easy because it
also depends on the system settings and the environment.
Roughly speaking, the maintenance cost mainly consists
of the cost of distributed transactions. Recall the example
shown in Subsection V-C. If we update record #X1 in
peer X, we need to perform a distributed transaction
among peers X, Y, and Z. If we use a largek value,
the communication cost may not be negligible. In the
situation where record exchanges occur quite frequently,
we may need to select a smallk value for efficiency.
Although our framework incurs a maintenance cost, it
would be more efficient than the centralized approach in
which all the histories are maintained in one or more
servers. In such a case, the processing cost for query
processing and maintenance would become the bottleneck
for the whole system.

Finally, we consider the fault tolerance issue. Our
method can cope with the failure of one peer. If multiple
failures occur simultaneously, we may not be able to
recover the lineage information for tracing. For example,
when two related peers suddenly leave the network at the
same time, especially when a peer and its backup peer
leave together, it is hard to recover the correct lineage.
However, we assume that such events are quite rare in
our context. We would like to leave the treatment of such
a rare case for future research.

VII. C ONCLUSIONS ANDFUTURE RESEARCH

For efficient query processing, data replication and
caching are popular techniques. Taking into account the
practical requirements of tracing, we added additional
features to our traceable P2P record exchange framework.
Although the storage and maintenance cost will increase,
the query processing cost can be reduced and failure of
peer can be overcome.

We have described how to define materialized views,
how to use them to improve query processing perfor-
mance, and how to cope with failures. A method for main-
taining materialized views was also given. Nevertheless
much work remains to be done. In particular, we need to
consider the trade-off between query processing cost and

38 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

maintenance cost when evaluating the total cost reduction.
There are several further issues for future research which
can be summarized as follows.

• Enhancement of query expression power: We need
to enhance the strategies to handle more complex
tracing queries (e.g., tracing queries that involve ag-
gregation requirements). The effectiveness and lim-
itations of the declarative language-based approach
will become clearer.

• Efficient coupling with DBMSs: For implementing
our framework, we assume that a local record man-
agement system in each peer is implemented using a
conventional RDBMS. We would like to use more ef-
fectively powerful and robust DBMS functionalities
that can come from the tight coupling of the record
management system and the underlying RDBMS.

• Prototype system implementation and experiments:
We are currently developing a prototype system of
our P2P record exchange framework, and we have
also designed a P2P network simulator that can be
used for simulating our prototype system as a virtual
P2P network. These developments will have a posi-
tive feedback and help to improve our fundamental
framework.

ACKNOWLEDGMENTS

This research was partly supported by Grants-in-Aid
for Scientific Research (#21013023, #22300034) from the
Japan Society for the Promotion of Science (JSPS).

REFERENCES

[1] “Gnutella,” http://en.wikipedia.org/wiki/Gnutella.
[2] “Napster,” http://en.wikipedia.org/wiki/Napster.
[3] “ICQ,” http://www.icq.com.
[4] P. Buneman, J. Cheney, W.-C. Tan, and S. Vansummeren,

“Curated databases,” inProc. ACM PODS, 2008, pp. 1–12.
[5] W.-C. Tan, “Research problems in data provenance,”IEEE

Data Engineering Bulletin, vol. 27, no. 4, pp. 45–52, 2004.
[6] F. Li, T. Iida, and Y. Ishikawa, “Traceable P2P record

exchange: A database-oriented approach,”Frontiers of
Computer Science in China, vol. 2, no. 3, pp. 257–267,
2008.

[7] F. Li and Y. Ishikawa, “Traceable P2P record exchange
based on database technologies,” inProc. APWeb, ser.
LNCS, vol. 4976, 2008, pp. 475–486.

[8] A. Halevy, M. Franklin, and D. Maier, “Principles of
dataspace systems,” inProc. ACM PODS, 2006, pp. 1–9.

[9] K. Aberer and P. Cudre-Mauroux, “Semantic overlay net-
works,” in VLDB, 2005, (tutorial notes).

[10] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Su-
ciu, and I. Tatarinov, “The piazza peer data management
system,”IEEE Transactions on Knowledge and Data En-
gineering, vol. 16, no. 7, pp. 787–798, 2004.

[11] J. Goldstein and P.-A. Larson, “PeerDB: A P2P-based
system for distributed data sharing,” inProc. ICDE, 2003,
pp. 633–644.

[12] T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton,
Z. G. Ives, and V. Tannen, “ORCHESTRA: Facilitating
collaborative data sharing,” inProc. ACM SIGMOD, 2007,
pp. 1131–1133.

[13] Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir, “OR-
CHESTRA: Rapid, collaborative sharing of dynamic data,”
in Proc. Conf. on Innovative Data Systems Research (CIDR
2005), 2005, pp. 107–118.

[14] Y. Cui and J. Widom, “Lineage tracing for general data
warehouse transformations,” inProc. VLDB, 2001, pp.
471–480.

[15] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom,
“ULDBs: Databases with uncertainty and lineage,” inProc.
VLDB, 2006, pp. 953–964.

[16] J. Widom, “Trio: A system for integrated management of
data, accuracy, and lineage,” inProc. Conf. on Innovative
Data Systems Research (CIDR 2005), 2005, pp. 262–276.

[17] D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijay-
vargiya, “An annotation management system for relational
databases,” inProc. VLDB, 2004, pp. 900–911.

[18] P. Buneman, S. Khanna, and W.-C. Tan, “Why and where:
A characterization of data provenance,” inProc. ICDT, ser.
LNCS, vol. 1973, 2001, pp. 316–330.

[19] ——, “Data provenance: Some basic issues,” inProc.
of 20th Conf. on Foundations of Software Technology
and Theoretical Computer Science (FST TCS 2000), ser.
LNCS, vol. 1974, New Delhi, India, Dec. 2000, pp. 87–93.

[20] “P2: Declarative networking,” http://p2.berkeley.intel-
research.net/.

[21] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica, “Declarative networking: Language, execution
and optimization,” inProc. ACM SIGMOD, 2006, pp. 97–
108.

[22] A. Gupta and I. S. Mumick, “Maintenance of materialized
views: Problems, techniques, and applications,”IEEE Data
Engineering Bulletin, vol. 18, no. 2, pp. 3–18, 1995.

[23] A. Gupta and I. S. Mumick, Eds.,Materialized Views.
MIT Press, 1999.

[24] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Main-
taining views incrementally,” inProc. ACM SIGMOD,
1993, pp. 157–166.

[25] S. Abiteboul, R. Hull, and V. Vianu,Foundations of
Databases. Addison-Wesley, 1995.

[26] F. Li and Y. Ishikawa, “Query processing in a traceable
P2P record exchange framework,”IEICE Transactions on
Information and Systems, vol. E93-D, no. 6, pp. 1433–
1446, 2010.

Fengrong Li is a Ph.D. candidate majoring in
Systems and Social Informatics at the Gradu-
ate School of Information Science at Nagoya
University, Japan.

Her main research interests lie in data prove-
nance, P2P databases, integration of distributed
heterogeneous information, and information
retrieval. She is a student member of DBSJ,
IPSJ, and IEICE.

Yoshiharu Ishikawa is a Professor at the
Information Technology Center, Nagoya
University, Japan. He is also a Visiting
Professor at the National Institute of
Informatics, Japan.

His research interests include spatio-
temporal databases, mobile databases, P2P
databases, data mining, information retrieval,
and Web information systems. He is a member
of the Database Society of Japan, IEICE,
IPSJ, JSAI, ACM, and IEEE.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 39

© 2011 ACADEMY PUBLISHER

