

An Ameliorated Methodology for Comprehension
of Legacy System

Dr. Shivanand M. Handigund

Bangalore Institute of Technology, Bangalore, 56004, India
smhandigund@gmail.com

A. A. Chikkamannur and K. Ananthapadmanabha, and H. R. Shashidhara

REVA Institute of Technology & Management, Bangalore, 560064, India
{ac.ajeet@gmail.com, siridevikap@yahoo.co.in, shashi_dhara@yahoo.com}

Abstract – The legacy systems are the executable code(s)
developed with huge investment, incorporation of changes
made in the business rules over a long period of time.These
systems are evolved and accumulated perennially the then
needs of organization from time to time. The advancement
of technology and perennial modification of the code to the
changing needs of the business have weakened the
productivity of these legacy systems and have put the
system on the brink of software crash. This has compelled
for a paradigm shift in the technology and knocks the
human resource either to waist their precious time in
abstracting or sifting useful business rules buried across the
legacy system.

To enable the existing code to be amenable to changes in
the business norms and to ease the process of strong
cohesion and weak coupling, there is a necessity to
understand the code so as to either modify and reuse
existing program or migrate the program to another
programming language code. There is a need to transform
the program code in to natural language text.

The methodology proposed in this paper translates the
legacy system to the English language by substituting the
English language constructs in the place of token, which are
having the finite meaning and reserved by the programming
language. Further a platform is provided for common
people to understand the code in English language syntax
and asking them to abstract the concept by their experience
and intelligence. Since the legacy system is expressed in near
English language, proficient and non-proficient people are
involved in the understanding process, which leads to the
correct abstraction of the concept(s).

Index terms – token; programming language; natural
Language; understanding; legacy system

I. INTRODUCTION

Maintenance and upgradation of a legacy system is the
challenging task, when the relevant documentation or
reliable information like variable names, comments etc.
in a system is not available. On other hand the evolutions

of technology have weakened the productivity of a
legacy system but, at the same time, these systems are
developed by the huge investments with incorporation of
business rules over a period of time. The evolution of
technology compels the organization to shift their
existing system to newer system but the system
developers are struggling with the problem of optimizing
with oxymoron concept of huge involvement of human
resource and freezing long accumulated business rules.

“Program comprehension” is a process of gaining
knowledge about the computer program and this
knowledge is useful in the activities like bug detection,
reuse, reengineering etc. The program comprehension
activity is a complex task in the absence of relevant
documentation and on the verge of crash.

In the absence of relevant documentation for a legacy
system, most of the resources and time is devoted to only
maintenance [1, 2, 3] rather than development and the
greatest part of a maintenance process is depleted for
understanding the system only [4]. Hence, to boost the
maintenance or migration process, the process of
understanding a legacy system is to be extended.

This paper proposes a conceptual methodology of
program comprehension, which takes the advantage of
natural language comprehension. The methodology
translates the tokens of a source code to the English
language tokens for enhancing the readability of the
program comprehension process. The translation to a
near English language syntax mingles the proficient and
non-proficient people in the process of comprehension
for abstracting concept in a system.

The section 2 discusses the various methods of
program understanding like program slicing, concept
assignment. The section 3 presents the framework of
methodology with illustration with C source code. The
section 4 is the conclusion and future work.

II. BACKGROUND

This section presents the some methods of program

comprehension.

 Manuscript received October 13, 2009; revised April 10, 2010;
accepted April 19, 2010.

All Indian Council of Technical Education (AICTE) F. NO.: 8023 /
BOR / RID / RPS – 99 / 2007-08, corresponding author A. A.
Chikkamannur

92 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 2, MAY 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jait.1.2.92-96

 A. Program Slicing

The slicing is a process of gathering the data
definitions and control flow for the desired set of data
element values from the slice point and the irrelevant
data element is discarded. The concept of program slicing
was introduced by Weiser [5, 6] to formulate the process
of debugging. Weiser defined a program slice as a
collection of program statements affecting certain
variable. This slice is with respect to a slicing criterion
pair comprising the line number of the program and the
affected attribute. This method is called as static
backward slicing. The program slicing had become a
research topic, which is available in the papers [7, 8, 9,
10].

 The ordered pair comprising these attributes along
with statement number forms a slicing criterion. This is
developed by Weiser and subsequently modified to suit
the abstraction of functionality by Phatak and
Handigund. Here, in the modified algorithm, they have
considered the group of attributes that together affect the
program statements. In a program, normally dependent
attribute is at the logical end of the program. Thus, by
applying this modified algorithm [11] and then by
traversing the program statements, in backward control
flow order, the directly and indirectly relevant statements
are abstracted and will help in the comprehension of the
program. By appropriately choosing the attributes group,
the statements affecting those attributes, different
granularity level functionalities are abstracted to suit
different intellectual level skills to understand the
program.

Researchers [12, 13, 14, 15] have suggested that
program slices are helpful in a program comprehension
process because the slice is simplified version of the
original program. Then the simplified code is
comprehended by the domain expert depending on their
intelligence.

The slicing process mines the portion of a code from
the program for comprehension but in extreme cases, if
there is a no reduction in the code after slicing, then the
comprehension of a code is complex task.

B. Concept Assignment

 The concept is defined as an abstraction of a reality or
human intellectual thinking [16] and the concept
assignment is a process of knowing the concepts from the
domain of real world and matching them to the portion of
system [17]. In the concept assignment process, the code
is comprehended by assigning the computational intent to
the source code and many researchers [17, 18, 19, 20, 21]
contributed in the concept assignment.

The complexity involved in the concept assignment is
the identification of a domain oriented concepts and
searching them in a legacy system. This needs the
domain experts to formulate the concept and that has to
be searched by matching with the code but only few

domain experts can contribute and their concept may or
may not match.

C. Languages

The English language is worldwide popular medium
of communication between people to express their
thoughts and over a long period. It is serving the purpose
without much evolution in the language constructs. The
thoughts expressed in natural language covers the
comprehensive spectrum of human expression and wide
range of the subject matter.

The programming languages are developed to
facilitate communication between machine and people
[22]. More over, these languages are derived from the
English language with constraint laid by the machine
representation. Further programming languages are
developed depending on the time to time need of the
specific users and hence the spectrum of subject
expression is narrow.

Two [23] differences between natural language and
programming language are observed. First, programming
languages have the narrow expressive domain of thought
and are expressed in terms of algorithm or computation.
Second, programming languages facilitates the
communication of algorithmic or computational thoughts
between the people and machine.

We propose here that, if the computational thought of
programming language is expressed in the natural
language then many people can understand the thought
and abstract the buried business rule or concept in the
system.

III. FRAME WORK

The proposed methodology reduces the understanding

gap between the actual concept of legacy system and the
interpreted concept of the system by various intellectual
skills. This is achieved by replacing the programming
language constructs of finite semantics with their
equivalent natural language constructs. The finite
meaning programming language tokens includes the
keywords (reserve words), operators, built-in function
names, symbols etc.

The design of methodology is divided in to two parts:
In the first part, the programming language tokens of
finite meaning are collected and their equivalent natural
language words are stored in a data dictionary of
database. These words are collected manually from the
document of a particular programming language and their
equivalent English language constructs.

Then the source code is read, line by line and each line
is decomposed to number of tokens. If the decomposed
token is present in the dictionary of database, then the
word is replaced by its equivalent English language
construct. This will result in mapping of programming
language statements to corresponding English language
statements. The algorithm for converting legacy source

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 2, MAY 2010 93

© 2010 ACADEMY PUBLISHER

statements to nearer natural language statements is shown
in figure1.

Figure 1: Algorithm for translation

 Token Natural English language meaning

 #include add the file
 <stdio.h> for standard input and output device
 main () starting point of execution
 int integer identifier
 char character
 getchar read the characters from file
 = is equals to
 == is equated to
 ‘ ‘ blank
 ‘\n’ new line
 ‘\t’ tab
 printf display the result
 ; . (full stop symbol for end of line)

Figure 2 Database of finite meaning tokens

IV. CASE STUDY

To exemplify our methodology, the C programming

language code given by the authors Keith B. Gallagher and
James R. Lyle [24] is considered and shown in the figure
3. The code suffers with comments, reliable variables
names and documentation. In such condition, How to
understand the concept amalgamated in the code?

The source code given in the figure 2 will consist of
words “#include”, “stdio.h”, “int”, “char”,” ||”, ‘\n” etc
and these words have the finite meaning in the natural
language. The reserve words of example and their
equivalent meaning in natural language are given in the
figure 2. (For illustration only few tokens are
considered).

The first step of methodology takes the source code as
input and starts reading one line at a time. Consider the
first line of the example code

#include <stdio.h>

 In this statement the token #include is replaced by the

“add the file” and the token <stdio.h> by “for standard
input and output device”. The equivalent nearer English
language word constructs of the statement is:

“Add the file for standard input and output device”

If the token is not available in the database, then the same
token is retained in the translated code. The methodology
proceeds for entire lines of code and resulting code is in
the English language constructs (which is nearer to the
English language sentences) and translation of entire
example code is given in the figure 4.

Figure 3. Example code

 When the translated code in figure 4 is closely

analyzed, the natural language words like new line,
blank, tab, end of file and characters are appeared. The
presence of new line, character and word are checked in
a file and if they are found, there is a variable added with
1. Our knowledge specifies that any thing added with 1
for number of times is nothing but a counter. Hence,
there is a counter for the new line, word and character
and the concept in the code is to count the number of
lines, words and characters. Once the concept is known,
then that can be migrated to any paradigm of technology.

V. CONCEPTUAL RESULTS

The developed algorithm will translates the legacy
system to the English language sentences (nearer) by the
interpretation of fixed meaning tokens in terms of
English words existing in the code. All the programming
languages are constituted with reserved words and the
reserve word’s finite semantics in an English language
words is exploited. This will ease the reading of the code
for a non-proficient people i.e. naive user of a
programming language. Hence, our methodology bridges
the gap between the proficient and non-proficient
intellectual skills interpreted knowledge through

Input: source code
Output: natural language code

 1. Read the source code by one line
 2. Break the line in to tokens
 3. For each token

 If (token == database token)
 Replace token by natural language meaning

 4. Repeat steps 1,2 and 3 until end of lines

 1 #include <stdio.h>
 2 #define YES 1
 3 #define NO 2

4 void main()
5 {
6 int l=0;
7 int w=0;
8 int c=0;
9 int inword = NO;
10 int c=getchar();
11 while(c!=EOF)
12 {
13 char ch= (char) c;
14 c =c + 1 ;
15 if (ch == ‘\n’)
16 1=1+1;
17 if (ch == ‘ ‘ || ch == ‘\n’ || ch ==’\t’)
18 inword = NO;
19 else if (inword = = NO)
20 {
21 inword = YES;
22 w = w + 1:

 }
23 c =getchar();

 }
24 printf(“ %d \n “, l);
25 printf(“ %d \n “, w);
26 printf(“ %d \n “, c);

 }

94 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 2, MAY 2010

© 2010 ACADEMY PUBLISHER

program comprehension process. This is absolutely
necessary in the condition, where the reliable information
or relevant documentation of the legacy system does not
exists and the system is to be migrated to a newer
technology.

Figure 4: Translated code

VI. CONCLUSION

 For the comprehension of legacy system, many
researchers used the variables names, comments, relevant
documents, data structures and algorithms etc. Their
techniques are based on variable name, comments etc.
The concept of program understanding is based on the
natural way of understanding but the comprehension of
code is difficult when they are not reliably available. On
other way the algorithmic and data structure methods of
program understanding are based on the experience of
domain expert involved in the analysis process but few
people are expert in the domain.

In this methodology the dictionary of database that is
used in the mapping between programming language and
English language constructs is developed only for a
programming language. The methodology abstracts the
concept from the legacy code, which suffers from
relevant documentation, reliable information by the
natural language phrase. A platform is provided to
understand the system by translating reserve words or
tokens to equivalent English language constructs and
inquired to abstract the concept by including proficient
and non-proficient people's knowledge.

The methodology exploits the tokens from the legacy
system having the finite meaning in English language
constructs and extends the program comprehension

process. The methodology is illustrated with the example
of C code. In future, the process of program
comprehension of a legacy system is to be developed for
the multi-core architecture system, so that the legacy
system is migrated to a multi-core architecture system.

ACKNOWLEDGEMENT

The authors acknowledge the grant provided by All

Indian Council of Technical Education (AICTE) under
Research Promotion Scheme through it’s F. NO.: 8023 /
BOR / RID / RPS – 99 / 2007-08.

REFERENCES

[1] Barry. W. Boehm, “Software Engineering Economics”.

Prentice Hall, 1981
[2] I. Somerville, “Software Engineering”, 6th edition,

Addison-Wesley 2001
[3] B. Lientz, E. Swanson, and G. E. Tompkins.

“Characteristics of Application Software Maintenance.”
Communication of the ACM, 21(6), June 1978

[4] T. M. Pigoski, “Practical Software Maintenance: Best
Practices for Managing your Software Investment”,
Wiley Computer Publishing, 1996.

[5] M. Weiser, “Program Slicing” IEEE transaction on
Software Engineering, Vol SE-10, No. 4, pp. 352-357.
1984

[6] M. Wieser” Programmers use slices when debugging “,
Communications of the ACM, vol. 25, no 7, pp.446-452,
1982,

[7] F. Tip, “A Survey of program slicing techniques”,
Journal of Programming Language, Vol 3, pp 121-189,
1995.

[8] D. Binkley and K. B. Gallagher, “ Program Slicing”, in
Advances in Computers, Vol 43, Marvin Zelkowitz,
Editor, Academic Press, San Diego, CA, 1996, pp. 644-
657.

[9] David Binkley and Mark Harman, “A Survey of
Empirical Results on Program Slicing”, Advances in
Computers, Vol 62, Academic Press San Diego, CA,
2004.

[10] M. Kamkar,”An overview and comparative classification
of program slicing techniques”, The Journal of Systems
and Software, vol 31, 1995, pp. 197-214.

[11] S M. Handigund, “Reverse Engineering of Legacy
COBOL systems”, Ph. D. thesis Indian Institute of
Technology Bombay, 2001

[12] Andrea De Lucia, Anna Rita Fasolino, and Malcolm
Munro.” Understanding function behaviors through
program slicing”, In 4th IEEE workshop on Program
Comprehension, Berlin, Germany, March 1996

[13] Andrea De Lucia and Malcom Munro, “Program
Comprehension in a reuse reengineering environment”, In
Malcolm Munro, editor, 1st Durham workshop on
program comprehension, Durham University, UK, July
1995.

[14] Mark Harman, Sebastian Danicic, Yogasundary
Sivagurunathan, “Program comprehension assisted by
slicing and transformation”. In Malcolm Munro, editor,
1st Durham workshop on program comprehension,
Durham University, UK, July 1995.

[15] Daniel Jackson and Eugene. J. Rollins. Chopping: “A
generalization of slicing” Technical Report CMU-CS-94-

 Add the file for standard input and output device
 Replace YES 1
 Replace NO 2
 Void starting point of program
 {
 Integer identifier l is equals to 0
 Integer identifier w is equals to 0.
 Integer identifier c is equals to 0.
 Integer identifier inword is equals to NO.
 Integer identifier c is equals to get char.
 While (c is not equals to the end of file)
 {
 character identifier ch is equal to the character value of c.
 c is equals to c added with 1.
 if (ch is equates to the new line)
 nl is equals to the l added with 1.
 if (ch is equates to blank or ch is equates to new line or
 ch equates to tab)
 inword is equals to NO.
 else if (inword is equates to NO)
 {
 inword is equals to YES.
 w is equals to w added with 1.
 }
 c is equals to the read the character.
 }
 Display the result (“ integer value new line “, l).
 Display the result (“ integer value new line“, c).
 Display the result (“ integer value new line“, w).

}

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 2, MAY 2010 95

© 2010 ACADEMY PUBLISHER

169, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, July 1994

[16] Vaclav Rajlich, Normath Wilde, “The Role of Concepts
in Program Comprehension” Proceedings of IWPC 2002,
IEEE Computer Society Press, Los Alamitos, CA, pp.
271-278. 2002

[17] T. J. Biggerstaff, B. Mitbander, D. Webster, “ The
concept assignment problem in program understanding”,
15th International conference on Software Engineering,
Baltimore, Maryland, IEEE Computer Society Press Los
Alamitos, California, USA, 1993

[18] P. Devanbu, R. J. Brachman, P. G. Selfridge, B.W.
Ballard, “ LaSSIE: A Knowledge-Based Software
Information System”, Communications of the ACM, Vol.
34, No. 5, pp. 35-49, May 1991

[19] L. M. Wills, “Automated Program Recognition by Graph
Parsing”, PhD Thesis, AI Lab, Massachusetts Institute of
Technology, July 1992.

[20] V. Karakostas, “Intelligent Search and Acquisition of
Business Knowledge from Programs”, Software
Maintenance: Research and Practice, Vol 4, pp. 1-17,
1992.

[21] N. E. Gold. “Hypothesis-based concept assignment to
support software maintenance”, IEEE international
Conference on Software Maintenance (ICSM’01),
Florence, Italy, pp 545-548, 2001.

[22] Allen Tucker and Robert Noonan, “Programming
Languages Principles and Paradigm”, Tata McGraw-Hill
Publishing Company Limited, New Delhi, 2002.

[23] Kenneth. C. Louden, “Programming Languages
Principles and Practice”, Thomson Asia Pte Ltd,
Singapore, 2003.

[24] Keith B. Gallagher and James R. Lyle, “Using Program
Slicing in Software Maintenance”, IEEE Transactions of
Software Engineering, Volume 17, Issue 8, 1991, pp 751-
76.

Prof. Shivanand M. Handigund
received his Ph.D. degree from the
Indian Institute of Technology Bombay
in 2001. Currently, he is working as a
full Professor and Head Super
Computer Division, Department of
Computer Science and Engineering at
Bangalore Institute of Technology,
Bangalore. His research interests

include Software Engineering, Reverse Engineering, Database
Management Systems, Object Technology and Computer
Graphics. He is teaching several courses of Academia and
Industry for last thirty five years and has published number of
papers in national and international journals/conferences. He
has delivered number of keynote addresses/technical lectures at
various colleges and platforms. He has organized number of
conferences and involved as reviewer for IEEE conference
technical papers.

Ajeet A. Chikkamannur received his
M. Tech. degree in Computer Science
and Engineering in 2001 from the
Visvesvaraya Technological University,
India. Currently pursuing the Ph.D. and
the research is focused on Design of
Fourth Generation Languages. His
research interests are Object Oriented
System Development, Database

Management Systems, System Simulation and Modeling.
Presently working as Professor, Department of Computer
Science and Engineering and teaching for graduate courses for
last twenty one years.

K. Ananthapadmanabha received his
M. Tech. degree in Computer Science
and Engineering in 2002 from the
Visvesvaraya Technological University.
Belgaum, India. His research interests
are Database Management Systems,
Data Warehousing and Mining and
Software Engineering. Presently

working as a Professor in the Department of Information
Science and Engineering. He is teaching for graduate, post
graduate courses for last Eighteen years.

H. R. Shashidhara received his M.
Tech. degree in Computer Science and
Engineering in 2003 from the
Visvesvaraya Technological University.
Belgaum, India. His research interests
are Data Warehouse and Data mining,
Software Engineering. Presently
working as Professor in the Department
of Computer Science and Engineering.

He is teaching for graduate and post Graduate Courses for last
Eighteen years.

96 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 2, MAY 2010

© 2010 ACADEMY PUBLISHER

