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Abstract—Differential evolution (DE) has been shown to be 
a simple and effective evolutionary algorithm for global 
optimization both in benchmark test functions and many 
real-world applications. This paper introduces a dynamic 
differential evolution (D-DE) algorithm to solve constrained 
optimization problems. In D-DE, a novel mutation operator 
is firstly designed to prevent premature. Secondly, the scale 
factor F and the crossover probability CR are dynamic and 
adaptive to be beneficial for adjusting control parameters 
during the evolutionary process, especially, when done 
without any user interaction. Thirdly, D-DE uses orthogonal 
design method to generate initial population and reinitialize 
some solutions to replace some worse solutions during the 
search process. Finally, D-DE is validated on 6 benchmark 
test functions provided by the CEC 2006 special session on 
constrained real-parameter optimization. The experimental 
results obtained by D-DE are explained and discussed, and 
some conclusions are also drawn. 
 
Index Terms—constrained optimization, mutation scheme, 
differential evolution, evolutionary algorithm, constraint 
handling 

I.  INTRODUCTION 

Many real-world optimization problems in science and 
engineering involve a number of constraints which the 
optimal solution must satisfy. These problems are also 
called constrained optimization problems or nonlinear 
programming problems. We are most interested in the 
general constrained optimization problems, which are all 
transformed into the following format [1], [2], [3], [4]:  

Minimize )(xf
r

, n
nxxxx ℜ∈= ],...,,[ 21

r
 

Subject to qjxg j ,...,2,1,0)( =≤
r

                            (1)                                                   

mqqjxh j ,...,2,1,0)( ++==
r

 

Where DiUxL iii ,...,2,1, =≤≤  
Here n is the number of the decision or parameter 
variables (that is, x

r
is a vector of size D ), the thi variable 

ix varies in the range ],[ ii UL . The function )(xf
r

 is the 
objective function, )(xg j

r  is the thj inequality constraint 

and )(xh j
r  is the thj equality constraint. The decision or 

search space S is written as ∏=
=

D

i ii ULS
1

],[ , and the 

feasible space F , expressed as ,0)(|{ ≤∈= xgSxF j
rr

 

;,...,2,1 qj = mqqjxhj ,...,2,1,0)( ++==
r , is one subset 

of the parameter space S (obviously, SF ⊆ ) which 
satisfies the equality and inequality constraints. 

Population-based evolutionary algorithm, mainly due 
to its ease to implement and use, and its less 
susceptibleness to the characteristics of the function to be 
optimized, has become a very popular option to solve 
constrained optimization problems in benchmark test 
functions and real-world applications [5]. Muñoz Zavala 
et al. [6] proposed a new constrained optimization 
algorithm based on improved particle swarm optimization 
(COPSO). In order to keep diversity, COPSO introduces 
a hybrid approach based on a modified ring neighborhood 
structure with two new perturbation operators for 
perturbing the particle swarm optimization (PSO) 
memory. In addition, COPSO adopts a new and special 
handling technique for equality constraints where a 
dynamic tolerance value is adjusted to allow the survival 
of unfeasible particles. Furthermore, COPSO is applied to 
the solution of state-of-the-art benchmark test functions 
and various engineering design problems. Liang and 
Suganthan [7] proposed a dynamic multi-swarm particle 
swarm optimizer with a novel constraint-handling 
mechanism (DMS-PSO). DMS-PSO adopts a novel 
constraint-handling mechanism based on multi-swarm. 
Different from the existing constraints handling methods, 
sub-swarms are adaptively assigned to explore different 
constraints during the search process. Additionally, 
DMS-PSO introduces Sequential Quadratic Programming 
(SQP) method to improve local search ability. Finally, 
DMS-PSO is applied to the solution of constrained real-
parameter optimization. Mezura-Montes et al. [8] 
proposed a modified differential evolution for constrained 
optimization (MDE). In order to increase the probability 
of each parent to generate a better offspring, MDE allows 
each solution to generate more than one offspring but 
using a different mutation operator which  combines 
information of the current parent to find new search 
directions. Besides, MDE employs three selection criteria 
based on feasibility to deal with the constraints and 
adopts a diversity mechanism to maintain infeasible 
solutions located in promising areas of the search space. 
Takahama and Sakai [9] proposed a novel constrained 
optimization algorithm by the ε constrained differential 
evolution with gradient-based mutation and feasible elites 
( DEε ). Firstly, DEε applies the ε constrained method to 
differential evolution. Secondly, to solve problems with 
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many equality constraints faster, which are very difficult 
problems for numerical optimization, DEε proposes 
gradient-based mutation and feasible elites preserving 
strategy. Finally, DEε  is tested on 24 benchmark test 
functions provided by the CEC 2006 special session on 
constrained real-parameter optimization. Differential 
evolution (DE) [10], [11], a relatively new evolutionary 
technique, has been shown to be simple and powerful and 
has been widely applied to both benchmark test functions 
and real-world applications [12]. After analyzing the 
existing evolutionary algorithms, this paper introduces a 
new dynamic differential evolution (D-DE) algorithm for 
constrained real-parameter optimization efficiently. 

The remainder of this paper is organized as follows. 
Section II briefly introduces the basic idea of DE. Section 
III describes in detail the D-DE algorithm. Section IV 
presents 6 benchmark test functions. Section V presents 
experimental settings adopted by D-DE, conventional DE 
and GA, respectively. Section VI provides an analysis of 
the results obtained from our empirical study. Finally, 
some conclusions and some possible paths for future 
research are provided in Section VII. 

II.  THE BASIC IDEA OF CONVENTIONAL DE 

Let us assume that ],...,,[ ,2,1,
t

Di
t
i

t
i

t
i xxxx =
r

 are solutions at 

generation t, },...,,{ 21
t
N

ttt xxxP
rrr

=  are population, where D 
denotes the dimension of solution space, N is population 
size. In conventional DE, the child population 1+tP is 
generated through following operators [10], [13]: 

A.  Mutation Operator 

For each t
ix
r

in parent population, the mutant vector 1+t
iv
r

is 
generated according to the following equation: 

)(
321

1 t
r

t
r

t
r

t
i xxFxv

rrrr
−×+=+                               (2) 

Where iNrrr \},...,2,1{,, 321 ∈ are randomly chosen and 
mutually different, the scaling factor F is used to control 
amplification of the differential variation t

r
t
r xx

32

rr
− . 

B.  Crossover Operator 

For each individual t
ix
r

, a trial vector 1+t
iu
r

is generated by 
the following equation: 





 =≤

=
+

+

otherwise  ,
]),1[||(if  ,

,

1
,1

, t
ji

t
jit

ji x
DrandjCRrandv
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Where rand is a uniform random number distributed 
between 0 and 1, ],1[ Drand is a randomly selected index 
from the set },...,2,1{ D , the crossover probability 

]1,0[∈CR  is used to control the diversity of individuals. 

C.  Selection Operator 

The child individual 1+t
ix
r

is selected from each pair of 
t
ix
r

and 1+t
iu
r

by using greedy selection criterion: 





 <

=
++

+

otherwise   ,   
))()((if  , 11

1
t
i

t
i

t
i

t
it

i x
xfufux r

rrr
r

                 (4) 

Where the function f is the objective function and the 

condition )()( 1 t
i

t
i xfuf

rr
<+  means the individual 1+t

iu
r

is 

better than t
ix
r

.  
1: Generate initial population 0P . 
2: Evaluate 0P and let generation counter 0=t . 
3: While (the stopping criterion is not satisfied) do{ 
4:      For each individual t

ix
r , its offspring 1+t

ix
r is generated 

5:           by mutation, crossover and selection operators. 
6: Evaluate 1+tP and let 1+= tt } 

Figure 1.  The general framework of DE. 

III.  THE PROPOSED ALGORITHM DDE 

A.  Orthogonal Initial Population 

Generally, the initial population },...,,{ 00
2

0
1

0
NxxxP
rrr

= of 
evolutionary algorithm is randomly generated as follows: 

)(r:, 0
, jjjjji LULxDjNi −×+=≤∀≤∀         (5) 

Where N is the population size, D is the number of 
variables, jr is a random number between 0 and 1, the thj  

variable of 0
ix
r

, written as 0
, jix , is initialized in the range 

],[ jj UL . In order to improve the search efficiency, this 
paper employs orthogonal design method to generate the 
initial population, which can make some points closer to 
the global optimal point and improve the diversity of 
solutions. The orthogonal design method is described as 
follows [14]: 

For any given individual ],...,,[ 21 Dxxxx =
r

, the thi  
decision variable ix varies in the range ],[ ii UL . Here, 
each ix is taken as each factor of orthogonal design. Let 
us assume that each factor holds Q levels, namely, 
quantize the domain ],[ ii UL  into Q levels Qααα ,...,, 21 . 

The thj  level of the thi factor ji,α is defined as follows: 









=
−≤≤−+

=
= −

−

QjU
QjjL

jL
a

i

Q
LU

i

i

ji
ii

,                         
12 ,  ))(1(

1,                          

1,            (6) 

Thereafter, we create the orthogonal array DNjibM ×= )( ,  
with D factors and Q levels, where N  is the number of 
level combinations. The procedure of generating the 
orthogonal array DNjibM ×= )( , is described as follows:  
1: for ( ++≤= iNii ;;1 ) 
2: { =1,ib int( Qi /)1( − ) mod Q ; )1(2, −= ibi mod Q  } 

3: for ( ++≤= jDjj ;;3 ) 
4:     for ( ++≤= iNii ;;1 )  
5:     { ))2(( 2,1,, iiji bjbb +−×= mod Q  } 

6:  Increment jib , by one for DjNi ≤≤≤≤ 1,1  

Figure 2.  Generating orthogonal array DN
i
jbM ×= )( . 
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Therefore, the initial population DNjixP ×= )( 0
,

0 can be 

generated by using the orthogonal array DNjibM ×= )( , , 

where the thj variable of individual 0
ix
r  is 

jibjji ax
,,

0
, = . 

B.  Novel Mutation Scheme 
According to the different variants of mutation, there are 
several different DE schemes often used, which are 
formulated as follows [10]: 
"DE/rand/1/bin":  )(

321

1 t
r

t
r

t
r

t
i xxFxv

rrrr
−×+=+                 (7) 

"DE/best/1/bin":  )(
21

1 t
r

t
rbest

t
i xxFxv

rrrr
−×+=+               (8) 

"DE/current to best/2/bin":  
)()(

21

1 t
r

t
r

t
ibest

t
i

t
i xxFxxFxv

rrrrrr
−×+−×+=+     (9) 

"DE/best/2/bin":  
)()(

4321

1 t
r

t
r

t
r

t
rbest

t
i xxFxxFxv

rrrrrr
−×+−×+=+    (10) 

"DE/rand/2/bin": 
         )()(

54321

1 t
r

t
r

t
r

t
r

t
r

t
i xxFxxFxv

rrrrrr
−×+−×+=+      (11) 

Where bestx
r

is the best solution of the current population, 
and the control parameter F is usually set to be a constant. 
Using bestx

r
 can improve the convergence speed but also 

increase the probability of getting stuck in the local 
optimum. In order to overcome the limitations, this paper 
proposes a novel variant of mutation, which is defined as 
follows: 

∑
=

+ −×+=
−

2/

1
2

1 )(
12

K

k

t
k

t
rbetter

t
i xxFxv

k

rrrr
              (12) 

Where iNrrr K \},...,2,1{,...,, 21 ∈ , they are K mutually 
different and randomly chosen integers. The better 
solution betterx

r
is a random sample from top aN solutions 

after ranking the current population based on the 
feasibility rule described in the later. The scale factor 
F is a dynamic control parameter and related to the 
generation number, which is defined as follows: 

             bF

T
tFFFF )1()( minmaxmin −×−+=              (13) 

Here minF and maxF are the bottom and upper boundaries 
of F , and usually are set to 0.1 and 0.9 respectively. The 
exponent bF is a shape parameter determining the degree 
of dependency on the generation number and usually is 
set to 2 or 3. Two parameters t and T are the current 
generation number and the maximal generation number 
respectively. 

C.   Dynamic Control Parameters 
In conventional DE, the crossover probability CR is a 
constant value between 0 and 1. In this study, a dynamic 
crossover probability CR is defined as follows: 

       bCR

T
tCRCRCRCR )1()( minmaxmin −×−+=      (14) 

Here minCR and maxCR are the bottom and upper 
boundaries of CR , and usually are set to 0.1 and 0.9 
respectively. The exponent bCR is a shape parameter 

determining the degree of dependency on the generation 
number and usually is set to 2 or 3. Two parameters t  
and T are the current generation number and the maximal 
generation number respectively. 

At the early stage, D-DE uses a bigger scale factor 
F and a bigger crossover probability CR  to search the 
solution space to preserve the diversity of solutions and 
prevent premature; at the later stage, D-DE employs a 
smaller scale factor F and a smaller crossover probability 
CR to search the solution space to enhance the local 
search and prevent the better solutions found from being 
destroyed. 

D.  Repair Rule 
After crossover, if one or more of the variables in the new 
vector 1+t

iu
r

are outside their boundaries, the violated 

variable value 1
,
+t
jiu

r
is either reflected back from the 

violated boundary or set to the corresponding boundary 
value using the repair rule as follows [15], [16]:  
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Where p is a probability and uniformly distributed 
random number in the range ]1,0[ . 

E.  Constraint Handling Mechanism 
In evolutionary algorithms for solving constrained 
optimization problems, the most common method to 
handle constraints is to use penalty functions. Usually 
equality constraints are transformed into inequalities of 
the form [4]: 

mqqjxh j ,...,2,1,0|)(| ++=≤−ε
r

          (16) 
Hereε is a tolerance allowed (a very small value) for the 
equality constraints. 

In general, the constraint violation function of one 
individual x

r
 is transformed by m  equality and inequality 

constraints as follows [9], [17], [18]: 

∑∑
+==

−+=
m

qj
jjj

q

j
j xhwxgwxG

11

)|)(|,0max())(,0(max)( ββ ε
rrr  (17) 

Here the exponent β is a positive number and usually set 
to 1 or 2, and the coefficient jw is greater than zero. The 

function value )(xG
r

 shows that the degree of constraints 
violation of individual x

r
. β is set to 2 and jw is set to 1 in 

this study. 
In this study, a simple and efficient constraint handling 

technique of feasibility-based rule is introduced, which is 
also a constraint handling technique without parameters. 
When two solutions are compared at a time, the following 
criteria are always applied [3]:  

1) If one solution is feasible, and the other is infeasible, 
the feasible solution is preferred;  
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2) If both solutions are feasible, the one with the better 
objective function value is preferred;  

3) If both solutions are infeasible, the one with smaller 
constraint violation function value is preferred.  

F.  Algorithm Framework 
The general framework of the D-DE algorithm is outlined 
as follows:  

1:  Generate orthogonal initial population },...,,{ 00
2

0
1

0
NxxxP
rrr

= , 
2:       initialize parameters, and let 0=t . 
3:  Evaluate 0P , and rank 0P based on feasibility rule. 
4:  repeat 
5:    for each individual t

ix
r  in the population tP do 

6:       Generate K random integers iNrrr K \},...,2,1{,...,, 21 ∈ ,  
7:               they are also mutually different. 
8:       Generate a random integer },...,2,1{ Djrand ∈ . 

9:       Randomly select a sample betterx
r

from top aN individuals of 

10:             the current population tP . 
11:     for  each parameter }2/,...,2,1{ Kj∈  do 

12:               








=≤
−×+

=
−

+

otherwise    , 
]),1[|| ( if           

 ),(

,

,,,
1

,

212

t
ji

t
jr

t
jrjbetter

t
ji

x
DrandjCRrand

xxFx
u

kk

r

rrr

r  

13:     end for 
14:     Apply repair rule to repair 1

,
+t
jiu

r if required, and evaluate 1
,
+t
jiu

r . 

15:     Replace t
ix
r with the child 1+t

iu
r in the population 1+tP , if 1+t

iu
r  

16            is better, otherwise t
ix
r is retained. 

17:  end for 
18:  Rank 1+tP based on the feasibility rule, then replace bN worse 
19:         solutions with bN orthogonal reinitialized solutions. 

20:  Rank 1+tP based on the feasibility rule, and let 1+= tt . 
21:until (the termination condition is achieved) 

Figure 3.  The general framework of the D-DE algorithm.  

IV. TEST FUNCTION SUITE 

In order to validate D-DE, we employ 6 benchmark test 
problems 04g , 06g , 08g , 11g , 12g , which are provided 
by the CEC 2006 special session on constrained real-
parameter optimization [4], and which are described in 
the following. 
A. Test function 02g  

Minimize 

∑
∏∑

=

==
−

−=
n

i i

n

i i
n

i i

ix

xx
xf

1
2

1
2

1
4 )(cos2)(cos

)(
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Subject to 075.0)(
1

1 ≤−= ∏
=

n

i
ixxg

r  

05.7)(
1

2 ≤−=∑
=

nxxg
n

i
i

r
 

Where 20=n and ),...,2,1( 100 nixi =≤< . The global 
minimum =*x

r
(3.16246061572185,3.12833142812967, 

3.09479212988791,3.06145059523469,3.0279291588555
5,2.99382606701730,2.95866871765285,2.92184227312
450,0.49482511456933,0.48835711005490,0.482316427

11865,0.47664475092742,0.47129550835493,0.4662309
9264167,0.46142004984199,0.45683664767217,0.45245
876903267,0.44826762241853,0.44424700958760,0.440
38285956317), the best is 25598036191041.0*)( −=xf

r
 , 

constraint 1g is close to being active. 
B. Test function 04g  

Minimize 51
2
3 8356891.03578547.5)( xxxxf +=

r
  

141.40792293239.37 1 −+ x  
Subject to 521 0056858.0334407.85)( xxxg +=

r
 

0920022053.00006262.0 5341 ≤−−+ xxxx                 

522 0056858.0334407.85)( xxxg −−=
r

 
00022053.00006262.0 5341 ≤+− xxxx  

523 0071317.051249.80)( xxxg +=
r

 

01100021813.00029955.0 2
321 ≤−++ xxx                 

524 0071317.051249.80)( xxxg −−=
r

 

0900021813.00029955.0 2
321 ≤+−− xxx                 

535 0047026.0300961.9)( xxxg +=
r

 
0250019085.00012547.0 4331 ≤−++ xxxx                 

536 0047026.0300961.9)( xxxg −−=
r

 
0200019085.00012547.0 4331 ≤+−− xxxx  

Where ,10278 1 ≤≤ x 4533 2 ≤≤ x and 4527 ≤≤ ix
).5,4,3( =i The optimum solution is =*x

r
(78,33, 

29.9952560256815985,45,36.7758129057882073),where
004783320665538671.3*)( +−= exf

r
. Two constraints 

are active ( 1g and 6g ). 
C. Test function 06g  

Minimize 3
2

3
1 )20()10()( −+−= xxxf

r
 

Subject to 0100)5()5()( 2
2

2
11 ≤+−−−−= xxxg

r
 

081.82)5()6()( 2
2

2
12 ≤−−+−= xxxg

r  
Where 10013 1 ≤≤ x and 1000 2 ≤≤ x . The optimum 
solution is =*x

r
(14.09500000000000064,0.84 

29607892154795668) where =*)(xf
r

-6961.81387558015. 
Both constraints are active. 
D. Test function 08g  

Minimize 
)(

)2sin()2(sin
)(

21
3
1

21
3

xxx
xx

xf
+

−=
ππr

 

Subject to 01)( 2
2
11 ≤+−= xxxg

r  

0)4(1)( 2
212 ≤−+−= xxxg

r
 

Where 100 1 ≤≤ x and 100 2 ≤≤ x . The optimum 
solution is =*x

r
(1.22797135260752599,4.24537336612 

274885) where =*)(xf
r

-0.0958250 414180359. 
E. Test function 11g  

Minimize 2
2

2
1 )1()( −+= xxxf

r
 

Subject to 0)( 2
12 =−= xxxh

r
 

Where 11 1 ≤≤− x , 11 2 ≤≤− x . The optimum solution is 
=*x

r
(-0.707036070037170616,0.500000004333606807) 
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where =*)(xf
r

0.7499. 
F. Test function 12g  
Minimize

100/))5()5()5(100()( 2
3

2
2

2
1 −−−−−−−= xxxxf

r  

Subject to 2
2

2
1 )()()( qxpxxg −+−=

r
 

00625.0)( 2
3 ≤−−+ rx  

Where )3,2,1( 100 =≤≤ ixi and 9,...,2,1,, =rqp . The 

feasible region of the search space consists of 39  
disjointed spheres. A point ),,( 321 xxx is feasible if and 
only if there exists rqp ,, such that the above inequality 
holds. The optimum solution is =*x

r
(5,5,5) where 

=*)(xf
r

-1. The solution lies within the feasible region. 

V. EXPERIMENTAL SETTINGS 

A. Parameter Settings of D-DE 
In our experimental study, the parameter values used in 
D-DE are set as follows: the population size 50=N , the 
maximal generation number 5000=T , the level number 

 NQ = , the number of top solutions 51.0 =×= NNa , 
the number of replaced solutions 51.0 =×= NNb , the 
minimal and maximal values of scale factor F are set to 

1.0min =F  and 9.0max =F  respectively, 6=K , the 
minimal and maximal values of crossover probability 
CR are set to 1.0min =CR  and 9.0max =CR  respectively, 
the shape parameter values 3=aF and 3=bF  respectively, 
the exponent 2=β ,  the tolerant value 0001.0=ε . The 
number of function evaluations (FES) is equal to 

TNNb ××+ )1(  =275,000. The achieved solution at the 
end of TNNa ××+ )1( FES is used to measure the 
performance of D-DE. D-DE is independently run 30 
times on each test function. 

B. Parameter Settings of Conventional DE 
In our experimental study, the parameter values adopted 
by the conventional DE are set as follows: the population 
size 50=N , the maximal generation number 55000=T , 
the crossover probability 9.0=CR , the scale factor 

6.0=F , the tolerant value 0001.0=ε . The number of 
function evaluations (FES) is equal to TN × =275,000. 
The achieved solution at the end of TN × FES is used to 
measure the performance of the conventional DE. The 
DE employs the repair rule and constraint handling 
mechanism described in Section III and is independently 
run 30 times on each test function. 

C. Parameter Settings of Conventional GA 
As a computing technique and method, population-based 
genetic algorithm (GA) [20] has been shown to be an 
effective evolutionary algorithm [21]. In our experimental 
study, the conventional GA uses simulated binary 
crossover (SBX) [22],  polynomial mutation operator [23], 
tournament selection between the parent and its child, the 
repair rule and constraint handling mechanism described 

in Section III. The parameter values employed by the 
real-coded GA are set as follows: the population size 

50=N , the maximal generation number 55000=T , the 
crossover probability 9.0=cP  and a mutation probability 

nPm /1=  (where n is the number of decision variables 
for real-coded GA), the distribution indexes for crossover 
and mutation operators as 20=cη and 20=mη ; the 
tolerant value 0001.0=ε . The number of function 
evaluations (FES) is equal to 000,275=×TN . The 
obtained solution at the end of TN × FES is used to 
measure the performance of the conventional GA. The 
GA is independently run 30 times on each test function. 

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Comparison with Respect to Conventional DE and GA 
on 6 Benchmark Test Problems 
Using the above experimental settings, the best, mean and 
worst results obtained by D-DE, DE, and GA are given in 
Tables I-III. As shown in Table I, D-DE, DE and GA all 
can find the best solution for each test problems 08g , 11g  
and 12g , respectively. For test problems 04g and 06g , D-
DE and DE can find the best solution and is better than 
that of GA. For test problem 02g , the best result obtained 
by DE is slightly better than that of D-DE, and obviously 
better than that of GA. According to the mean results 
given in Table II, the mean result obtained by D-DE is 
better than or not worse than that of DE and GA for all 
test problems 02g , 04g , 06g , 08g , 11g  and 12g , while 
the mean result obtained by DE is better than or not 
worse than that of GA for test problems 02g , 04g , 06g , 

08g and 12g except for test problem 11g  where the mean 
result obtained by GA is better than that of DE. Table II 
shows that the worst result obtained by D-DE is better 
than or not worse than that of DE and GA for all test 
problems 02g , 04g , 06g , 08g , 11g  and 12g , while the 
worst result obtained by DE is better than or not worse 
than that of GA for test problems 02g , 04g , 06g , 

08g and 12g , except for test problem 11g  where the 
worst result obtained by GA is better than that of DE. 
Additionally, according to Tables I-III, we can find that 
D-DE can almost find the optimum solution for each test 
problems 02g , 04g , 06g , 08g , 11g and 12g  in one single 
run, and that D-DE is robust and can outperform DE and 
GA on a set of test problems. 

TABLE I.  
THE BEST RESULTS OBTAINED BY D-DE WITH RESPECT TO THOSE 

OBTAINED BY DE, GA ON 6 BENCHMARK PROBLEMS. 

Function Optimal D-DE DE GA 
g02 -0.803619 -0.80356676 -0.80361902 -0.80254846 
g04 -30665.539 -30665.53867 -30665.53867 -30664.86146 
g06 -6961.814 -6961.81388 -6961.81388 -6958.24296 
g08 -0.095825 -0.09582504 -0.09582504 -0.09582504 
g11 0.7499 0.749900000 0.749900000 0.749900232 
g12 -1 -1 -1 -1.00000000 
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TABLE II.  
THE MEAN RESULTS OBTAINED BY D-DE WITH RESPECT TO THOSE 

OBTAINED BY DE, GA ON 6 BENCHMARK PROBLEMS. 

Function Optimal D-DE DE GA 
g02 -0.803619 -0.80150890 -0.79516035 -0.78941723 
g04 -30665.539 -30665.53867 -30665.53867 -30661.64864 
g06 -6961.814 -6961.81388 -6961.81388 -6925.57354 
g08 -0.095825 -0.09582504 -0.09582504 -0.09582504 
g11 0.7499 0.749900000 0.897159582 0.750805569 
g12 -1 -1 -1 -1.00000000 

TABLE III.  
THE WORST RESULTS OBTAINED BY D-DE WITH RESPECT TO THOSE 

OBTAINED BY DE, GA ON 6 BENCHMARK PROBLEMS. 

Function Optimal D-DE DE GA 
g02 -0.803619 -0.79253455 -0.77041284 -0.75131833 
g04 -30665.539 -30665.53867 -30665.53867 -30655.21039 
g06 -6961.814 -6961.81388 -6961.81388 -6887.72373 
g08 -0.095825 -0.09582504 -0.09582504 -0.09582504 
g11 0.7499 0.749900000 1.000000000 0.755040572 
g12 -1 -1 -1 -1.00000000 

B. Comparison with Respect to Some State-of-the-art 
Approaches on 6 Benchmark Test Problems 
In this section, we present the experimental results in 
detail and compare D-DE with respect to state-of-the-art 
algorithms. The experimental results are given in Table 
IV. The optimized objective function values (of 30 runs) 
arranged in ascending order and the 15th value in the list 

is called the median optimized function value. 
According to the summary of statistical results of test 

problems 04g , 06g , 08g , 11g , 12g given in Table IV, it 
is clearly seen that D-DE, A-DDE [19], COPSO [6] and 
SRES [18] all can find the optimum or near-optimum, 
when D-DE uses 275,000 FES, A-DDE 180,000 FES, 
COPSO 350,000 FES and SRES 500,000 FES, 
respectively. For test problem 02g , the mean, worst and 
standard derivation of values obtained by D-DE are the 
best when compared with other algorithms, while the 
median value obtained by D-DE is better than that of A-
DDE and SRES, and is slightly worse than that of 
COPSO. Besides, for test problem 02g , the best value 
obtained by D-DE is slightly worse than that of the other 
algorithms. As shown in Table V, the best, median, mean, 
worst and standard derivation of values obtained by D-
DE when set to 550,000 FES are obviously better than 
those when set to 275,000 FES. The best, median values 
obtained by D-DE when set to 550,000 FES are almost 
convergent to the optimum or near-optimum. Therefore, 
for test problem 02g , D-DE is not still convergent to the 
optimum when set to 275,000 FES. In conclusion, the 
performance of D-DE is stable and better than or not 
worse than some state-of-the-art evolutionary algorithms 
on a set of test problems. 

TABLE IV.  
COMPARISON D-DE WITH RESPECT TO ALGORITHMS A-DDE [19], COPSO [6], SRES [18] ON 6 BENCHMARK TEST FUNCTIONS 

Function Optimal Method Best Median Mean Worst Std FES 

g02 -0.803619 

D-DE 
A-DDE 
COPSO 
SRES 

-0.80356676178
-0.803605 
-0.803619 

-0.804 

-0.803457738386
-0.777368 
-0.803617 

-0.793 

-0.801508902296
-0.771090 
-0.801320 

-0.788 

-0.79253454688 
-0.609853 
-0.786566 

-0.746 

4.00E-03 
3.66E-02 
4.59E-03 
1.3E-02 

275,000 
180,000 
350,000 
500,000 

g04 -30665.539 

D-DE 
A-DDE 
COPSO 
SRES 

-30665.53867178
-30665.539 

-30665.538672
-30665.539 

-30665.53867178
-30665.539 

-30665.538672
-30665.539 

-30665.53867178
-30665.539 

-30665.538672
-30665.539 

-30665.53867178 
-30665.539 

-30665.538672 
-30665.539 

1.16E-011 
3.20E-13 

0 
0.0E+00 

275,000 
180,000 
350,000 
500,000 

g06 -6961.814 

D-DE 
A-DDE 
COPSO 
SRES 

-6961.81387558
-6961.814 

-6961.813876 
-6961.814 

-6961.81387558
-6961.814 

-6961.813876 
-6961.814 

-6961.81387558
-6961.814 

-6961.813876 
-6961.814 

-6961.81387558 
-6961.814 

-6961.813876 
-6961.814 

4.63E-012 
2.11E-12 

0 
1.9E-12 

275,000 
180,000 
350,000 
500,000 

g08 -0.095825 

D-DE 
A-DDE 
COPSO 
SRES 

-0.095825041418
-0.095825 
-0.095825 

-0.096 

-0.095825041418
-0.095825 
-0.095825 

-0.096 

-0.095825041418
-0.095825 
-0.095825 

-0.096 

-0.095825041418 
-0.095825 
-0.095825 

-0.096 

2.82E-017 
9.10E-10 

0 
0.0E+00 

275,000 
180,000 
350,000 
500,000 

g11 0.7499 

D-DE 
A-DDE 
COPSO 
SRES 

0.749900000000
0.75 

0.749999 
0.750 

0.749900000000
0.75 

0.749999 
0.750 

0.749900000000
0.75 

0.749999 
0.750 

0.749900000000 
0.75 

0.749999 
0.750 

1.13E-016 
5.35E-15 

0 
1.1E-16 

275,000 
180,000 
350,000 
500,000 

g12 -1 

D-DE 
A-DDE 
COPSO 
SRES 

-1 
-1.000 

-1.000000 
-1.000 

-1 
-1.000 

-1.000000 
-1.000 

-1 
-1.000 

-1.000000 
-1.000 

-1 
-1.000 

-1.000000 
-1.000 

0 
4.10E-11 

0 
0.0E+00 

275,000 
180,000 
350,000 
500,000 

 

TABLE V.  
EXPERIMENTAL RESULTS OBTAINED BY D-DE WHEN FES=275,000 , FES=550,000 FOR TEST FUNCTION 02g OVER 30 RUNS 

FES Best Median Mean Worst Std 
275,000 -0.80356676178 -0.803457738386 -0.801508902296 -0.79253454688 4.00E-03 
550,000 -0.803610090279 -0.8036058890 -0.802935868229 -0.79259834414 2.55E-03 

 

C. Convergence Graphs Obtained by D-DE for 6 
Benchmark Test Problems 
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In order to provide a more intuitive comprehension, we 
present the convergence graphs obtained by D-DE for 
test problems 02g , 04g , 06g , 08g , 11g  and 12g . 
Figures 4-9 depict the convergence graphs for test 
problems 02g , 04g , 06g , 08g , 11g and 12g , 
respectively. It is clearly seen that D-DE has a trend to 

find the optimum solution for test problem 02g within 
300,000 FES, that D-DE can find the optimum solution 
for each test problem 06g , 08g , 11g , 12g within 50,000 
FES, and that D-DE can obtain the optimum solution for 
test problem 04g within 100,000 FES. 

 
Figure 4.  Convergence graph for g02. 

 
Figure 5.  Convergence graph for g04. 

 
Figure 6.  Convergence graph for g06. 

 
Figure 7.  Convergence graph for g08. 

 
Figure 8.  Convergence graph for g11. 

 
Figure 9.  Convergence graph for g12. 
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VII.  CONCLUSIONS AND FUTURE WORK 

In this study, we present a dynamic differential evolution 
algorithm (D-DE) for solving constrained real-parameter 
optimization problems. In this model of D-DE, there 
exist at least three important contributions as follows: 

1) The first contribution is the novel mutation scheme, 
which can improve the convergence speed, prevent 
premature and preserve the diversity of solutions.  

2) The second contribution is two important control 
parameters (i.e., the scale factor F and the crossover 
probability CR ), which are dynamic and beneficial for 
adjusting control parameters during the evolutionary and 
search process, especially, when done without any user 
interaction. 

3) The third contribution is that D-DE can prevent 
premature and enhance the search performance mainly 
due to replacing some relatively worse solutions with 
reinitialized solutions during the evolutionary process. 

In addition, D-DE employs orthogonal design method 
to generate initial population to improve the diversity of 
solutions and introduces a constraint handling technique 
based on the feasibility rule and the sum of constraints 
violation. 

Finally, D-DE is tested on 6 benchmark test functions 
provided by the CEC 2006 special session on constrained 
real-parameter optimization. Through comparing D-DE 
with respect to state-of-the-art evolutionary algorithms, 
the experimental results show that D-DE is highly 
competitive and can obtain good results in terms of a test 
set of constrained real-parameter optimization problems. 
However, in the future, there are still many aspects to do. 
Firstly, in order to further validate D-DE, we are 
considering of the possibility of testing more benchmark 
test functions (especially, highly dimensional problems) 
and real-world constrained optimization problems. 
Secondly, for some test functions, there exists the 
phenomenon of slow evolutionary at the later stage. In 
order to overcome the limitation, we will incorporate 
some local search techniques into D-DE to improve the 
convergence speed. Additionally, improving constraint 
handling technique is another future work. 
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