
Dynamic Differential Evolution for Constrained
Real-Parameter Optimization

Youyun Ao1, Hongqin Chi2

1School of Computer and Information, Anqing Teachers College, Anqing, China
Email: youyun.ao@gmail.com

2Department of Computer, Shanghai Normal University, Shanghai, China
Email: chihq@shnu.edu.cn

Abstract—Differential evolution (DE) has been shown to be
a simple and effective evolutionary algorithm for global
optimization both in benchmark test functions and many
real-world applications. This paper introduces a dynamic
differential evolution (D-DE) algorithm to solve constrained
optimization problems. In D-DE, a novel mutation operator
is firstly designed to prevent premature. Secondly, the scale
factor F and the crossover probability CR are dynamic and
adaptive to be beneficial for adjusting control parameters
during the evolutionary process, especially, when done
without any user interaction. Thirdly, D-DE uses orthogonal
design method to generate initial population and reinitialize
some solutions to replace some worse solutions during the
search process. Finally, D-DE is validated on 6 benchmark
test functions provided by the CEC 2006 special session on
constrained real-parameter optimization. The experimental
results obtained by D-DE are explained and discussed, and
some conclusions are also drawn.

Index Terms—constrained optimization, mutation scheme,
differential evolution, evolutionary algorithm, constraint
handling

I. INTRODUCTION

Many real-world optimization problems in science and
engineering involve a number of constraints which the
optimal solution must satisfy. These problems are also
called constrained optimization problems or nonlinear
programming problems. We are most interested in the
general constrained optimization problems, which are all
transformed into the following format [1], [2], [3], [4]:

Minimize)(xf
r

, n
nxxxx ℜ∈=],...,,[21

r

Subject to qjxg j ,...,2,1,0)(=≤
r

 (1)

mqqjxh j ,...,2,1,0)(++==
r

Where DiUxL iii ,...,2,1, =≤≤
Here n is the number of the decision or parameter
variables (that is, x

r
is a vector of size D), the thi variable

ix varies in the range],[ii UL . The function)(xf
r

 is the
objective function,)(xg j

r is the thj inequality constraint

and)(xh j
r is the thj equality constraint. The decision or

search space S is written as ∏=
=

D

i ii ULS
1

],[, and the

feasible space F , expressed as ,0)(|{ ≤∈= xgSxF j
rr

;,...,2,1 qj = mqqjxhj ,...,2,1,0)(++==
r , is one subset

of the parameter space S (obviously, SF ⊆) which
satisfies the equality and inequality constraints.

Population-based evolutionary algorithm, mainly due
to its ease to implement and use, and its less
susceptibleness to the characteristics of the function to be
optimized, has become a very popular option to solve
constrained optimization problems in benchmark test
functions and real-world applications [5]. Muñoz Zavala
et al. [6] proposed a new constrained optimization
algorithm based on improved particle swarm optimization
(COPSO). In order to keep diversity, COPSO introduces
a hybrid approach based on a modified ring neighborhood
structure with two new perturbation operators for
perturbing the particle swarm optimization (PSO)
memory. In addition, COPSO adopts a new and special
handling technique for equality constraints where a
dynamic tolerance value is adjusted to allow the survival
of unfeasible particles. Furthermore, COPSO is applied to
the solution of state-of-the-art benchmark test functions
and various engineering design problems. Liang and
Suganthan [7] proposed a dynamic multi-swarm particle
swarm optimizer with a novel constraint-handling
mechanism (DMS-PSO). DMS-PSO adopts a novel
constraint-handling mechanism based on multi-swarm.
Different from the existing constraints handling methods,
sub-swarms are adaptively assigned to explore different
constraints during the search process. Additionally,
DMS-PSO introduces Sequential Quadratic Programming
(SQP) method to improve local search ability. Finally,
DMS-PSO is applied to the solution of constrained real-
parameter optimization. Mezura-Montes et al. [8]
proposed a modified differential evolution for constrained
optimization (MDE). In order to increase the probability
of each parent to generate a better offspring, MDE allows
each solution to generate more than one offspring but
using a different mutation operator which combines
information of the current parent to find new search
directions. Besides, MDE employs three selection criteria
based on feasibility to deal with the constraints and
adopts a diversity mechanism to maintain infeasible
solutions located in promising areas of the search space.
Takahama and Sakai [9] proposed a novel constrained
optimization algorithm by the ε constrained differential
evolution with gradient-based mutation and feasible elites
(DEε). Firstly, DEε applies the ε constrained method to
differential evolution. Secondly, to solve problems with

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 1, FEBRUARY 2010 43

© 2010 ACADEMY PUBLISHER
doi:10.4304/jait.1.1.43-51

Manuscript received August 24, 2009; revised October 21, 2009.

many equality constraints faster, which are very difficult
problems for numerical optimization, DEε proposes
gradient-based mutation and feasible elites preserving
strategy. Finally, DEε is tested on 24 benchmark test
functions provided by the CEC 2006 special session on
constrained real-parameter optimization. Differential
evolution (DE) [10], [11], a relatively new evolutionary
technique, has been shown to be simple and powerful and
has been widely applied to both benchmark test functions
and real-world applications [12]. After analyzing the
existing evolutionary algorithms, this paper introduces a
new dynamic differential evolution (D-DE) algorithm for
constrained real-parameter optimization efficiently.

The remainder of this paper is organized as follows.
Section II briefly introduces the basic idea of DE. Section
III describes in detail the D-DE algorithm. Section IV
presents 6 benchmark test functions. Section V presents
experimental settings adopted by D-DE, conventional DE
and GA, respectively. Section VI provides an analysis of
the results obtained from our empirical study. Finally,
some conclusions and some possible paths for future
research are provided in Section VII.

II. THE BASIC IDEA OF CONVENTIONAL DE

Let us assume that],...,,[,2,1,
t

Di
t
i

t
i

t
i xxxx =
r

 are solutions at

generation t, },...,,{ 21
t
N

ttt xxxP
rrr

= are population, where D
denotes the dimension of solution space, N is population
size. In conventional DE, the child population 1+tP is
generated through following operators [10], [13]:

A. Mutation Operator

For each t
ix
r

in parent population, the mutant vector 1+t
iv
r

is
generated according to the following equation:

)(
321

1 t
r

t
r

t
r

t
i xxFxv

rrrr
−×+=+ (2)

Where iNrrr \},...,2,1{,, 321 ∈ are randomly chosen and
mutually different, the scaling factor F is used to control
amplification of the differential variation t

r
t
r xx

32

rr
− .

B. Crossover Operator

For each individual t
ix
r

, a trial vector 1+t
iu
r

is generated by
the following equation:





 =≤

=
+

+

otherwise ,
]),1[||(if ,

,

1
,1

, t
ji

t
jit

ji x
DrandjCRrandv

u (3)

Where rand is a uniform random number distributed
between 0 and 1,],1[Drand is a randomly selected index
from the set },...,2,1{ D , the crossover probability

]1,0[∈CR is used to control the diversity of individuals.

C. Selection Operator

The child individual 1+t
ix
r

is selected from each pair of
t
ix
r

and 1+t
iu
r

by using greedy selection criterion:





 <

=
++

+

otherwise ,
))()((if , 11

1
t
i

t
i

t
i

t
it

i x
xfufux r

rrr
r

 (4)

Where the function f is the objective function and the

condition)()(1 t
i

t
i xfuf

rr
<+ means the individual 1+t

iu
r

is

better than t
ix
r

.
1: Generate initial population 0P .
2: Evaluate 0P and let generation counter 0=t .
3: While (the stopping criterion is not satisfied) do{
4: For each individual t

ix
r , its offspring 1+t

ix
r is generated

5: by mutation, crossover and selection operators.
6: Evaluate 1+tP and let 1+= tt }

Figure 1. The general framework of DE.

III. THE PROPOSED ALGORITHM DDE

A. Orthogonal Initial Population

Generally, the initial population },...,,{ 00
2

0
1

0
NxxxP
rrr

= of
evolutionary algorithm is randomly generated as follows:

)(r:, 0
, jjjjji LULxDjNi −×+=≤∀≤∀ (5)

Where N is the population size, D is the number of
variables, jr is a random number between 0 and 1, the thj

variable of 0
ix
r

, written as 0
, jix , is initialized in the range

],[jj UL . In order to improve the search efficiency, this
paper employs orthogonal design method to generate the
initial population, which can make some points closer to
the global optimal point and improve the diversity of
solutions. The orthogonal design method is described as
follows [14]:

For any given individual],...,,[21 Dxxxx =
r

, the thi
decision variable ix varies in the range],[ii UL . Here,
each ix is taken as each factor of orthogonal design. Let
us assume that each factor holds Q levels, namely,
quantize the domain],[ii UL into Q levels Qααα ,...,, 21 .

The thj level of the thi factor ji,α is defined as follows:









=
−≤≤−+

=
= −

−

QjU
QjjL

jL
a

i

Q
LU

i

i

ji
ii

,
12 ,))(1(

1,

1, (6)

Thereafter, we create the orthogonal array DNjibM ×=)(,
with D factors and Q levels, where N is the number of
level combinations. The procedure of generating the
orthogonal array DNjibM ×=)(, is described as follows:
1: for (++≤= iNii ;;1)
2: { =1,ib int(Qi /)1(−) mod Q ;)1(2, −= ibi mod Q }

3: for (++≤= jDjj ;;3)
4: for (++≤= iNii ;;1)
5: {))2((2,1,, iiji bjbb +−×= mod Q }

6: Increment jib , by one for DjNi ≤≤≤≤ 1,1

Figure 2. Generating orthogonal array DN
i
jbM ×=)(.

44 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 1, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

Therefore, the initial population DNjixP ×=)(0
,

0 can be

generated by using the orthogonal array DNjibM ×=)(, ,

where the thj variable of individual 0
ix
r is

jibjji ax
,,

0
, = .

B. Novel Mutation Scheme
According to the different variants of mutation, there are
several different DE schemes often used, which are
formulated as follows [10]:
"DE/rand/1/bin":)(

321

1 t
r

t
r

t
r

t
i xxFxv

rrrr
−×+=+ (7)

"DE/best/1/bin":)(
21

1 t
r

t
rbest

t
i xxFxv

rrrr
−×+=+ (8)

"DE/current to best/2/bin":
)()(

21

1 t
r

t
r

t
ibest

t
i

t
i xxFxxFxv

rrrrrr
−×+−×+=+ (9)

"DE/best/2/bin":
)()(

4321

1 t
r

t
r

t
r

t
rbest

t
i xxFxxFxv

rrrrrr
−×+−×+=+ (10)

"DE/rand/2/bin":
)()(

54321

1 t
r

t
r

t
r

t
r

t
r

t
i xxFxxFxv

rrrrrr
−×+−×+=+ (11)

Where bestx
r

is the best solution of the current population,
and the control parameter F is usually set to be a constant.
Using bestx

r
 can improve the convergence speed but also

increase the probability of getting stuck in the local
optimum. In order to overcome the limitations, this paper
proposes a novel variant of mutation, which is defined as
follows:

∑
=

+ −×+=
−

2/

1
2

1)(
12

K

k

t
k

t
rbetter

t
i xxFxv

k

rrrr
 (12)

Where iNrrr K \},...,2,1{,...,, 21 ∈ , they are K mutually
different and randomly chosen integers. The better
solution betterx

r
is a random sample from top aN solutions

after ranking the current population based on the
feasibility rule described in the later. The scale factor
F is a dynamic control parameter and related to the
generation number, which is defined as follows:

 bF

T
tFFFF)1()(minmaxmin −×−+= (13)

Here minF and maxF are the bottom and upper boundaries
of F , and usually are set to 0.1 and 0.9 respectively. The
exponent bF is a shape parameter determining the degree
of dependency on the generation number and usually is
set to 2 or 3. Two parameters t and T are the current
generation number and the maximal generation number
respectively.

C. Dynamic Control Parameters
In conventional DE, the crossover probability CR is a
constant value between 0 and 1. In this study, a dynamic
crossover probability CR is defined as follows:

 bCR

T
tCRCRCRCR)1()(minmaxmin −×−+= (14)

Here minCR and maxCR are the bottom and upper
boundaries of CR , and usually are set to 0.1 and 0.9
respectively. The exponent bCR is a shape parameter

determining the degree of dependency on the generation
number and usually is set to 2 or 3. Two parameters t
and T are the current generation number and the maximal
generation number respectively.

At the early stage, D-DE uses a bigger scale factor
F and a bigger crossover probability CR to search the
solution space to preserve the diversity of solutions and
prevent premature; at the later stage, D-DE employs a
smaller scale factor F and a smaller crossover probability
CR to search the solution space to enhance the local
search and prevent the better solutions found from being
destroyed.

D. Repair Rule
After crossover, if one or more of the variables in the new
vector 1+t

iu
r

are outside their boundaries, the violated

variable value 1
,
+t
jiu

r
is either reflected back from the

violated boundary or set to the corresponding boundary
value using the repair rule as follows [15], [16]:
















>∧>−

>∧≤<

>∧≤+

<∧>−

<∧≤<

<∧≤+

=

++

+

++

++

+

++

+

)()3/2(if ,2
)()3/23/1(if ,

)()3/1(if ,2/)(
)()3/2(if ,2

)()3/23/1(if ,
)()3/1(if ,2/)(

1
,

1
,

1
,

1
,

1
,

1
,

1
,

1
,

1
,

1
,

1
,

j
t

ji
t

jij

j
t

jij

j
t

ji
t

jij

j
t

ji
t

jij

j
t

jij

j
t

ji
t

jij

t
ji

UupuU
UupU

UupuU
LupuL

LupL
LupuL

u (15)

Where p is a probability and uniformly distributed
random number in the range]1,0[.

E. Constraint Handling Mechanism
In evolutionary algorithms for solving constrained
optimization problems, the most common method to
handle constraints is to use penalty functions. Usually
equality constraints are transformed into inequalities of
the form [4]:

mqqjxh j ,...,2,1,0|)(| ++=≤−ε
r

 (16)
Hereε is a tolerance allowed (a very small value) for the
equality constraints.

In general, the constraint violation function of one
individual x

r
 is transformed by m equality and inequality

constraints as follows [9], [17], [18]:

∑∑
+==

−+=
m

qj
jjj

q

j
j xhwxgwxG

11

)|)(|,0max())(,0(max)(ββ ε
rrr (17)

Here the exponent β is a positive number and usually set
to 1 or 2, and the coefficient jw is greater than zero. The

function value)(xG
r

 shows that the degree of constraints
violation of individual x

r
. β is set to 2 and jw is set to 1 in

this study.
In this study, a simple and efficient constraint handling

technique of feasibility-based rule is introduced, which is
also a constraint handling technique without parameters.
When two solutions are compared at a time, the following
criteria are always applied [3]:

1) If one solution is feasible, and the other is infeasible,
the feasible solution is preferred;

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 1, FEBRUARY 2010 45

© 2010 ACADEMY PUBLISHER

2) If both solutions are feasible, the one with the better
objective function value is preferred;

3) If both solutions are infeasible, the one with smaller
constraint violation function value is preferred.

F. Algorithm Framework
The general framework of the D-DE algorithm is outlined
as follows:

1: Generate orthogonal initial population },...,,{ 00
2

0
1

0
NxxxP
rrr

= ,
2: initialize parameters, and let 0=t .
3: Evaluate 0P , and rank 0P based on feasibility rule.
4: repeat
5: for each individual t

ix
r in the population tP do

6: Generate K random integers iNrrr K \},...,2,1{,...,, 21 ∈ ,
7: they are also mutually different.
8: Generate a random integer },...,2,1{ Djrand ∈ .

9: Randomly select a sample betterx
r

from top aN individuals of

10: the current population tP .
11: for each parameter }2/,...,2,1{ Kj∈ do

12:








=≤
−×+

=
−

+

otherwise ,
]),1[|| (if

),(

,

,,,
1

,

212

t
ji

t
jr

t
jrjbetter

t
ji

x
DrandjCRrand

xxFx
u

kk

r

rrr

r

13: end for
14: Apply repair rule to repair 1

,
+t
jiu

r if required, and evaluate 1
,
+t
jiu

r .

15: Replace t
ix
r with the child 1+t

iu
r in the population 1+tP , if 1+t

iu
r

16 is better, otherwise t
ix
r is retained.

17: end for
18: Rank 1+tP based on the feasibility rule, then replace bN worse
19: solutions with bN orthogonal reinitialized solutions.

20: Rank 1+tP based on the feasibility rule, and let 1+= tt .
21:until (the termination condition is achieved)

Figure 3. The general framework of the D-DE algorithm.

IV. TEST FUNCTION SUITE

In order to validate D-DE, we employ 6 benchmark test
problems 04g , 06g , 08g , 11g , 12g , which are provided
by the CEC 2006 special session on constrained real-
parameter optimization [4], and which are described in
the following.
A. Test function 02g

Minimize

∑
∏∑

=

==
−

−=
n

i i

n

i i
n

i i

ix

xx
xf

1
2

1
2

1
4)(cos2)(cos

)(
r

Subject to 075.0)(
1

1 ≤−= ∏
=

n

i
ixxg

r

05.7)(
1

2 ≤−=∑
=

nxxg
n

i
i

r

Where 20=n and),...,2,1(100 nixi =≤< . The global
minimum =*x

r
(3.16246061572185,3.12833142812967,

3.09479212988791,3.06145059523469,3.0279291588555
5,2.99382606701730,2.95866871765285,2.92184227312
450,0.49482511456933,0.48835711005490,0.482316427

11865,0.47664475092742,0.47129550835493,0.4662309
9264167,0.46142004984199,0.45683664767217,0.45245
876903267,0.44826762241853,0.44424700958760,0.440
38285956317), the best is 25598036191041.0*)(−=xf

r
 ,

constraint 1g is close to being active.
B. Test function 04g

Minimize 51
2
3 8356891.03578547.5)(xxxxf +=

r

141.40792293239.37 1 −+ x
Subject to 521 0056858.0334407.85)(xxxg +=

r

0920022053.00006262.0 5341 ≤−−+ xxxx

522 0056858.0334407.85)(xxxg −−=
r

00022053.00006262.0 5341 ≤+− xxxx

523 0071317.051249.80)(xxxg +=
r

01100021813.00029955.0 2
321 ≤−++ xxx

524 0071317.051249.80)(xxxg −−=
r

0900021813.00029955.0 2
321 ≤+−− xxx

535 0047026.0300961.9)(xxxg +=
r

0250019085.00012547.0 4331 ≤−++ xxxx

536 0047026.0300961.9)(xxxg −−=
r

0200019085.00012547.0 4331 ≤+−− xxxx

Where ,10278 1 ≤≤ x 4533 2 ≤≤ x and 4527 ≤≤ ix
).5,4,3(=i The optimum solution is =*x

r
(78,33,

29.9952560256815985,45,36.7758129057882073),where
004783320665538671.3*)(+−= exf

r
. Two constraints

are active (1g and 6g).
C. Test function 06g

Minimize 3
2

3
1)20()10()(−+−= xxxf

r

Subject to 0100)5()5()(2
2

2
11 ≤+−−−−= xxxg

r

081.82)5()6()(2
2

2
12 ≤−−+−= xxxg

r
Where 10013 1 ≤≤ x and 1000 2 ≤≤ x . The optimum
solution is =*x

r
(14.09500000000000064,0.84

29607892154795668) where =*)(xf
r

-6961.81387558015.
Both constraints are active.
D. Test function 08g

Minimize
)(

)2sin()2(sin
)(

21
3
1

21
3

xxx
xx

xf
+

−=
ππr

Subject to 01)(2
2
11 ≤+−= xxxg

r

0)4(1)(2
212 ≤−+−= xxxg

r

Where 100 1 ≤≤ x and 100 2 ≤≤ x . The optimum
solution is =*x

r
(1.22797135260752599,4.24537336612

274885) where =*)(xf
r

-0.0958250 414180359.
E. Test function 11g

Minimize 2
2

2
1)1()(−+= xxxf

r

Subject to 0)(2
12 =−= xxxh

r

Where 11 1 ≤≤− x , 11 2 ≤≤− x . The optimum solution is
=*x

r
(-0.707036070037170616,0.500000004333606807)

46 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 1, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

where =*)(xf
r

0.7499.
F. Test function 12g
Minimize

100/))5()5()5(100()(2
3

2
2

2
1 −−−−−−−= xxxxf

r

Subject to 2
2

2
1)()()(qxpxxg −+−=

r

00625.0)(2
3 ≤−−+ rx

Where)3,2,1(100 =≤≤ ixi and 9,...,2,1,, =rqp . The

feasible region of the search space consists of 39
disjointed spheres. A point),,(321 xxx is feasible if and
only if there exists rqp ,, such that the above inequality
holds. The optimum solution is =*x

r
(5,5,5) where

=*)(xf
r

-1. The solution lies within the feasible region.

V. EXPERIMENTAL SETTINGS

A. Parameter Settings of D-DE
In our experimental study, the parameter values used in
D-DE are set as follows: the population size 50=N , the
maximal generation number 5000=T , the level number

 NQ = , the number of top solutions 51.0 =×= NNa ,
the number of replaced solutions 51.0 =×= NNb , the
minimal and maximal values of scale factor F are set to

1.0min =F and 9.0max =F respectively, 6=K , the
minimal and maximal values of crossover probability
CR are set to 1.0min =CR and 9.0max =CR respectively,
the shape parameter values 3=aF and 3=bF respectively,
the exponent 2=β , the tolerant value 0001.0=ε . The
number of function evaluations (FES) is equal to

TNNb ××+)1(=275,000. The achieved solution at the
end of TNNa ××+)1(FES is used to measure the
performance of D-DE. D-DE is independently run 30
times on each test function.

B. Parameter Settings of Conventional DE
In our experimental study, the parameter values adopted
by the conventional DE are set as follows: the population
size 50=N , the maximal generation number 55000=T ,
the crossover probability 9.0=CR , the scale factor

6.0=F , the tolerant value 0001.0=ε . The number of
function evaluations (FES) is equal to TN × =275,000.
The achieved solution at the end of TN × FES is used to
measure the performance of the conventional DE. The
DE employs the repair rule and constraint handling
mechanism described in Section III and is independently
run 30 times on each test function.

C. Parameter Settings of Conventional GA
As a computing technique and method, population-based
genetic algorithm (GA) [20] has been shown to be an
effective evolutionary algorithm [21]. In our experimental
study, the conventional GA uses simulated binary
crossover (SBX) [22], polynomial mutation operator [23],
tournament selection between the parent and its child, the
repair rule and constraint handling mechanism described

in Section III. The parameter values employed by the
real-coded GA are set as follows: the population size

50=N , the maximal generation number 55000=T , the
crossover probability 9.0=cP and a mutation probability

nPm /1= (where n is the number of decision variables
for real-coded GA), the distribution indexes for crossover
and mutation operators as 20=cη and 20=mη ; the
tolerant value 0001.0=ε . The number of function
evaluations (FES) is equal to 000,275=×TN . The
obtained solution at the end of TN × FES is used to
measure the performance of the conventional GA. The
GA is independently run 30 times on each test function.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Comparison with Respect to Conventional DE and GA
on 6 Benchmark Test Problems
Using the above experimental settings, the best, mean and
worst results obtained by D-DE, DE, and GA are given in
Tables I-III. As shown in Table I, D-DE, DE and GA all
can find the best solution for each test problems 08g , 11g
and 12g , respectively. For test problems 04g and 06g , D-
DE and DE can find the best solution and is better than
that of GA. For test problem 02g , the best result obtained
by DE is slightly better than that of D-DE, and obviously
better than that of GA. According to the mean results
given in Table II, the mean result obtained by D-DE is
better than or not worse than that of DE and GA for all
test problems 02g , 04g , 06g , 08g , 11g and 12g , while
the mean result obtained by DE is better than or not
worse than that of GA for test problems 02g , 04g , 06g ,

08g and 12g except for test problem 11g where the mean
result obtained by GA is better than that of DE. Table II
shows that the worst result obtained by D-DE is better
than or not worse than that of DE and GA for all test
problems 02g , 04g , 06g , 08g , 11g and 12g , while the
worst result obtained by DE is better than or not worse
than that of GA for test problems 02g , 04g , 06g ,

08g and 12g , except for test problem 11g where the
worst result obtained by GA is better than that of DE.
Additionally, according to Tables I-III, we can find that
D-DE can almost find the optimum solution for each test
problems 02g , 04g , 06g , 08g , 11g and 12g in one single
run, and that D-DE is robust and can outperform DE and
GA on a set of test problems.

TABLE I.
THE BEST RESULTS OBTAINED BY D-DE WITH RESPECT TO THOSE

OBTAINED BY DE, GA ON 6 BENCHMARK PROBLEMS.

Function Optimal D-DE DE GA
g02 -0.803619 -0.80356676 -0.80361902 -0.80254846
g04 -30665.539 -30665.53867 -30665.53867 -30664.86146
g06 -6961.814 -6961.81388 -6961.81388 -6958.24296
g08 -0.095825 -0.09582504 -0.09582504 -0.09582504
g11 0.7499 0.749900000 0.749900000 0.749900232
g12 -1 -1 -1 -1.00000000

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 1, FEBRUARY 2010 47

© 2010 ACADEMY PUBLISHER

TABLE II.
THE MEAN RESULTS OBTAINED BY D-DE WITH RESPECT TO THOSE

OBTAINED BY DE, GA ON 6 BENCHMARK PROBLEMS.

Function Optimal D-DE DE GA
g02 -0.803619 -0.80150890 -0.79516035 -0.78941723
g04 -30665.539 -30665.53867 -30665.53867 -30661.64864
g06 -6961.814 -6961.81388 -6961.81388 -6925.57354
g08 -0.095825 -0.09582504 -0.09582504 -0.09582504
g11 0.7499 0.749900000 0.897159582 0.750805569
g12 -1 -1 -1 -1.00000000

TABLE III.
THE WORST RESULTS OBTAINED BY D-DE WITH RESPECT TO THOSE

OBTAINED BY DE, GA ON 6 BENCHMARK PROBLEMS.

Function Optimal D-DE DE GA
g02 -0.803619 -0.79253455 -0.77041284 -0.75131833
g04 -30665.539 -30665.53867 -30665.53867 -30655.21039
g06 -6961.814 -6961.81388 -6961.81388 -6887.72373
g08 -0.095825 -0.09582504 -0.09582504 -0.09582504
g11 0.7499 0.749900000 1.000000000 0.755040572
g12 -1 -1 -1 -1.00000000

B. Comparison with Respect to Some State-of-the-art
Approaches on 6 Benchmark Test Problems
In this section, we present the experimental results in
detail and compare D-DE with respect to state-of-the-art
algorithms. The experimental results are given in Table
IV. The optimized objective function values (of 30 runs)
arranged in ascending order and the 15th value in the list

is called the median optimized function value.
According to the summary of statistical results of test

problems 04g , 06g , 08g , 11g , 12g given in Table IV, it
is clearly seen that D-DE, A-DDE [19], COPSO [6] and
SRES [18] all can find the optimum or near-optimum,
when D-DE uses 275,000 FES, A-DDE 180,000 FES,
COPSO 350,000 FES and SRES 500,000 FES,
respectively. For test problem 02g , the mean, worst and
standard derivation of values obtained by D-DE are the
best when compared with other algorithms, while the
median value obtained by D-DE is better than that of A-
DDE and SRES, and is slightly worse than that of
COPSO. Besides, for test problem 02g , the best value
obtained by D-DE is slightly worse than that of the other
algorithms. As shown in Table V, the best, median, mean,
worst and standard derivation of values obtained by D-
DE when set to 550,000 FES are obviously better than
those when set to 275,000 FES. The best, median values
obtained by D-DE when set to 550,000 FES are almost
convergent to the optimum or near-optimum. Therefore,
for test problem 02g , D-DE is not still convergent to the
optimum when set to 275,000 FES. In conclusion, the
performance of D-DE is stable and better than or not
worse than some state-of-the-art evolutionary algorithms
on a set of test problems.

TABLE IV.
COMPARISON D-DE WITH RESPECT TO ALGORITHMS A-DDE [19], COPSO [6], SRES [18] ON 6 BENCHMARK TEST FUNCTIONS

Function Optimal Method Best Median Mean Worst Std FES

g02 -0.803619

D-DE
A-DDE
COPSO
SRES

-0.80356676178
-0.803605
-0.803619

-0.804

-0.803457738386
-0.777368
-0.803617

-0.793

-0.801508902296
-0.771090
-0.801320

-0.788

-0.79253454688
-0.609853
-0.786566

-0.746

4.00E-03
3.66E-02
4.59E-03
1.3E-02

275,000
180,000
350,000
500,000

g04 -30665.539

D-DE
A-DDE
COPSO
SRES

-30665.53867178
-30665.539

-30665.538672
-30665.539

-30665.53867178
-30665.539

-30665.538672
-30665.539

-30665.53867178
-30665.539

-30665.538672
-30665.539

-30665.53867178
-30665.539

-30665.538672
-30665.539

1.16E-011
3.20E-13

0
0.0E+00

275,000
180,000
350,000
500,000

g06 -6961.814

D-DE
A-DDE
COPSO
SRES

-6961.81387558
-6961.814

-6961.813876
-6961.814

-6961.81387558
-6961.814

-6961.813876
-6961.814

-6961.81387558
-6961.814

-6961.813876
-6961.814

-6961.81387558
-6961.814

-6961.813876
-6961.814

4.63E-012
2.11E-12

0
1.9E-12

275,000
180,000
350,000
500,000

g08 -0.095825

D-DE
A-DDE
COPSO
SRES

-0.095825041418
-0.095825
-0.095825

-0.096

-0.095825041418
-0.095825
-0.095825

-0.096

-0.095825041418
-0.095825
-0.095825

-0.096

-0.095825041418
-0.095825
-0.095825

-0.096

2.82E-017
9.10E-10

0
0.0E+00

275,000
180,000
350,000
500,000

g11 0.7499

D-DE
A-DDE
COPSO
SRES

0.749900000000
0.75

0.749999
0.750

0.749900000000
0.75

0.749999
0.750

0.749900000000
0.75

0.749999
0.750

0.749900000000
0.75

0.749999
0.750

1.13E-016
5.35E-15

0
1.1E-16

275,000
180,000
350,000
500,000

g12 -1

D-DE
A-DDE
COPSO
SRES

-1
-1.000

-1.000000
-1.000

-1
-1.000

-1.000000
-1.000

-1
-1.000

-1.000000
-1.000

-1
-1.000

-1.000000
-1.000

0
4.10E-11

0
0.0E+00

275,000
180,000
350,000
500,000

TABLE V.
EXPERIMENTAL RESULTS OBTAINED BY D-DE WHEN FES=275,000 , FES=550,000 FOR TEST FUNCTION 02g OVER 30 RUNS

FES Best Median Mean Worst Std
275,000 -0.80356676178 -0.803457738386 -0.801508902296 -0.79253454688 4.00E-03
550,000 -0.803610090279 -0.8036058890 -0.802935868229 -0.79259834414 2.55E-03

C. Convergence Graphs Obtained by D-DE for 6
Benchmark Test Problems

48 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 1, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

In order to provide a more intuitive comprehension, we
present the convergence graphs obtained by D-DE for
test problems 02g , 04g , 06g , 08g , 11g and 12g .
Figures 4-9 depict the convergence graphs for test
problems 02g , 04g , 06g , 08g , 11g and 12g ,
respectively. It is clearly seen that D-DE has a trend to

find the optimum solution for test problem 02g within
300,000 FES, that D-DE can find the optimum solution
for each test problem 06g , 08g , 11g , 12g within 50,000
FES, and that D-DE can obtain the optimum solution for
test problem 04g within 100,000 FES.

Figure 4. Convergence graph for g02.

Figure 5. Convergence graph for g04.

Figure 6. Convergence graph for g06.

Figure 7. Convergence graph for g08.

Figure 8. Convergence graph for g11.

Figure 9. Convergence graph for g12.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 1, FEBRUARY 2010 49

© 2010 ACADEMY PUBLISHER

VII. CONCLUSIONS AND FUTURE WORK

In this study, we present a dynamic differential evolution
algorithm (D-DE) for solving constrained real-parameter
optimization problems. In this model of D-DE, there
exist at least three important contributions as follows:

1) The first contribution is the novel mutation scheme,
which can improve the convergence speed, prevent
premature and preserve the diversity of solutions.

2) The second contribution is two important control
parameters (i.e., the scale factor F and the crossover
probability CR), which are dynamic and beneficial for
adjusting control parameters during the evolutionary and
search process, especially, when done without any user
interaction.

3) The third contribution is that D-DE can prevent
premature and enhance the search performance mainly
due to replacing some relatively worse solutions with
reinitialized solutions during the evolutionary process.

In addition, D-DE employs orthogonal design method
to generate initial population to improve the diversity of
solutions and introduces a constraint handling technique
based on the feasibility rule and the sum of constraints
violation.

Finally, D-DE is tested on 6 benchmark test functions
provided by the CEC 2006 special session on constrained
real-parameter optimization. Through comparing D-DE
with respect to state-of-the-art evolutionary algorithms,
the experimental results show that D-DE is highly
competitive and can obtain good results in terms of a test
set of constrained real-parameter optimization problems.
However, in the future, there are still many aspects to do.
Firstly, in order to further validate D-DE, we are
considering of the possibility of testing more benchmark
test functions (especially, highly dimensional problems)
and real-world constrained optimization problems.
Secondly, for some test functions, there exists the
phenomenon of slow evolutionary at the later stage. In
order to overcome the limitation, we will incorporate
some local search techniques into D-DE to improve the
convergence speed. Additionally, improving constraint
handling technique is another future work.

REFERENCES
[1] V. L. Huang, A. K. Qin, and P. N. Suganthan, “Self-

adaptative differential evolution algorithm for constrained
real-parameter optimization,” in 2006 IEEE Congress on
Evolutionary Computation (CEC'2006), pp. 324-331,
IEEE, Vancouver, BC, Canada, July 2006.

[2] A. E. Muñoz-Zavala, A. Hernández-Aguirre, E. R. Villa-
Diharce, and S. Botello-Riond, “PESO+ for Constrained
Optimization,” in 2006 IEEE Congress on Evolutionary
Computation (CEC'2006), pp. 935-942, IEEE, Vancouver,
BC, Canada, July 2006.

[3] K. Deb, "An efficient constraint handling method for
genetic algorithms," Computer Methods in Applied
Mechanics and Engineering, Vol. 186, No. 2, pp. 311-338,
2000.

[4] J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc,
P. N. Suganthan, C. A. Coello Coello, and K. Deb,
“Problem definitions and evaluation criteria for the CEC
2006 special session on constrained real-parameter

optimization,” Technical Report, Nanyang Technological
University, Singapore, 2006.

[5] R. Landa-Becerra, C. A. Coello Coello, "Cultured
differential evolution for constrained optimization,"
Computer Methods in Applied Mechanic sand
Engineering, Vol. 195, No. 33-36, pp. 4303-4322, 2006.

[6] A. E. Muñoz Zavala, A. Hernández Aguirre, E. R. Villa
Diharce, and S. Botello Rionda, “Constrained optimization
with an improved particle swarm optimization algorithm,”
International Journal of Intelligent Computing and
Cybernetics, Vol. 1, No. 3, pp. 425-453, 2008.

[7] J. J. Liang, P. N. Suganthan, “Dynamic multi-swarm
particle swarm optimizer with a novel constraint-handling
mechanism,” in 2006 IEEE Congress on Evolutionary
Computation (CEC'2006), pp. 316-323, IEEE, Vancouver,
BC, Canada, July 2006.

[8] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello
Coello, “Modified differential evolution for constrained
optimization,” in 2006 IEEE Congress on Evolutionary
Computation (CEC'2006), pp. 332-339, IEEE, Vancouver,
BC, Canada, July 2006.

[9] T. Takahama, and S. Sakai, “Constrained optimization by
the ε constrained differential evolution with gradient-
based mutation and feasible elites,” in 2006 IEEE
Congress on Evolutionary Computation (CEC'2006), pp.
308-315, IEEE, Vancouver, BC, Canada, July 2006.

[10] R. Storn, K. Price, "Differential evolution - a simple and
efficient heuristic for global optimization over continuous
spaces," Journal of Global Optimization, Vol. 11, pp.
341–359, 1997.

[11] K. Price, R. Storn, J. Lampinen, Differential Evolution: A
Practical Approach To Global Optimization, Berlin:
Springer-Verlag, 2005.

[12] Z. Y. Yang, K. Tang, X. Yao, "Self-adaptive differential
evolution with neighborhood search," 2008 Congress on
Evolutionary Computation (CEC'2008), pp. 1110-1116,
2008.

[13] H. A. Abbass, R. Sarker, C. Newton, "PDE: a Pareto-
frontier differential evolution approach for multiobjective
optimization problems," in Proceedings of IEEE Congress
on Evolutionary Computation, Vol. 2, pp. 971-978, 2001.

[14] Y. W. Leung, Y. P. Wang, "An orthogonal genetic
algorithm with quantization for global numerical
optimization," IEEE Transactions on Evolutionary
Computation, Vol. 5, No. 1, pp. 40-53, 2001.

[15] J. Brest, V. Zumer, and M. S. Maucec, “Self-adaptative
differential evolution algorithm in constrained real-
parameter optimization,” in 2006 IEEE Congress on
Evolutionary Computation (CEC'2006), pp. 919-926,
IEEE, Vancouver, BC, Canada, July 2006.

[16] Y. Wang, Z.X Cai, "A Hybrid Multi-Swarm Particle
Swarm Optimization to Solve Constrained Optimization
Problems," Frontiers of Computer Science in China, Vol.
3, No. 1, pp. 38-52, 2009.

[17] C. A. Coello Coello, "Theoretical and Numerical
Constraint-Handling Techniques used with Evolutionary
Algorithms: A Survey of the State of the Art," Computer
Methods in Applied Mechanics and Engineering, Vol. 191,
No. 11-12, pp. 1245-1287, 2002.

[18] T. P. Runarsson, “Approximate evolution strategy using
stochastic ranking,” in 2006 IEEE Congress on
Evolutionary Computation (CEC'2006), pp. 2760-2767,
IEEE, Vancouver, BC, Canada, July 2006.

[19] E. Mezura-Montes, A. G. Palomeque-Qrtiz, “Parameter
control in differential evolution for constrained
optimization,” in 2009 IEEE Congress on Evolutionary
Computation (CEC'2009), pp. 1375-1382, 2009.

50 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 1, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

[20] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolution Programs, Springer-Verlag, third edition, 1996.

[21] E. Mezura-Montes, C. A. Coello Coello, “A simple
multimembered evolution strategy to solve constrained
optimization problems,” IEEE Transactions on
Evolutionary Computation, Vol. 9, No. 1, pp. 1-17, 2005.

[22] K. Deb and R. B. Agrawal, “Simulated binary crossover
for continuous search space,” Complex Systems, Vol. 9,
No. 2, pp. 115-148, 1995.

[23] K. Deb and M. Goyal, “A robust optimization procedure
for mechanical component design based on genetic

adaptive search,” Transactions of the ASME: Journal of
Mechanical Design, Vol. 120, No. 2, pp. 162-164, 1998.

Youyun Ao was born in 1973. He received his B.S. degree

in Computer Science from Jiangxi Normal University,
Nanchang, China in 1999. He received his M.S. degree in
Computer Software and Theory from Shanghai Normal
University, Shanghai, China in 2006. He is currently a lecturer
in Computer Science at Anqing Teachers College, Anqing,
Anhui, China. His research interests include evolutionary
computation, intelligent information processing, etc.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 1, FEBRUARY 2010 51

© 2010 ACADEMY PUBLISHER

