
Generalization of VLC Decoding Trees-to- 
Processes Translation 

 
Guan Y. Hong 

Unitec/Department of Computing, Auckland, New Zealand 
Email: ghong@unitec.ac.nz 

 
A.C.M. Fong 

Auckland University of Technology/School of Computing, Auckland, New Zealand 
Email: afong@aut.ac.nz 

 
 
 

Abstract—In an earlier paper, we presented a novel 
application of Communicating Sequential Processes (CSP) 
to the modeling of variable length code (VLC) 
synchronization. Different from the traditional 
encoding/decoding tree analysis, the new approach provides 
a very precise description of the synchronization 
mechanisms. Underpinned by strong mathematical 
principles, CSP is a process algebra for describing the 
patterns of communication and interaction between agents 
that interact via explicit message passing. Such properties 
have been adapted in the present context of understanding 
VLC synchronization mechanisms. As an extension of the 
novel approach, this paper presents a systematic translation 
from VLC encoding/decoding trees to processes, and 
describes further generalization of the models presented in 
our earlier paper. We therefore present this paper to ensure 
the scalability and applicability of the CSP approach of 
modeling in this context.  
 
Index Terms—modeling, variable length codes, 
synchronization, processes. 
 

I.  INTRODUCTION 

The benefits of self-synchronizing variable length 
codes (VLC) have been known for a long time e.g. [1] 
both in coding efficiency and in limiting error 
propagation. There have been numerous attempts of 
finding good VLC for different applications, typically 
using a tree-based approach or simulation e.g. [2], [3], 
[4].  

However, the goal of finding universally good VLC 
remains elusive, not least because we need better 
understanding of the complex mechanisms at work. Some 
researchers even suggest that general understanding of 
the mechanisms of self-synchronization may be an 
unattainable goal e.g. [5] and [6]. 

In [7], we presented two alternative models of VLC 
synchronization using an adaptation of Communicating 
Sequential Processes (CSP) [8]. CSP is a well-established 

process algebra for describing the patterns of 
communication and interaction between agents that 
interact via explicit message passing. After years of 
development, CSP now has a rich mathematical theory 
supported by a number of automated tools e.g. for 
refinement checking. To ensure scalability and 
applicability of the approach in [7], this paper presents a 
systematic translation from VLC encoding/decoding trees 
to a process description amenable to analysis using CSP, 
particularly the CSP traces model. It further describes a 
generalization of the models presented in [7].  

In particular, we develop a more concise description 
based on the CSP external choices to supersede the 
original models presented in our earlier paper. These 
latest results contribute towards the scalability and 
applicability of our general approach.  

The rest of this paper is organized as follows. In 
Section 2, we present the basic components required for 
the systematic translation. The translation mechanism 
itself is presented as a 3-step procedure in Section 3. 
Section 4 then demonstrates the systematic translation 
with the aid of two examples, one of which is drawn from 
prior work by the authors and others. A further 
generalization is presented in Section 5. Finally, Section 
6 concludes the paper. 

II. BASIC COMPONENTS FOR SYSTEMATIC TRANSLATION 

Our systematic translation algorithm can be considered 
an adaptation of the standard nondeterministic finite 
automaton (NDFA) to deterministic finite automaton 
(DFA) translation from automata theory.  

The basic components required are an initial state I, a 
set of intermediate error states ES (finite for statistically 
synchronizable VLC, i.e. resynchronization is guaranteed 
to happen in finite time), a terminal state S which 
corresponds to the point in time when synchronization is 
reestablished, a finite set of events known as an alphabet 
represented by Σ.  

Typically, we choose to have Σ = {0, 1} for binary 
codes, which is equivalent to Bits in Model A described 
in [7]. Finally, we need a set of transition relations R as 
defined below. 

 

Manuscript received January 12, 2010; revised April 6, 2010;
accepted May 27, 2010. 

Corresponding author: ghong@unitec.ac.nz. 

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 2, MAY 2010 97

© 2010 ACADEMY PUBLISHER
doi:10.4304/jait.1.2.97-101



 
Definition 1 Set of Relations 

Suppose X is the set of all states (i.e. 
SESIX ∪∪= }{ ). Then Σ××⊆ XXR  such 

that Rtxx ∈),,( 21  means the transition Σ∈t from 

Xx ∈1 to Xx ∈2   is permissible. In addition, it is 
possible to introduce non-determinism in the form of 
hiding to model unobservable transitions. Non-
determinism can also arise from having multiple arcs 
leaving any given node. 

III.  A THREE-STEP ALGORITHM 

We propose a three-step algorithm to perform 
systematic translation from decoding trees to processes. 
We shall then demonstrate the procedure with two 
application examples in the next Section.  

Any translated model TM of processes can be 
represented by a tuple comprising the above five items, 
i.e. TM = (I, ES, S, Σ, R) or more simply TM = (X, Σ, 
R). In other words, once the five items are defined, TM 
immediately follows. Our 3-step procedure for systematic 
translation from a VLC decoding (or encoding) tree to 
processes is as follows. 

 
1. Identify the components that make up TM as 

described in Section 2, i.e. TM = (I, ES, S, Σ,R). In 
particular, I , ES and S will represent the processes, R 
will represent events and Σ are Bits in the present 
context. 

2. Optionally construct a transition diagram, if it helps in 
visualizing the various events and processes. 

3. Write a set of recursions to describe the various 
processes. 

 
The results will be a set of recursions that completely 

describe the synchronization process of the VLC under 
consideration. 

IV.  APPLICATION EXAMPLES 

We now illustrate the application of the proposed 3-
step algorithm with two examples.  

A.  Example 1 
Using the code set C01 in [7] as an example, the 

procedure for systematic translation is as follows. In Step 
1, the components that make up the tuple are identified. 
From the decoding tree in Fig. 1, we can immediately 
identify I and ES, and Σ = {0, 1}, which is equivalent to 
Bits. We can also have the following 

 
S = {A, B, C, D, E} and  
 
R = {(I , ES1, 0), (I , ES2, 1), (ES1, S, 0), (ES1, S, 1), 
(ES2, S, 0), (ES2, ES3, 1), (ES3, S, 0), (ES3, S, 1)}, 
  
or more simply  
 

 

I

ES1 
(0) 

ES2 
(1) 

A 

B 

C 

ES3 
(11) 

D

E

0

0 

0 

0

1 

1

1

1

 
Figure 1. Decoding tree of code set C01 

 
 
 

I

ES1 
(0) 

ES2 
(1) 

ES3 
(11) 

S

0

1

1 

0 

0,1 

0,1 

 
Figure 2. Model A (event = bit) transition diagram for code set C01 
 

R = {(I , ES1, 0), (I , ES2, 1), (ES1, S, Σ), (ES2, S, 0), 
(ES2, ES3, 1), (ES3, S, Σ)}.  
 

We then apply Step 2 and construct a transition 
diagram to aid visualization.  This is as shown in Fig. 2. 
Finally, Step 3 is applied to describe the processes 
resulting in the set of recursions as shown in (1). 

 

10 ESI →= □ 21 ES→  

SBitsxES →= :1     (1) 

SES →= 02 □ 31 ES→  

SBitsxES →= :3  
 
The set of recursions in (1) completely describe the 
synchronization process of the code set C01. 

98 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 2, MAY 2010

© 2010 ACADEMY PUBLISHER



B.  Example 2 
As a further example, suppose the code set C02 has 
decoding tree as shown in Fig. 3.  We can immediately 
identify I and ES, and Σ = {0, 1}, which is again 
equivalent to Bits. We can also have the following 
 
S = {A, . . . , F} and  
 
R = {(I , ES1, 0), (I , ES2, 1), (ES1, S, 0), (ES1, ES3, 
1), (ES2, S, 0), (ES2, ES4, 1), (ES3, S, Σ), (ES4, S, Σ)}. 
 

Next, we apply Step 2 and construct a transition 
diagram as shown in Fig. 4. Finally, Step 3 is applied 
resulting in the set of recursions as shown in (2). 
  

 

 
 

Figure 3. Decoding tree of code set C02 
 

 
 

Figure 4. Transition diagram for code set C02 
 

 
 

10 ESI →= □ 21 ES→  

SES →= 01 □ 31 ES→  

SES →= 02 □ 41 ES→    (2) 

SBitsxES →= :3  

SBitsxES →= :4  
 
Again, the last two error states ES3 and ES4 behave the 

same way. In fact, ES3 and ES4 behave just like RUNBits. 
So, one might be interested to know traces(RUNBits). In 
addition, notice that S behaves in a similar way as the 
SKIP process. 

Once TM is in place, we can further define bit 
sequences (e.g. INPUT as seen by a decoder), codewords 
or synchronizing sequences, code sets, etc. as follows. 
First, a trace tr is defined as kttttr ,...,, 21=  where 

kiti ,...,1, =Σ∈  and denotes the empty trace. 

Generalizing Bits*, one can have Σ*, which represents the 
set of all possible traces. Next, a connection φ in TM is 
defined as [(x1, t1), (x2, t2), (x3, t3),. . . , (xn, tn)]. 
Typically, we are interested in any connection φ that goes 
from the initial state to the terminal state, such that x1 = I, 
xn = S, x2, x3, . . . xn−1  ∈  ES and (xi, xi+1, ti ) ∈  R.  

All synchronizing sequences can be obtained from TM 
as any trace kttttr ,...,, 21=  such that a connection φ 

exists in TM. For example, the traces 0,0 , 1,0 , 

0,1 , 0,1,1  and 1,1,1  all correspond to 
synchronizing sequences for the code set C01. This same 
formulation can also be applied to the translation from an 
encoding tree to processes. In this case, valid codewords 
can be generated from TM by obtaining traces tr. 

V.  FURTHER GENERALIZATION 

We now consider the scalability of the model 
descriptions first presented in [7]. In principle, arbitrarily 
large code sets can be described precisely through the 
kind of generalization presented in this section, although 
in practice we would have a limited number of source 
symbols for encoding.  

The following discussion and examples will make it 
apparent that this kind of generalization ensures 
scalability (and therefore applicability) of the model 
descriptions for practically useful code sets. 

Fig. 5 illustrates a generic decoding tree that is 
applicable to any exhaustive binary code which has been 
the subject of this study. It should be obvious that, in 
principle, the decoding tree of the form shown in Fig. 5 
can represent any arbitrarily large code set simply by 
extending the branches.  

The decoding tree shows a single initial state I, and a 
number of  intermediate error states  ES.   Recall  that  all  

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 2, MAY 2010 99

© 2010 ACADEMY PUBLISHER



 

 
Figure 5. Generic decoding tree 

 
code sets considered in this study are assumed to be 
statistically synchronizable (resynchronization is 
guaranteed in finite time). This means eventually all 
possible paths through the ES will lead to the terminal 
synchronized state (represented by a single state S in the 
diagram). 

As usual, when applying the process-oriented way of 
thinking, each of the nodes in Fig. 5 represents a process 
and the possible events are 0 and 1. At this stage, we can 
write a set of recursions to completely describe the 
decoding process. Alternatively, we can simply write (3) 
for the process I, which effectively describes the entire 
decoding process in a concise manner. 

 
)(0(0 SI …→→= □ ))(1 S…→ □

)(0(1 S…→→ □ ))(1 S…→    (3) 
 
Here, each occurrence of (. . . S) represents iterative 

branching until S is reached. The examples shown in the 
last Section of this paper are therefore particular instances 
of this generalized formulation. Specifically, by 
performing appropriate pruning we can obtain the 
decoding tree for any code set that might be of interest, 
including the examples presented earlier (namely the 
code sets C01 and C02 as in Figs. 1 and 3). 

For example, we can write the following for the code 
sets C01 and C02, respectively. 

 

AI →→= 0(0 □ )1 B→ □ C→→ 0(1 □ 
D→→ 0(1( □ )))1 E→    (4) 

 
AI →→= 0(0 □ B→→ 0(1 □ ))1 C→ □

D→→ 0(1 □ E→→ 0(1 □ ))1 F→   (5) 
 
Equations (4) and (5) therefore summarize the 

decoding and synchronization mechanisms of C01 and C02 
precisely. From these processes, we can easily deduce 
synchronizing sequences by recording the traces of these 
generalized processes up to the required length of such 
sequences. 

VI. CONCLUSION 

This paper has presented a systematic translation to 
ensure that the models developed in [7] can be applied to 
VLC in general. Using well-established automata theory, 
this paper has shown that translation from VLC decoding 
trees to processes can be mechanized and generalized.  

Examples have been presented to illustrate how the 
translation can be applied to derive process 
representations that completely describe the 
synchronization of VLC. We have also demonstrated how 
further generalization can be applied to cover any generic 
binary codes as illustrated in Fig. 5. With this, future 
research will focus on a range of interesting situations, 

100 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 2, MAY 2010

© 2010 ACADEMY PUBLISHER



such as when an observed sequence of events (e.g. bits, 
characters or codewords) may be received in error. 

ACKNOWLEDGMENT 

The authors wish to thank the reviewers who have 
provided valuable comments for the improvement of this 
work.  

REFERENCES 

[1] B. Rudner, “Construction of minimum redundancy codes 
with optimum synchronization property”, IEEE Trans. 
Inform. Theory, vol. 17, pp. 478–487, 1971. 

[2] Y. Takishima, M.Wada, and H. Murakami, “Error states 
and synchronization recovery for variable length codes”,  
IEEE Trans. Commun., vol. 42 (2/3/4), pp. 783–792, 1994. 

[3] G. R. Higgie, “Database of best T-codes”, IEE Proc- 
Comput. Digit. Tech., vol. 143, pp. 213–218, 1996. 

[4] A. C. M. Fong and G. R. Higgie, “Using a tree algorithm to 
determine the average synchronization delay of self-
synchronizing T-codes”, IEE Proc. Comput. Digit. Tech., 
vol. 149(3), pp. 79–81, 2002. 

[5] M.R. Titchener, “The synchronization of variable-length 
codes”, IEEE Trans. Inf. Theory, vol. 43(2), pp. 683–691, 
1997. 

[6] G. Zhou and Z. Zhang, “Synchronization recovery of 
variable-length codes”, IEEE Trans. Info Theory, vol. 
48(1), pp. 219–227, 2002. 

[7] A. C. M. Fong and A. Simpson, “Using CSP to model the 
synchronization process of variable length codes”, IEE 
Proc. Commun., vol. 153(2), pp. 195–200, 2006. 

[8] C. A. R. Hoare, Communicating Sequential Processes. 
Prentice Hall International Series in Computer Science. 
Prentice Hall, 1985. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Guan Y. Hong is currently senior 
lecturer in the Department of Computing 
at Unitec New Zealand. She was 
formerly an IT consultant and senior 
lecturer at Massey University. Her 
research interests include analysis and 
implementation of information systems, 
digital communications and software 
quality and reliability. She has published 

numerous research papers in leading journals and conference 
proceedings in these areas.   

Dr. Hong is a member of the IEEE and has been active in the 
organization of major international conferences and participates 
in the peer review process of leading research journals. 

 
A. C. M. Fong received the BEng(Hons.) degree in electronics 
and computing and the MSc degree in electrical engineering 
from Imperial College London, the MSc degree in computing 
from the University of Oxford and the PhD in electrical 
engineering from the University of Auckland. 

He is currently professor of computer engineering at 
Auckland University of Technology, New Zealand.  His 
previous appointments include associate professor at Nanyang 
Technological University and Engineer with the Motorola 
Corporate Research and Technology Center. He has published 
well over one hundred research papers in leading international 
journals and conferences, such as IEEE Trans. Knowledge and 
Data Engineering, IEEE Trans. Multimedia and IEEE Trans. 
Evolutionary Computation. He is the lead author of the book 
Multimedia Engineering (Wiley UK, 2006, ISBN: 978-0-470-
03019-6). His research interests include internet and multimedia 
technology, digital communications and software engineering. 

Prof. Fong is a senior member of IEEE and a Chartered 
Engineer registered in the UK.  He has served on the organizing 
committees of numerous major international conferences and 
serves on the editorial boards of several international journals. 

 
 
 
 
 
 
 
 
 
 

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 2, MAY 2010 101

© 2010 ACADEMY PUBLISHER



 



Call for Papers and Special Issues 
 

Aims and Scope 
JAIT is intended to reflect new directions of research and report latest advances. It is a platform for rapid dissemination of high quality research / 

application / work-in-progress articles on IT solutions for managing challenges and problems within the highlighted scope. JAIT encourages a 
multidisciplinary approach towards solving problems by harnessing the power of IT in the following areas: 

• Healthcare and Biomedicine - advances in healthcare and biomedicine e.g. for fighting impending dangerous diseases - using IT to model 
transmission patterns and effective management of patients’ records; expert systems to help diagnosis, etc. 

• Environmental Management - climate change management, environmental impacts of events such as rapid urbanization and mass migration, 
air and water pollution (e.g. flow patterns of water or airborne pollutants), deforestation (e.g. processing and management of satellite imagery), 
depletion of natural resources, exploration of resources (e.g. using geographic information system analysis). 

• Popularization of Ubiquitous Computing - foraging for computing / communication resources on the move (e.g. vehicular technology), smart 
/ ‘aware’ environments, security and privacy in these contexts; human-centric computing; possible legal and social implications. 

• Commercial, Industrial and Governmental Applications - how to use knowledge discovery to help improve productivity, resource 
management, day-to-day operations, decision support, deployment of human expertise, etc. Best practices in e-commerce, e-commerce, e-
government, IT in construction/large project management, IT in agriculture (to improve crop yields and supply chain management), IT in 
business administration and enterprise computing, etc. with potential for cross-fertilization. 

• Social and Demographic Changes - provide IT solutions that can help policy makers plan and manage issues such as rapid urbanization, mass 
internal migration (from rural to urban environments), graying populations, etc. 

• IT in Education and Entertainment - complete end-to-end IT solutions for students of different abilities to learn better; best practices in e-
learning; personalized tutoring systems. IT solutions for storage, indexing, retrieval and distribution of multimedia data for the film and music 
industry; virtual / augmented reality for entertainment purposes; restoration and management of old film/music archives. 

• Law and Order - using IT to coordinate different law enforcement agencies’ efforts so as to give them an edge over criminals and terrorists; 
effective and secure sharing of intelligence across national and international agencies; using IT to combat corrupt practices and commercial 
crimes such as frauds, rogue/unauthorized trading activities and accounting irregularities; traffic flow management and crowd control. 

The main focus of the journal is on technical aspects (e.g. data mining, parallel computing, artificial intelligence, image processing (e.g. satellite 
imagery), video sequence analysis (e.g. surveillance video), predictive models, etc.), although a small element of social implications/issues could be 
allowed to put the technical aspects into perspective. In particular, we encourage a multidisciplinary / convergent approach based on the following 
broadly based branches of computer science for the application areas highlighted above: 

 

Special Issue Guidelines 
Special issues feature specifically aimed and targeted topics of interest contributed by authors responding to a particular Call for Papers or by 

invitation, edited by guest editor(s). We encourage you to submit proposals for creating special issues in areas that are of interest to the Journal. 
Preference will be given to proposals that cover some unique aspect of the technology and ones that include subjects that are timely and useful to the 
readers of the Journal. A Special Issue is typically made of 10 to 15 papers, with each paper 8 to 12 pages of length. 

The following information should be included as part of the proposal: 
• Proposed title for the Special Issue 
• Description of the topic area to be focused upon and justification 
• Review process for the selection and rejection of papers. 
• Name, contact, position, affiliation, and biography of the Guest Editor(s) 
• List of potential reviewers 
• Potential authors to the issue 
• Tentative time-table for the call for papers and reviews 
 
If a proposal is accepted, the guest editor will be responsible for: 
• Preparing the “Call for Papers” to be included on the Journal’s Web site. 
• Distribution of the Call for Papers broadly to various mailing lists and sites. 
• Getting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors should be 

informed the Instructions for Authors. 
• Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact 

information. 
• Writing a one- or two-page introductory editorial to be published in the Special Issue. 
 

Special Issue for a Conference/Workshop 
A special issue for a Conference/Workshop is usually released in association with the committee members of the Conference/Workshop like general 

chairs and/or program chairs who are appointed as the Guest Editors of the Special Issue. Special Issue for a Conference/Workshop is typically made of 
10 to 15 papers, with each paper 8 to 12 pages of length. 

Guest Editors are involved in the following steps in guest-editing a Special Issue based on a Conference/Workshop: 
• Selecting a Title for the Special Issue, e.g. “Special Issue: Selected Best Papers of XYZ Conference”.  
• Sending us a formal “Letter of Intent” for the Special Issue. 
• Creating a “Call for Papers” for the Special Issue, posting it on the conference web site, and publicizing it to the conference attendees. 

Information about the Journal and Academy Publisher can be included in the Call for Papers. 
• Establishing criteria for paper selection/rejections. The papers can be nominated based on multiple criteria, e.g. rank in review process plus the 

evaluation from the Session Chairs and the feedback from the Conference attendees. 
• Selecting and inviting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors 

should be informed the Author Instructions. Usually, the Proceedings manuscripts should be expanded and enhanced. 
• Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact 

information. 
• Writing a one- or two-page introductory editorial to be published in the Special Issue. 
 

More information is available on the web site at http://www.academypublisher.com/jait/.  


