
PM4SWS: A P2P Model for Semantic Web
Services Discovery and Composition

Mohamed Gharzouli

LIRE Laboratory, Mentouri University of Constantine
Constantine, 25000, Algeria

gharzouli@gmail.com

Mahmoud Boufaida
LIRE Laboratory, Mentouri University of Constantine

Constantine, 25000, Algeria
mboufaida@umc.edu.dz

Abstract— Since the beginning of the service oriented
paradigm, the Web service discovery presents an important
problem. Web Services should act autonomously with as
minimal human intervention as possible, they should be able
to discover other services which have particular capabilities
and realize precise tasks. To improve the automatic
discovery of Web services, other technologies are used to
provide new flexible solutions for web services discovery
and composition. In this context, the Web semantic and the
Peer-to-Peer (P2P) computing present the most adapted
technologies to the service-oriented approach. We present a
distributed solution based on epidemic algorithms to
discover semantic Web services in unstructured P2P
networks. In this solution, we use a distributed table to
preserve the description and the composition way of the P2P
composed Web services. We improve this choice by adding
other algorithms that ensure the data coherency of this
table. Also, we present a distributed architecture for which
implements this solution. A motivate example is presented in
this paper to improve the proposed model.

Index Terms— Semantic Web services; P2P computing;
Web services composition; Web services discovery;
Distributed applications;

I. INTRODUCTION

Since its appearance, the internet has evolved toward
many domains from business environment to scientific
applications. Recent years have seen an evolution of data
management systems from centralized systems to
decentralized systems, because of the increase in the
demand for resource sharing across different sites
connected through networks. Decentralized systems
enable large-scale distributed applications providing high
scalability. Feasibility of these systems relies basically on
P2P techniques.

P2P computing is considered as the next evolutionary
step in computing and a new generation of the
networking. This new direction in distributed computing

focuses on networking and resource sharing with better
reliability and scalability [7], [8]. Recently, P2P systems
have opened many challenges in many fields: semantics,
collaborative work and discovery of pertinent resources.
Among these domains, Web services based on P2P
computing require special attention from collaboration
and interoperability in a distributed computing
environment [8]. Web Services technology is considered
as a revolution for the web in which a network of
heterogeneous software components interoperate and
exchange dynamic information [4], [5], [6]. In the last
few years, other technologies have been used to improve
the automatic discovery of Web services. An important
improvement has been made for P2P computing and Web
semantic technologies. P2P systems provide a scalable
alternative to centralized systems by distributing the Web
services among all peers. The P2P based approaches offer
a decentralized and self-organizing context, where Web
services interact with each other dynamically. On the
other hand, the Web semantic technologies can be used to
facilitate the dynamic discovery of Web services. A
semantic description of Web services is more
understandable by the machine.

Therefore, in order to exploit the advantages of P2P
networks and the Web semantic, we combine these
technologies to propose a distributed model to manage,
discover and compose Web services.

The contribution of this paper contains three main
parts. The first one describes an unstructured P2P based
strategy of Web services discovery and composition [3].
The principal idea of this strategy is to present research
epidemic algorithms based on logic planning. These
algorithms enable us to find basic services distributed
among all the peers to compose a personalized service.
Moreover, in this part, we use a table of composition to
preserve the trace of the composition, for a possible
future re-uses. This table is considered as a cache
memory, which preserves the P2P composition ways. In
addition, in this paper, we present some algorithms to
ensure the coherence of data of this distributes table. The
second part of this paper consists of describing a
distributed framework, which implements the suggested
algorithms presented in the last part [18]. We improve

Manuscript received September 14, 2010; revised November 5, 2010;
accepted November 25, 2010

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 15

© 2011 ACADEMY PUBLISHER
doi:10.4304/jait.2.1.15-26

this implementation through a motivation example. In the
third part, we discuss the advantages and the
disadvantages of this solution and we present some
suggestions to evolve it.

The rest of this paper is structured as follows: in
section 2, we briefly discuss the Web services discovery
challenges. Section 3 presents a strategy to discover and
compose distributed Web services in the unstructured
P2P networks. Section 4 describes a framework that
implements the precedent strategy. In section 5, we
discuss future work. Section 6 presents related works and
section 7 concludes the paper.

II. WEB SERVICES DISCOVERY CHALLENGES: OVERVIEW
AND MOTIVATION

The first generation of works done on Web services
architectures propose different solutions based on
centralized discovery methods (such as UDDI), where
Web services are described by service interface functions
and they publish their capabilities and functionalities with
a registry (Figure 1) [31].

Figure 1. Web services Architecture

In this architecture, the discovery of Web services
remains two main hard problems. The first one is the
centralized point of publication and discovery which
represent a repository like UDDI or a research engine like
service finder [27]. These methods are not adapted to the
dynamic interactions, they restrict the scalability of
flexible and dynamic environment [1] [2], induces
performance bottleneck and may result in single points of
failure [13]. Moreover, the centralized control of
published services suffers from problems such as high
operational and maintenance cost. Furthermore, the
universal UDDI repository suffers from the miss of
moderation: many of published Web services are not
available or they are not implemented by the providers.

The second problem of Web services discovery is the
description realized generally by WSDL. This last
provides only a technique description. However, the
automatic Web services discovery requires a more
intelligible description that more understandable by the
machine.

However, even if the web services are described
semantically, one of the major problems with existing
structure is that UDDI does not capture the relationships
between entities in its directory and therefore is not

capable of making use of the semantic information to
infer relationships during search [14]. Secondly, UDDI
supports search based on the high-level information
specified about businesses and services only. It does not
get to the specifics of the capabilities of services during
matching [15].

To solve these problems, other architectures are
proposed to facilitate the discovery and composition of
Web services. Recently, many solutions are proposed to
proceed to the distributed discovery of Web services. The
majority of research works illustrate P2P-based discovery
methods. Many of them are related to automated
discovery and composition of semantic Web services in
the P2P networks. Although, a considerable number of
them discuss the dynamic discovery and the distributed
composition of semantic Web services in the structured
P2P networks like Chord [12], Pastry [16], and CAN
[17]. This type of networks is proposed to solve a number
of problems appeared in the first generation of the P2P
architectures (centered and pure P2P systems). However,
DHT-based protocols (used by a variety of these
networks) are difficult to maintain because of their static
topologies (for example, a ring for Chord). Moreover,
the DHT (Data Hash Table) cannot allow complex
research.

 On the other hand, little of research works discuss the
use of the unstructured P2P networks. These systems
(such as Gnutella V0.4 [28]) require no centralized
directories and no precise control over network topology
or data placement. Though, the flooding-based query
algorithm used in these systems does not scale; a query
generates a large amount of traffic hence large systems
become quickly overwhelmed by the query-induced load
[11].

However, the decision to employ the unstructured P2P
networks in this work is justified by several reasons.
Generally, in the context of semantic Web services
discovery and composition, the requester (service
customer) searches a capacity, a goal or a property of a
resource (service). So, when it sends the request, the
invoker requires no placement or identifier of the
resource. This characteristic does not exist in the
structured P2P systems, to find a resource in these
networks, it is necessary that the requester must be
known beforehand the identifier of the resource. So, the
unstructured P2P systems are more adapted to discover
distributed Web services. Furthermore, the unstructured
P2P systems are used by very large communities of net
surfer.

In addition, our approach explores various solutions to
unstructured P2P discovery algorithms. We propose a
distributed replication strategy that resolves the problem
of flooding-based methods, while reducing the network
traffic, and accelerates the discovery of semantic Web
services. To achieve this objective, we propose use a
replication table (the composition table) that preserves the
composition way of precedent composed Web services.
This table has many advantages that will be exposed in
the following paragraph.

16 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

III. AN UNSTRUCTURED P2P BASED STRATEGY TO
DISCOVER AND COMPOSE SWS

In our work already presented in [03], we proposed a
whole of epidemic algorithms that supports the automatic
discovery and composition of the semantic Web services
distributed among an unstructured P2P network. The
main objective of this solution is to compose a Web
service which answers a particular request. This service
can be composed from a set of Web services distributed
through several peers of the network.

In order to discover the appropriate Web services, we
implemented epidemic algorithms based on Input/output
matching and oriented by the achieved goal. Furthermore,
all participant peers store in a distributed table all traces
of preceding composed Web services. This historic can
be used to give a rapid response from future similar
requests. In the following paragraphs we expose the
composition table and the epidemic discovery algorithms.

A. Structure of the composition table
Each peer creates a table to store all compositions in

which it has already participated to realize them. The
different attributes of the composition table are defined as
follows:
Initiator Peer: the peer that begins the composition.
compoID: the composition identifier (each composition
is defined in the network by its initiator peer and its
identifier).
Init-input: initial input of the composite Web service.
Init-output: initial output of the composite Web service.
Goal: the goal of the composite Web service
Executed services: Web services executed locally to
compose the achieved Web service.
Reserve services: local web services which can be
executed in the same composition.
Precedent peers: peers, which execute the precedent
Web services for the composition.
Next peers: peers, which execute the next Web services
for the composition.
Reserve peers: peers, which can replace the next peer.
State of the composite Web services: the composite
Web service is active, if all the participants’ peers are
joining the network.

These concepts are presented in the following
example (Figure 2):

Figure 2. Example of an unstructured P2P composition

This example presents a P2P composition of a whole
of web services distributed among five peers in the
network: P2, P4, P5 and P7. P6 is a reserve peer for P5 in
this composition i.e. it can replace P7. For P5, P2 and P4
are precedent peers and P7 is a next peer.

B. Epidemic discovery algorithms based on
input/output matching
Initially, let us give the different definitions of the

basic concepts used in the following algorithms.
Definition 1: A Web service is 3-uplet defined as: WS=
(WS-input, WS-output, WS-goal).
Definition 2: A Goal is the conceptualization of a domain
of services whose ultimate aims are identical or similar
[1]. A goal is specified in the semantic description of the
Web service.
Definition 3: A composition is a process constituted from
a whole of basic services. In our context, there are two
types of compositions: local composition and P2P-
composition.
Definition 4: A Local Composite Web Service
(LocCWS) is built from a whole of Web services
belonging to the same peer.
Definition 5: A P2P-composition is a composition where
the P2P composite Web service (P2P-CWS) is build from
a whole of Web services belonging to different peers of
the network. A P2P-composition (P2P-Comp) is tuplet
(Initiator-Peer, CompID, Init-Input, Init-Output, Goal).
Definition 6: Participant Peers: all peers that participated
(collaborated) in a P2P-composition (the initiator peer is
a participant peer).

1) Main Algorithm: Each peer in the network
executes the following main algorithm when receiving a
request:

Initially, each peer executes the main algorithm from

step 1 to step 5 where it tries to response to the request
locally (local basic Web service or a local composition).

Begin
1. Receive the request (init-Input, init- Output,

goal).
2. Search a local Web service where [(WS-

input=Init-Input) and (WS-output=Iinit-
Output) and (WS-goal=Goal)]

3. If (there is a local WS) then send the
response; go to END;

4. If (there is not a local WS) then
 Compose a local Web service where

[(LocCWS-input=Init-Input) and
(LocCWS-Output=Init-Output) and

(LocCWS-goal=Goal)];
5. If (there is a LocCWS) then send the

response; go to END;
6. If (there is not a LocCWS) then

 Search-in-Composition-table (Init-Input,
Init-Out-put, Goal);

7. If (there is not P2P-CWS in the composition
table) then Launch-a-New-P2P-discovery();

8. End.

P2: initiator peer
P4, P5, P7: participants peers
P6: reserve peer (for P5)
 : The composition Way
 : Request
 : The composition table
 : Local Web services

P1

P2

P3
P6

P4

P7

P5

Request

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 17

© 2011 ACADEMY PUBLISHER

In the step 6 of the algorithm, the peer searches in its
composition table about a precedent composition realized
in the network that responses the request. The procedure
Search-in-composition-table is defined as follow:

If there is not a possibility to answer the request

locally or by using the composition table, the peer starts a
new P2P discovery (step 7 of the main algorithm). For
this raison, we proposed two epidemic discovery
algorithms based on logic planning methods. We present
in what follows two types of algorithms: Before-chaining
and Back-chaining.

2) Before-chaining algorithm: In this algorithm, each
peer searches an input of a service, which can progress
the composition process. To start a P2P discovery based
on the Before-chaining algorithm, the peer prepares the
list of the services which have an input equal to the init-
input (List-WS-Init-Input). These local services can be
basic or partially composed locally. The Before-
chainning algorithm is defined as follow:

3) Back-chaining algorithm:. In this discovery
method, each peer searches the output of the service
which can grow the composition process. This algorithm
uses the List-WS-Init-Output (the list of the services
which have an output equal to the init-output).

In addition, it is important to note if the composition

is successful starting from a Back-chaining discovery,
this composition will be saved in the composition table as
follows: the initiator peer is the last participant peer and
each participant peer permutes its precedent and its next
went.

C. Data coherency of the composition table
The composition table presents a distributed way that

stores and preserves data about precedent composite Web
services discovered in an unstructured P2P network.

Instead of using a centralized repository of goals like
in [1], the table of composition offers a distributed
solution which has several advantages:

• Each Peer stores a historic of compositions,
already realized in the network. In addition, each
peer can exploit the experiment of other peers.

• The peer that participates in several
compositions has a very rich table, which gives
it more probability to discover composite Web
services for future requests. This property
encourages the peers to collaborate with other
peers, in order to achieve common goals (this
property minimizes the number of the egoistic
peers in the network).

• The composition table permits to create a
collaborative workspace. Peers have similar
tables that can be grouped in collaborate
communities. Automatically, peers that have the
similar tables, they have the similar interests
(this idea will be discussed in section 6).

Search-in-Composition-table ()
Begin
Select [Initiator-Peer, CompID] from the
composition table where [(P2P-CWS-Input=Init-
input) and (P2P-CWS-output=Init-Output) and
(P2P-CWS-goal=goal) and (state-of -P2P-
CWS=Active)]; /*create a selection-list*/
1. If (the selection-list ≠ empty) then

While (selection-list ≠ empty) and (P2P-
composition is not possible) do

a) Select an Initiator-Peer from the
selection-list;

b) Send a message: search (CompID, Init-
Input, init-Output, Goal) from the
initiator peer;

c) If (success P2P-discovery) then send the
response; go to END; /* the end of
the main program*/

End While; END.

Begin
1. Create List-WS-init-Input (the list of Web
services with the same input).
2. While (List-WS-Init-Input not empty) do

a) Select the Head of List-WS-Init-Input;
b) Init-Input :=Output_of_Heading-List-WS-
Init-Input; calculate the TTL;
c) Send message search (initiator- Peer, Iinit-
Input, Init-Output, goal, TTL);
d) If (time ≤ TTL and response success
research) then
Stop research; send a success response; go to
End;
 Else
 If (time ≤ TTL and response not success
research) then
Select a reserve service from the list-WS-Init-
Input;
 End While; END.

Begin
1. Create List-WS-init-Output (the list of Web
services with the same Output).
2. While (List-WS-Init-Output not empty) do

a) Select the Head of List-WS-Init-Output;
b) Init-Output :=Input_of_Heading-List-WS-
Init-Output; calculate the TTL;
 c) Send message search (initiator- Peer, Iinit-

Input, Init-Output, goal, TTL);
 d) If (time ≤ TTL and response success
research) then
 Stop research; send a success response; go to
End;
 Else
 If (time ≤ TTL and response not success
research) then
 Select a reserve service from the list-WS-Init-
Output;
 End While; END.

18 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

However, the volatile nature of nodes in a P2P
networks creates the main problem of such distributed
architecture. This solution suffers from the problem of the
data coherency of the composition table. If a participant
peer leaves the network, all the compositions where it
already participated become inactive, so each participant
peer must be modified its composition table in this
situation.

To ensure the data coherency of the composition
table, each peer -before it leaves the network- must
inform the other participant peers about any modified
composition. Else, if a peer suddenly quits the network,
one of their neighbors can inform the other participant
peers. A peer can detect the absence of its neighbors in a
new discovery operation. The other peers are informed in
the tow ways from the initiator and the last peer in a
composition. This operation is called the notification
procedure. The following figure shows a scenario of a
peer that participated in two compositions and launches a
notification procedure before it leaves the network.

Figure 3. The notification procedure

For this, we define two types of notification
algorithms: precedent-notification and next-notification.

1) Notification Algorithms
Each peer executes this algorithm when it receives a

notification message form a peer (Next-Peer-I) that
appears as a next peer in a composition stored in the
composition table.
 Notification-precedent

1. List-of-precedents:= Select « Initiator Peer,
CompID, Precedent Peer » From the
composition table Where Next peer= Next-Peer-
I)

2. Send message to precedents peers of List_of-
Precedents : «Initiator Peer, CompID, state of
composite WS:= inactive»

The list of precedents contains the first’s peers of each
composition where the peer Next-Peer-I appears as a
participant peer.

In the other side, each peer accomplishes the next
algorithm if it receives a notification message from a peer

(Precedent-Peer-I) that appears as a precedent peer in a
composition stored in the composition table.
 Notification-next

1. List-of-next:= Select « Initiator Peer, CompID,
Next Peer » From the composition table Where
Precedent peer= Precednt-Peer-I)

2. Send message to next peers of List_of-next :
«Initiator Peer, CompID, state of composite
WS:= inactive»

2) Reparation of a composition
In addition to the notification procedure, we can

ameliorate this solution by giving the opportunity to
repair the interrupted compositions. This is possible by
replacing the absent peer by one of their reserve peers in
each composition. The following algorithm presents the
reparation of a composition by using the before chaining
philosophy. In this case, the first precedent peer of the
absent peer executes the following algorithm:
Repair-Composition

1. Select a reserve peer
2. Send a message: Repair (Initiator Peer,

CompID, Init-Input, Init-Output, Goal, Next-
Peer-J);
If (reparation possible) then launch an
notification message to the other participant
peer;
Else
 Select the next reserve peer; go to 2

3. End
The Next-Peer-J is the first next peer of the absent

peer. The following figure present the message “Repair”
by using a before chaining algorithm.

Figure 4. Reparation of a composition

If an initiator peer quits the network, only the second
peer of the interrupted composition can repair the
composition by launching a discovery procedure through
using back chaining algorithm. This scenario will be
more complicate if there are two or more second peers in
a composition (parallel execution of Web services in a
composition).

Finally, it’s important to mention that the reparation
procedure is not always possible in such architecture.
Furthermore, the notification messages are very
expensive when the number of compositions stored in the
table is important. In addition this solution gives less of
scalability because of the nature of the unstructured P2P
networks (a proposition is presented in section 6).

PeerJ Next-Peer-J

Reserve peer Repair message

IP1

IP2

 IP: Initiator Peer

 : Participant Peer
 : Composition 1
 : Composition 2
 : Notification

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 19

© 2011 ACADEMY PUBLISHER

IV. A DISTRIBUTED ARCHITECTURE TO IMPLEMENT
THE DECOVERY STRATEGY

To implement the strategy presented in the precdent
section, we proposed in [18] a distributed architecture
composed from a whole of components allow to
accomplish the different tascks defined in the epidimic
algorithms defined priviously.

A. A reference architecture
The proposed model is composed from two main

components: a framework installed on the various peers
of the network and a central base of OWL ontologies [24]
(and OWL-S descriptions [23]). This last is used as a
reference to develop the various local ontologies and
semantic descriptions of the different Web services of the
network (in figure 5). The objective of the use of the
same language of semantic descriptions (OWL-S) and a
central base of ontologies is to ensure the homogeneity.

Figure 5. A reference Architecture.

The most important rules of this architecture are
defined as follow:

• Each peer in the networks implements a number
of Web services described semantically with
OWL-S.

• The central ontologies base will be consulted
periodically by the different peers to develop or
enrich local ontologies of every peer. This
operation is made in the passive time. So, it does
not affect the discovery research time.

• The semantic descriptions of Web services
remain local in each peer.

• The central OWL ontologies base contains the
different concepts used in diverse fields of
proposed Web services.

Also, the central base offers some OWL-S descriptions

for various Web services. If a peer has a similar Web
service, it can reuse these OWL-S descriptions. In this
context, an example of a universal OWL ontologies and a
collection of OWL-S descriptions for a variety of Web
services is generated manually by Ganjisaffar and

Saboohi which contains more than 240 semantic services
descriptions [9].

Furthermore, P2P framework (like JXTA [30] or
Gnutella [28]) is used for P2P communication. Thus, with
such architecture, we can ensure that the discovery and
the composition of Web services are purely decentralized.

B. The P2P based Framwork
The main idea of this framework is to make a purely

distributed discovery of Web services. This distributed
framework contains three layers: the semantic manager,
the local composition engine and the P2P composition
module (figure 6).

1) The Semantic Manager module
It manages the semantic descriptions of Web services.

The user uses an OWL-S generator and a base of local
OWL ontologies (figure 6 -arrow 2-). These last must be
developed according to the central ontologies (figure 6 -
arrow1-).

The OWL-S generator uses the WSDL descriptions
and the ontologies of the fields to generate the OWL-S
descriptions of Web services. In our case we used to
wsdl2owl-s generator [10] as a core to implement this
component.

2) The Local Composition Module
This module has as an objective to discover a local

Web service to answer the external requests for the other
peers. To achieve this goal, we propose two components:
the local search engine and the local composition engine.

The Local search engine has two possible tasks:
searching a basic Web service or an eventual local
composite Web service.

When the peer receives a request from the network
(figure 6 -arrow3-), the P2P composition engine passes
the request to the local search engine (figure 6 -arrow4-).
This last searches a basic Web service to answer this
request (look step 2 in the main algorithm in section 3).

In the same time, the local search engine uses an OWL-
S matchmaker to discover a possible composition from a
whole of local Web services which responds to the
request (figure 6 -arrow5-). As a result, we have three
possible scenarios:

• If there is any basic web service or a probable
composition, the local search engine returns a
negative response to the P2P composition engine.

• If there is a basic Web service or an eventual
composition. In the invocation step, the local
search engine generates a BPEL file and sends it
to the local composition engine (figure 6 -
arrow6-), which uses the service invoker to
invokes the basic Web services or a whole of
Web services according the process defined in the
BPEL file.

• If there is a probable semi-composition formed
from a single Web service or a whole of Web
services, the local search engine generates a
request and proposes it to the P2P composition
engine. This last can send this request to other
peers in the network that can continue the
discovery operation.

OWL-S

WS

OWL-S

WS

Peer

P2P Based framwork

Network

Central OWL Ontologies
(OWL-S Descriptions)

OWL-S

WS

OWL-S

WS

Peer

P2P Based framwork

20 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

3) The P2P Composition Module
This module presents the interface between each peer

and the P2P network. It’s the main component used to
realize a collaborative composition among a whole of
participant peers. This layer contains three components:
the composition table already presented in section 3, a
filter and the P2P composition engine.

The filter is a program used directly by the user to
clean the composition table from the inactive composition
(figure 6 -arrow7-). This operation is very important in a
dynamic environment like the P2P networks where many
peers join and quit the network frequently. For this
reason, there are many P2P compositions that become
inaccessible when one or many participant peers are
absent. The filter makes statistics about the composition
table entrees to detect the compositions that became
inactive since a long time (figure 6 -arrow8-). These
statistics offer a clear vision to the user about the
composition states in the table.

The P2P composition engine contains a
request/response component to receive or to send requests
(figure 6 -arrow9-). This component is used in many
possible scenarios that are a relationship with the
scenarios already explaining the local composition layer.
Furthermore, the user can use the P2P composition
engine to start a search operation in the network.

When it receives a request from another peer of the
network (using the P2P platform) (figure 6 -arrow3-), the
P2P composition engine sends the request to local
composition engine. This last can return three possible
responses:

• A positive response: in this case the P2P
composition engine sends the response to the
request peer.

• A negative response: the P2P composition engine
evaluates a new TTL and transfers the request to
other peers (the direct neighbors in the network).

• A semi-composition proposition: the P2P
composition engine searches before in the
composition table from a composition that
responds to the main request or can continue the
composition with the request of the semi-
composition proposition (figure 6 -arrow10-). If
there is a composition in the table, the P2P
composition engine sends the request to the
initiator peer of this composition. Else the P2P
composition engine evaluates the TTL and
continues the discovery using the request
proposed by the semi-composition of the local
composition engine.

In the end, if the discovery has been finished
successfully, the initiator peer generates the BPEL file to
launch the P2P composition. In this case, each participant
used the P2P composition and the local composition
engine to receive, execute and send the response (figure 6
–arrow 11-).

C. A Motivate example
In this example we want to improve the

implementation of some components of the framework.
This example presents a distributed application named
“Constantine books” which gives the possibility to the
user to search about a price of a book in US dollar, Euro
or Algerian Dinar. The user can enter one or more input
arguments like: authors, title of the book, edition home
and the year of edition.

The following scenario shows how a new Web
service is composed from three basic Web services:

• Search-ISBN: gives the ISBN of a book

11

Figure 6. A Distributed Framework to discover and compose Semantic Web Services.

P2P Composition Module Semantic Manager Local Composition Module

Internet
P2P Network

Central OWL Ontologies

OWL-S Web services
descriptions

OWL Local
Ontologies

Local Web
services search

engine + (OWL-
S Matchmaker)

Local
composition

engine

User Interface

Composition
Table

Peer-to-Peer
Composition

Engine

P2P Framework

OWL-S
generator

Filter

1

2

2

2

3

45

6

7
9

8

10

11

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 21

© 2011 ACADEMY PUBLISHER

• Search-Price: the input of this Web service is the
ISBN of a book and the output is the price in US
dollar.

• Convertor-Price: is a money convertor from the
US dollar to EUR.

Web service Inputs Outputs
Search-ISBN Title

Author
Edition

Year-of-edition

ISBN

Search-Price ISBN Price
Convertor-
money

Money-USD Money-
EUR

The composition of these Web services gives a

composite web service with the following arguments:
Input: Title||Author||Edition|| year-of-edition
Output: Money-EUR
Goal: *input: =#book:Title||Author||Edition|| year-of-

edition *ouput:=#book:Price//Money:EUR

In order to simplify the test, we choice to implement
these Web services on two peers in the network (figure
7). The first peer which is the initiator peer deploys the
Web service “Search-ISBN” and “Search-Price” and the
second peer deploys the web service “Convertor-money”.

Figure 7. Example of a P2P composite Web service

When it receives the discovery request, the P2P
composition engine of the initiator peer generates an
OWL file and sends it to the search engine. The appendix
A presents the generated request of this example (named
request4.owl). In this example, we use an ontology called
“Book.owl” (Appendix B). An execution example of the
application is presented in appendix D.

D. Example of the implemenation of the search engine
To realize the search engine, we used a part of the

implementation presented in [19]. The search engine has
an input an OWL request and in output the whole of basic
web services that response the request. Else, this list will
used by the OWL-S Matchmaker to find a probably local
composition or a semi-composition.

The search engine use a data base contains four tables
that represent four classes presented as follow:

Attribute Signification

OWL_URL URL of an OWL-S description of a Web
service. This attribute is the primary key of this
table.

ONT_URL URL of the local ontology used to generate the
OWL-S description.

NAME Name of the Web service.
Contact_Info Information about the provider of the Web

service
WSDL_URL URL of the WSDL description of a web service

Attribute Signification

OWL_URL URL of an OWL-S description of a Web
service.

INPUT_CLASS_URL URL of the class which represents an
input of the Web service.

Attribute Signification

OWL_URL URL of an OWL-S description of a
Web service.

OUTPUT_CLASS_URL URL of the class which represents an
output of the Web service.

Attribute Signification

OWL_URL URL of an OWL-S description of a Web
service.

GOAL_CLASS_URL URL of the class which represents a goal
of the Web service.

The main algorithm of the search engine is defined as

follow:
1) Extract the input class, output class and goal

class from the request;
2) Extract the descriptions of Web services from

the data base;
3) For each description do:

IF
Number of input classes of the description ≠
number of input classes of the request OR
Number of output classes of the description ≠
number of output classes of the request OR
Number of goal classes of the description ≠
number of goal classes of the request
Then
Go to the next description;
Else if
If
(Each input class of the request has an
equivalent class OR super class OR under class
in the description) AND (Each output class of
the request has an equivalent class OR super
class OR under class in the description) AND
(Each goal class of the request has an equivalent

Output Input

Book-info ISBN ISBN Price
USD

Output Input

Input Output

Price
USD

Price
EUR

WS WS

Initiator Peer

Participant Peer

WS

Init-Input

Init-Output

TABLE II.
STRUCTURE OF TABLE SERVICE DESCRIPTION

TABLE I.
THE INPUTS AND THE OUTPUTS OF WEB SERVICES

TABLE III.
STRUCTURE OF THE TABLE HAS-INPUT

TABLE IV.
STRUCTURE OF THE TABLE HAS-OUTPUT

TABLE V.
STRUCTURE OF THE TABLE HAS-GOAL

22 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

class OR super class OR under class in the
description)
Then
Add the web service to the list ;
Return the list;

This algorithm is implemented by the method called

“findcalifiedcondidates” (Appendix C). The other
methods are defined as follow:

• mySearchEngine : the class constrictor
• readServiceRequest : read the request extract the

input, output and goal classes.

V. DISCUSSION ABOUT FUTURE WORK
To evaluate the performances of our solution, we must

test this framework in a large scale network. For this
reason, now we are using NS2 [21] to simulate an
unstructured P2P network and testing our solution by
using a simple flooding protocol in the first time. After
that, we plan to use GnutellaSim [22] to evaluate the
performance of the proposed algorithm by using the
Gnutella V0.4. Specially, we need to estimate the effect
of the semantic matching on the computational
complexity. Moreover, we want to deduct how the
composition table can accelerate the discovery operation
through the re-use of the compositions already carried out
in the network.

The simulation step consists to define the basic
observations to show the performances of the localization
process of semantic Web services by flooding the
network. The main properties that we want to observe in
the case of a pure unstructured network are:

• The number of the relevant requested peers and
the total number of requested peers.

• The number of propagated requests, the number
of transmitted results and the number of
messages necessary for network operating.

• The adequate TTL to return a result.
• The adequate size of the composition table.

As a future work, we plan to ameliorate this solution
by regrouping peers that have similar Web services. This
proposition can resolve some problems posed by the
unstructured architecture. In this situation, each group is
managed by one Super-Peer. The composition table is
stored in the super-peer. Each table saved all the
compositions where the members of the group are already
participated.

For example, for a composition, if a participant peer
quits the network; his Super-Peer tries to repair the
composition by replacing the absent peer with another
from the group. In this case, the reserve peers are
generally belongs to same group of the absent peer. If the
reparation is not possible locally, the Super-peer can send
a “repair message” or a “notification message” to the
other Super-Peers (figure 8).

To simulate this architecture, we plan to use the
Gnutella V.0.6 [29]. After that, we can compare the two
architectures (unstructured and Super-Peer).

Figure 8. The notification procedure in the Super-peer model

VI. RELATED WORKS
Recently, several research works improve the

decentralized discovering methods of Web services in the
P2P networks. A number of centralized and P2P Web
service discovery methods have been proposed in the
context of the Web services composition and Web
services based business process management. Among
these, [1], [4], [5] and [6] have similar concepts to those
which are used in our method.

F. Mandreoli et al [1] present the architecture of
FLO2WER, which is a framework that supports large
scale interoperation of semantic Web services in a
dynamic and heterogeneous P2P context. They have
adopted a hybrid approach that exploits the advantages of
centralized registries for service discovery and
composition, as well as the dynamism and the scalability
of non-structured P2P networks. The main idea of
FLO2WER framework is that, while decentralizing the
knowledge of what specific services are available in the
system, they keep centralized knowledge of what
objectives may be satisfied within the network, namely
Goals. Each Goal specifies therefore a sub network of
specific services, and it is stored in an appropriate
repository, called Goal Repository. However, it is not
described and detailed how the goals have been
discovered. Moreover, the use of a central repository of
goals is similar to central discovery methods based on
Web services functionalities. In addition, a central
repository creates single point of failure and a centralized
control of published services. Then, this solution suffers
from problems such as high operational and maintenance
cost. In contrast, our discovery method is a pure
decentralized solution with any central repository. The
composite Web services already realized in the network
are published with a distributed description among all
participant peers.

T. Essafi and al [6] presents a scalable P2P approach
to service discovery using ontology. This work
incorporates input/output matching algorithm proposed in
paper [26] and extends the solution described in paper
[25] by adding an encoding that locates servers in a P2P
network to simplify rerouting of query messages. Idem to

 Composition
 Notification

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 23

© 2011 ACADEMY PUBLISHER

the precedent work [1], this project adopts network
centralization and hierarchy, which suffers from the
phenomenon of the “single-point” failure. However, the
main objective of our work is to ensure dynamic Web
service discovery without central point. Also, in this
work, they still relay on the old DAML-S, which proved
to be less flexible than the new OWL-S.

[2], [4] and [5] define a composite web service as
finite automata. J. Hu et al [2] and F. Emekci et al [4]
propose a structured P2P framework for Web service
discovery in which Web services are located based on
both service functionality and process behavior. They
represent the process behavior of the Web services with
finite automata and use these automata for publishing and
querying the Web services within the system. This
framework is scalable due to the underlying P2P
architecture because the Web services can join and leave
the system dynamically. In our work, we represent the
process behavior of the Web services by finite automata
(a finite sequence of basic Web services belong to several
peers). In addition, in our context we proposed an
unstructured P2P solution where the participant peers and
the Web services (which compose the resulting service)
are not beforehand known. In addition, we publish the
P2P composed Web services with a distributed table
(composition table). If a peer wants to re-use a Web
service which has been already composed, it transfers the
request from the initiator peer of this composite Web
service.

VII. CONCLUSION AND PERSPECTIVES
In this paper, we proposed an unstructured P2P Model

for semantic Web service discovery and composition in
which Web services are distributed among all peers of the
network. In this model, we defined firstly a strategy based
on an epidemic algorithm to discover the adequate basic
Web service or to discover a P2P composite Web service,
which answers a received request. Furthermore, we
defined to philosophies (before and back chaining) to
progress the discovery process in the network. The
second pertinent idea in this strategy is the use of
composition table provides a purely distributed method to
discover the previous P2P composed Web services. The
distribution of this table creates a collaborative
workspace where each peer can exploit the experiment of
the other peers. Furthermore, this table permits to
preserve the trace of the various successes compositions
for a possible future re-use. This characteristic can
ameliorate the research time in the network. Also, we
proposed a whole of algorithms to ensure the data
coherency of the composition table by notifying the other
peers about the absent of a participant peer or by
repairing an interrupted composition.

The second part of this work presents a distributed
framework, which implement the previously presented
strategy. The main goal of this framework is to offer a
collaborative workspace between a whole of peers where
each peer can offer their Web services and can exploit the
resources of other peers. Composing a whole of Web
services belong to different peers of the network is an

important task to achieve a goal that not realized by one
or many Web services of a single peer. Furthermore, we
presented a motivate example to improve the
implementation of this framework (some program codes
are presented in the appendixes). Finally, we suggest
some future works to ameliorate the proposed solution.

However, this work needs to improve some important
points. Especially we hope to improve the QoS of the
returned results by proposing some selection criteria of
the Web services. Also, wish to develop the implemented
algorithms using a probabilistic approach to filter the
pertinent peers in the network. Furthermore, we plan to
improve our solution proposed in [20] to give a formal
verification for the composition of semantic Web services
in a P2P network.

APPENDIX A SEARCH BOOK PRICE (REQUEST4.OWL)
<?xml version='1.0' encoding='ISO-8859-1'?>
………..
 <!ENTITY domainOnt "..\ontologies\\book.owl">
 <!ENTITY DEFAULT "..\request4.owl">
<rdf:RDF
……….
 xmlns:service= "&service;#"
 xmlns:process= "&process;#"
 xmlns:profile= "&profile;#"
………..
 <owl:Ontology about="">
 <owl:imports rdf:resource="&rdf;" />
 <owl:imports rdf:resource="&rdfs;" />
 <owl:imports rdf:resource="&owl;" />
 <owl:imports rdf:resource="&service;" />
 <owl:imports rdf:resource="&profile;" />
 <owl:imports rdf:resource="&process;" />

 <owl:imports rdf:resource="&domainOnt;" />
 </owl:Ontology>
 <profile:Profile rdf:ID="getBookPrice">
 <profile:hasInput rdf:resource="#input1-Edition"/>
 <profile:hasOutput rdf:resource="#output1-bookPrice"/>
 </profile:Profile>
 <process:Input rdf:ID="input1-Edition">
 <process:parameterType rdf:resource="&domainOnt;#Price"/>
 </process:Input>
 <process:UnConditionalOutput rdf:ID="output1-bookPrice">
 <process:parameterType rdf:resource="&domainOnt;#Price"/>
 </process:UnConditionalOutput>

</rdf:RDF>

APPENDIX B BOOK.OWL
<?xml version="1.0"?>
<rdf:RDF
………
<owl:Class rdf:ID="Book">
</owl:Class>
<owl:Class rdf:ID="ISBN">
</owl:Class>
<owl:Class rdf:ID="Price">
</owl:Class>
<owl:Class rdf:ID="Money">
</owl:Class>
<owl:Class rdf:ID="Title">
</owl:Class>
<owl:Class rdf:ID="year">
</owl:Class>
<owl:Class rdf:ID="author">
</owl:Class>
<owl:Class rdf:ID="Edition">
</owl:Class>

Classes

24 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

<owl:ObjectProperty rdf:ID="has_ISBN">
<rdfs:domain rdf:resource="#book"/>
<rdfs:range rdf:resource="#ISBN"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="has_Price">
<rdfs:doamin rdf:resource="#book"/>
<rdfs:range rdf:resource="#Price"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="has_Title">
<rdfs:domain rdf:resource="#book"/>
<rdfs:range rdf:resource="#Title"/>
</owl:ObjectProperty>
………………….
……………………….

</rdf:RDF>

APPENDIX C SEARCH ENGINE IMPLEMENTATION

APPENDIX D AN EXECUTION EXAMPLE OF THE
APPLICATION “CONSTANTINE BOOKS”

REFERENCES

[1] F. Mandreoli, A. M. Perdichizzi, and W. Penzo, “A P2P-
based Architecture for Semantic Web Service Automatic
Composition”, IEEE computer Society DOI
10.1109/DEXA2007, Regensburg Germany, 2007, pp.
429-433.

[2] J. Hu, C. Guo, H. Wang, and P. Zou, “Web Services Peer-
to-Peer Discovery Service for Automated Web Service
Composition”, Springer-Verlag Berlin Heidelberg (LNCS
3619), ICCNMC 2005, Zhangjiajie China, 2005, pp. 509-
518.

[3] M. Gharzouli and M. Boufaida, “A Generic P2P
Collaborative Strategie for Discovring and Composing
Semantic Web Services”, In the Proc of Fourth
International Conference on Internet and Web
applications and Services(ICIW’09), Venice/ Mestre, Italy
2009, pp. 449-454.

[4] F. Emekci, O.D. Sahin, D. Agrawal, and A. El Abbadi, “A
Peer-to-Peer Framework for Web Service Discovery with
Ranking”, Proc of the IEEE International Conference on
Web Services (ICWS’04), California USA, 2004, pp. 192-
199.

[5] O. D. Sahin, C. E. Gerede, D. Agrawal, A. El Abbadi, O.
Ibarra, and J. Su, “SPiDeR: P2P-Based Web Service
Discovery”, In the Proc of ICSOC’05, Amsterdam, The
Netherlands, 2005, pp. 157-169.

[6] T. ESSAFI, N. DORTA and D. SERET, “A Scalable
Peer-to-Peer Approach To Service Discovery Using
Ontology”, In the Proc of 9th World Multiconference on
Systemics, Cybernetics and Informatics. Orlando, 2005.

[7] R. Schollmeier, “A Definition of Peer-to-Peer Networking
for the Classification of Peer-to-Peer Architectures and
Applications”, In the Proc of the First International
Conference on Peer-to- Peer Computing, Linkoping,
Sweden, 2001, pp. 101-102.

[8] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S.
Oundhakar, and J. Miller, “METEOR–S WSDI: A

Proprieties

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011 25

© 2011 ACADEMY PUBLISHER

Scalable P2P Infrastructure of Registries for Semantic
Publication and Discovery of Web Services”, Journal of
Information Technology and Management, Special Issue
on Universal Global Integration, Vol. 6, No. 1, 2005, pp.
17-39.

[9] Y. Ganjisaffar and H. Saboohi, “Semantic Web Central:
Project sws-tc”, 2006,
http://projects.semwebcentral.org/projects/sws-tc/

[10] J. Giampapa, M. Paolucci, N. Srinivasan and R.
Vaculin“Semantic Web Central: Project wsdl2owl-s,
translator from wsdl to owl-s”, 2004,
http://projects.semwebcentral.org/projects/wsdl2owl-s/

[11] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker “Search and
Replication in Unstructured Peer-to-Peer Networks”, Proc
of the 16th international conference on Supercomputing,
New York, USA, 2002, pp. 84-95.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for internet applications”, In Proceedings of the
ACM SIGCOM, California, USA, 2001, pp.149-160.

[13] K. Rageb “An Autonomic <K, D>-Interleaving Registry
Overlay Network for Efficient Ubiquities Web Services
Discovery Service”, Journal Information Processing
Systems (JIPS) Vol. 4, no.2, June 2008.

[14] S. Batra, S. Bawa “Review of Machine Learning
Approaches to Semantic Web Service Discovery”, Journal
of Advances in Information Technology (JAIT) vol. 1, no.
3, August 2010.

[15] Schmidt, A., Winterhalter, C. (2004), “User Context
Aware Delivery of E-Learning Material: Approach and
Architecture”, Journal of Universal Computer Science
(JUCS) vol.10, no.1, January 2004

[16] A. Rowstron and P. Druschel, “Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems”, In the Proc of the 18th IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware 2001), Heidelberg, Germany,
2001.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, “A scalable content addressable network”, In
Proc of the 2001 conference on Applications,
technologies, architectures, and protocols for computer
communications, ACM SIGCOMM, California, USA,
2001, pp. 161-172.

[18] M. Gharzouli and M. Boufaida, “A Distributed P2P-based
architecture for semantic Web services discovery and
composition”, In the Proc of 10th Annual International
Conference on New Technologies of Distributed Systems
(NOTERE), Tozeur, Tunisia 2010, pp. 315-320.

[19] L. Yu “Introduction to semantic web and semantic web
services “, Chapman & Hall/CRC, 2007.

[20] D. Benmerzoug, M. Gharzouli and M. Boufaida
“Formalisation and Verification of Web Services
Composition based on BPEL4WS”, Proc of First
Workshop of Web services in Information Systems
(WWS’09). Algies, Algeria, 2009, pp. 37-47.

[21] The network simulator -ns2-, available in
http://www.isi.edu/nsnam/ns/

[22] A scalable packet-level Gnutella simulator, available in
http://www.cc.gatech.edu/computing/compass/gnutella/

[23] OWL-S: Semantic Markup for Web Services, available in
http://www.w3.org/Submission/OWL-S/

[24] OWL: Web Ontology Language, available in
http://www.w3.org/TR/owl-features

[25] M. Paolucci, K. Sycara, T. Nishimura and N. Srinivasan,
“Using DAML-S for P2P Discovery”, In the Proc of
International Conference on Web Services (ICWS). Las
Vegas, Nevada, USA, 2003, pp. 203-207.

[26] M. Paolucci, T. Kawamura, T.R. Payne and K. Sycara,
“Semantic Matching of Web Services Capabilities”, in the
Proc of the First International Semantic Web Conference
(ISWC), Sardinia, Italy, , 2002, pp. 333-347.

[27] Service finder: a search engine for web services
discovery, available in www.service-finder.eu

[28] The annotated Gnutella protocol specification v0.4,
available in:
http://rfcgnutella.sourceforge.net/developer/stable/index.h
tml

[29] Gnutella protocol Development v0.6, available in:
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html

[30] JXTA a P2P platform, available in:
https://jxta.dev.java.net/

[31] Web services Architecture, W3C Working group, 2004,
available in http://www.w3.org/TR/ws-arch/

Mohamed Gharzouli was born in Constantine (Algeria). He
received his BS degree in Computer Science from Mentouri
University of Constantine (Algeria) in 2002, and MS degree in
Computer Science from Larbi Tebessi University of Tebessa
(Algeria) in 2004. Currently, He is working as Assistant
professor in Department of Computer Science in Mentouri
University of Constantine (Algeria) since 2006. He is a member
of the research group ‘Information Systems and Knowledge
Bases’ in LIRE Laboratory (Constantine, Algeria). He
supervised many Master and License students. Since October
2007 until now, he is preparing his Ph.D in Computer Science.
He has published a number of articles in International
Conferences. He is a program committee member of ICIW
conference. His research interests include Web services, Web
Semantic, P2P Networks, Web Applications and Distributed
Applications.

Mahmoud Boufaïda is a full professor in the Computer
Science department of the University of Constantine, Algeria.
He heads the research group ‘Information Systems and
Knowledge Bases’. He has published several papers in
international conferences and journals. He has managed and
initiated multiple national and international level projects
including interoperability of information systems and
integration of applications in organizations. He has been
program committee member of several conferences. His
research interests include cooperative information systems, web
databases and software engineering.

26 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

