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Abstract—In an earlier paper, we presented a novel 
application of Communicating Sequential Processes (CSP) 
to the modeling of variable length code (VLC) 
synchronization. Different from the traditional 
encoding/decoding tree analysis, the new approach provides 
a very precise description of the synchronization 
mechanisms. Underpinned by strong mathematical 
principles, CSP is a process algebra for describing the 
patterns of communication and interaction between agents 
that interact via explicit message passing. Such properties 
have been adapted in the present context of understanding 
VLC synchronization mechanisms. As an extension of the 
novel approach, this paper presents a systematic translation 
from VLC encoding/decoding trees to processes, and 
describes further generalization of the models presented in 
our earlier paper. We therefore present this paper to ensure 
the scalability and applicability of the CSP approach of 
modeling in this context.  
 
Index Terms—modeling, variable length codes, 
synchronization, processes. 
 

I.  INTRODUCTION 

The benefits of self-synchronizing variable length 
codes (VLC) have been known for a long time e.g. [1] 
both in coding efficiency and in limiting error 
propagation. There have been numerous attempts of 
finding good VLC for different applications, typically 
using a tree-based approach or simulation e.g. [2], [3], 
[4].  

However, the goal of finding universally good VLC 
remains elusive, not least because we need better 
understanding of the complex mechanisms at work. Some 
researchers even suggest that general understanding of 
the mechanisms of self-synchronization may be an 
unattainable goal e.g. [5] and [6]. 

In [7], we presented two alternative models of VLC 
synchronization using an adaptation of Communicating 
Sequential Processes (CSP) [8]. CSP is a well-established 

process algebra for describing the patterns of 
communication and interaction between agents that 
interact via explicit message passing. After years of 
development, CSP now has a rich mathematical theory 
supported by a number of automated tools e.g. for 
refinement checking. To ensure scalability and 
applicability of the approach in [7], this paper presents a 
systematic translation from VLC encoding/decoding trees 
to a process description amenable to analysis using CSP, 
particularly the CSP traces model. It further describes a 
generalization of the models presented in [7].  

In particular, we develop a more concise description 
based on the CSP external choices to supersede the 
original models presented in our earlier paper. These 
latest results contribute towards the scalability and 
applicability of our general approach.  

The rest of this paper is organized as follows. In 
Section 2, we present the basic components required for 
the systematic translation. The translation mechanism 
itself is presented as a 3-step procedure in Section 3. 
Section 4 then demonstrates the systematic translation 
with the aid of two examples, one of which is drawn from 
prior work by the authors and others. A further 
generalization is presented in Section 5. Finally, Section 
6 concludes the paper. 

II. BASIC COMPONENTS FOR SYSTEMATIC TRANSLATION 

Our systematic translation algorithm can be considered 
an adaptation of the standard nondeterministic finite 
automaton (NDFA) to deterministic finite automaton 
(DFA) translation from automata theory.  

The basic components required are an initial state I, a 
set of intermediate error states ES (finite for statistically 
synchronizable VLC, i.e. resynchronization is guaranteed 
to happen in finite time), a terminal state S which 
corresponds to the point in time when synchronization is 
reestablished, a finite set of events known as an alphabet 
represented by Σ.  

Typically, we choose to have Σ = {0, 1} for binary 
codes, which is equivalent to Bits in Model A described 
in [7]. Finally, we need a set of transition relations R as 
defined below. 
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Definition 1 Set of Relations 

Suppose X is the set of all states (i.e. 
SESIX ∪∪= }{ ). Then Σ××⊆ XXR  such 

that Rtxx ∈),,( 21  means the transition Σ∈t from 

Xx ∈1 to Xx ∈2   is permissible. In addition, it is 
possible to introduce non-determinism in the form of 
hiding to model unobservable transitions. Non-
determinism can also arise from having multiple arcs 
leaving any given node. 

III.  A THREE-STEP ALGORITHM 

We propose a three-step algorithm to perform 
systematic translation from decoding trees to processes. 
We shall then demonstrate the procedure with two 
application examples in the next Section.  

Any translated model TM of processes can be 
represented by a tuple comprising the above five items, 
i.e. TM = (I, ES, S, Σ, R) or more simply TM = (X, Σ, 
R). In other words, once the five items are defined, TM 
immediately follows. Our 3-step procedure for systematic 
translation from a VLC decoding (or encoding) tree to 
processes is as follows. 

 
1. Identify the components that make up TM as 

described in Section 2, i.e. TM = (I, ES, S, Σ,R). In 
particular, I , ES and S will represent the processes, R 
will represent events and Σ are Bits in the present 
context. 

2. Optionally construct a transition diagram, if it helps in 
visualizing the various events and processes. 

3. Write a set of recursions to describe the various 
processes. 

 
The results will be a set of recursions that completely 

describe the synchronization process of the VLC under 
consideration. 

IV.  APPLICATION EXAMPLES 

We now illustrate the application of the proposed 3-
step algorithm with two examples.  

A.  Example 1 
Using the code set C01 in [7] as an example, the 

procedure for systematic translation is as follows. In Step 
1, the components that make up the tuple are identified. 
From the decoding tree in Fig. 1, we can immediately 
identify I and ES, and Σ = {0, 1}, which is equivalent to 
Bits. We can also have the following 

 
S = {A, B, C, D, E} and  
 
R = {(I , ES1, 0), (I , ES2, 1), (ES1, S, 0), (ES1, S, 1), 
(ES2, S, 0), (ES2, ES3, 1), (ES3, S, 0), (ES3, S, 1)}, 
  
or more simply  
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Figure 1. Decoding tree of code set C01 

 
 
 

I

ES1 
(0) 

ES2 
(1) 

ES3 
(11) 

S

0

1

1 

0 

0,1 

0,1 

 
Figure 2. Model A (event = bit) transition diagram for code set C01 
 

R = {(I , ES1, 0), (I , ES2, 1), (ES1, S, Σ), (ES2, S, 0), 
(ES2, ES3, 1), (ES3, S, Σ)}.  
 

We then apply Step 2 and construct a transition 
diagram to aid visualization.  This is as shown in Fig. 2. 
Finally, Step 3 is applied to describe the processes 
resulting in the set of recursions as shown in (1). 

 

10 ESI →= □ 21 ES→  

SBitsxES →= :1     (1) 

SES →= 02 □ 31 ES→  

SBitsxES →= :3  
 
The set of recursions in (1) completely describe the 
synchronization process of the code set C01. 
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B.  Example 2 
As a further example, suppose the code set C02 has 
decoding tree as shown in Fig. 3.  We can immediately 
identify I and ES, and Σ = {0, 1}, which is again 
equivalent to Bits. We can also have the following 
 
S = {A, . . . , F} and  
 
R = {(I , ES1, 0), (I , ES2, 1), (ES1, S, 0), (ES1, ES3, 
1), (ES2, S, 0), (ES2, ES4, 1), (ES3, S, Σ), (ES4, S, Σ)}. 
 

Next, we apply Step 2 and construct a transition 
diagram as shown in Fig. 4. Finally, Step 3 is applied 
resulting in the set of recursions as shown in (2). 
  

 

 
 

Figure 3. Decoding tree of code set C02 
 

 
 

Figure 4. Transition diagram for code set C02 
 

 
 

10 ESI →= □ 21 ES→  

SES →= 01 □ 31 ES→  

SES →= 02 □ 41 ES→    (2) 

SBitsxES →= :3  

SBitsxES →= :4  
 
Again, the last two error states ES3 and ES4 behave the 

same way. In fact, ES3 and ES4 behave just like RUNBits. 
So, one might be interested to know traces(RUNBits). In 
addition, notice that S behaves in a similar way as the 
SKIP process. 

Once TM is in place, we can further define bit 
sequences (e.g. INPUT as seen by a decoder), codewords 
or synchronizing sequences, code sets, etc. as follows. 
First, a trace tr is defined as kttttr ,...,, 21=  where 

kiti ,...,1, =Σ∈  and denotes the empty trace. 

Generalizing Bits*, one can have Σ*, which represents the 
set of all possible traces. Next, a connection φ in TM is 
defined as [(x1, t1), (x2, t2), (x3, t3),. . . , (xn, tn)]. 
Typically, we are interested in any connection φ that goes 
from the initial state to the terminal state, such that x1 = I, 
xn = S, x2, x3, . . . xn−1  ∈  ES and (xi, xi+1, ti ) ∈  R.  

All synchronizing sequences can be obtained from TM 
as any trace kttttr ,...,, 21=  such that a connection φ 

exists in TM. For example, the traces 0,0 , 1,0 , 

0,1 , 0,1,1  and 1,1,1  all correspond to 
synchronizing sequences for the code set C01. This same 
formulation can also be applied to the translation from an 
encoding tree to processes. In this case, valid codewords 
can be generated from TM by obtaining traces tr. 

V.  FURTHER GENERALIZATION 

We now consider the scalability of the model 
descriptions first presented in [7]. In principle, arbitrarily 
large code sets can be described precisely through the 
kind of generalization presented in this section, although 
in practice we would have a limited number of source 
symbols for encoding.  

The following discussion and examples will make it 
apparent that this kind of generalization ensures 
scalability (and therefore applicability) of the model 
descriptions for practically useful code sets. 

Fig. 5 illustrates a generic decoding tree that is 
applicable to any exhaustive binary code which has been 
the subject of this study. It should be obvious that, in 
principle, the decoding tree of the form shown in Fig. 5 
can represent any arbitrarily large code set simply by 
extending the branches.  

The decoding tree shows a single initial state I, and a 
number of  intermediate error states  ES.   Recall  that  all  
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Figure 5. Generic decoding tree 

 
code sets considered in this study are assumed to be 
statistically synchronizable (resynchronization is 
guaranteed in finite time). This means eventually all 
possible paths through the ES will lead to the terminal 
synchronized state (represented by a single state S in the 
diagram). 

As usual, when applying the process-oriented way of 
thinking, each of the nodes in Fig. 5 represents a process 
and the possible events are 0 and 1. At this stage, we can 
write a set of recursions to completely describe the 
decoding process. Alternatively, we can simply write (3) 
for the process I, which effectively describes the entire 
decoding process in a concise manner. 

 
)(0(0 SI …→→= □ ))(1 S…→ □

)(0(1 S…→→ □ ))(1 S…→    (3) 
 
Here, each occurrence of (. . . S) represents iterative 

branching until S is reached. The examples shown in the 
last Section of this paper are therefore particular instances 
of this generalized formulation. Specifically, by 
performing appropriate pruning we can obtain the 
decoding tree for any code set that might be of interest, 
including the examples presented earlier (namely the 
code sets C01 and C02 as in Figs. 1 and 3). 

For example, we can write the following for the code 
sets C01 and C02, respectively. 

 

AI →→= 0(0 □ )1 B→ □ C→→ 0(1 □ 
D→→ 0(1( □ )))1 E→    (4) 

 
AI →→= 0(0 □ B→→ 0(1 □ ))1 C→ □

D→→ 0(1 □ E→→ 0(1 □ ))1 F→   (5) 
 
Equations (4) and (5) therefore summarize the 

decoding and synchronization mechanisms of C01 and C02 
precisely. From these processes, we can easily deduce 
synchronizing sequences by recording the traces of these 
generalized processes up to the required length of such 
sequences. 

VI. CONCLUSION 

This paper has presented a systematic translation to 
ensure that the models developed in [7] can be applied to 
VLC in general. Using well-established automata theory, 
this paper has shown that translation from VLC decoding 
trees to processes can be mechanized and generalized.  

Examples have been presented to illustrate how the 
translation can be applied to derive process 
representations that completely describe the 
synchronization of VLC. We have also demonstrated how 
further generalization can be applied to cover any generic 
binary codes as illustrated in Fig. 5. With this, future 
research will focus on a range of interesting situations, 
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such as when an observed sequence of events (e.g. bits, 
characters or codewords) may be received in error. 
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