
Discrete Characterization of Domain Using
Semantic Clustering

Sanjay Madan
Comviva Technologies Ltd.,
MBS-PACS, Gurgaon, India.

Email: san.madan@gmail.com

Shalini Batra
Computer Science and Engineering Department,

Thapar University, Patiala, Punjab, India
Email: sbatra@thapar.edu.

Abstract—Lots of approaches have been developed to
understand the software source code and majority of them
are focused on program structural information which
results in the loss of domain semantic crucial information
contained in the text or symbols of source code. To
understand software as a whole, we need to enrich these
approaches with conceptual insights gained from the
domain semantics. This paper proposes the mapping of
domain to the code using the information retrieval
techniques to use linguistic information, such as identifier
names and comments in source code. Concept of Semantic
Clustering has been introduced in this paper and an
algorithm has been provided to group source artifacts based
on how the synonymy and polysemy is related. Based on
semantic similarity automatic labeling of the program code
is done after detecting the clusters, and is visually explore in
3-Dimension for discrete characterization. This approach
works at the source code textual level which makes it
language independent. The approach correlates the
semantics with structural information applies at different
levels of abstraction (e.g. packages, classes, methods).

Index Terms— Information retrieval, Semantic clustering,
Software reverse engineering.

I. INTRODUCTION

TO get knowledge about a software system is one of
the main activities in software reengineering. It has been
estimated that up to 60 percent of software maintenance
is spent on comprehension [1]. This is because a lot of
knowledge about the software system and its associated
business domain is not captured in an explicit form. Most
approaches that have been developed focus on program
structure [2] or on external documentation [3, 4].
However, the identifier names and the source code
comments are the main fundamental source of
information.

The source code comprises of two types of
communication: human-machine communication through
program instructions and human to human
communications through names of identifiers and

comments [5]. The executables are for machine where as
code is written for humans not for machines. Let us
consider a small code example, which tell whether a time
value is in the morning:
/** Return true if the given 24-hour time is in the
morning and false otherwise. */
public boolean isMorning(int hours,int minutes,int
seconds) {

if (!isDate(hours, minutes, seconds)) throw
Exception(”Invalid input: not a time value.”)

return hours < 10 && minutes < 60 && seconds <
60; }

When we strip away all identifiers and comments,
from the machine point of view the functionality remains
the same, but for a human reader the meaning is
obfuscated and almost impossible to figure out. In our
example, retaining formal information yields:
public type1 method1(type2 a, type2 b, type2 c) {

if (!method 2(a, b ,c)) throw Exception(literal 1).
return (a < A) && (b < B) && (c < C);

}
In this informal information, the vocabulary is

presented in random order and the domain of the code is
still recognizable. In this example, retaining only the
naming yields:

is int hours minutes int < minutes input hours is
seconds && boolean morning false 24 time minutes not
60 invalid && value seconds time < seconds hour
given hours 60 12 < morning date int is otherwise [5].

It is a well known fact that information retrieval
provides means to analyze, classify and characterize text
documents based on their content and the given
representation of documents as bag-of-terms is a well-
established technique in information retrieval (IR) used to
model documents in a text corpus. Apart from external
documentation, the location and use of source-code
identifiers is the most frequently consulted source of

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 3, AUGUST 2010 127

© 2010 ACADEMY PUBLISHER
doi:10.4304/jait.1.3.127-132

mailto:sbatra@thapar.edu
mailto:san.madan@gmail.com

information in software maintenance. In the software
analysis different approaches that apply IR on external
documentation [6, 7], but only few work has been
focused on treating the source code itself as data source.
In this case we are using information retrieval to derive
topics from the vocabulary usage at the source code level.
First three steps of the domain extraction from source
code include: pre-processing, applying LSI, and
clustering. Furthermore we retrieve the most relevant
terms for each cluster, thus in short the approach is:

(1) Pre-processing the software system. Break the
system into documents and build a term-document-
matrix that contains the vocabulary usage of the
system.

(2) Applying Latent Semantic Indexing. Use LSI to
compute the similarities between source code
documents and illustrate the result in a correlation
matrix [10].

(3) Identifying topics. Then cluster the documents based
on their similarity, we rearrange the correlation matrix
and each cluster is a linguistic topic.

(4) Describing the topics with labels. Use LSI again to
retrieve for each cluster the top-n most relevant terms.

II. LATENT SEMANTIC INDEXING

Latent Semantic Indexing (LSI) is a technique
common in information retrieval to index, analyzes and
classifies text documents. It analyzes how terms are
spread over the documents of a text corpus and creates a
search space with document vectors: similar documents
are located near each other in this space and unrelated
documents far apart of each other. Since LSI can be used
to locate linguistic topics in a set of documents [8, 9], it is
applied to compute the linguistic similarity between
source artifacts (e.g. packages, classes or methods) and
cluster them according to their similarity. This clustering
partitions the system into linguistic topics that represent
groups of documents using similar vocabulary. It is used
to analyze the linguistic information of a software system
as the source code is basically composed of text
documents.

To illustrate it further, like other IR techniques, Latent
Semantic Indexing is based on the vector space model
(VSM) approach. This approach models documents as
bag-of-words and arranges them in a Term-Document
Matrix A, such that ai,j equals the number of times term ti

occurs in document dj.
LSI has been developed to overcome problems with

synonymy and polysemy that occurred in prior vectorial
approaches, and thus improves the basic vector space
model by replacing the original term-document matrix
with an approximation. This is done using singular value
decomposition (SVD), a principal components analysis
(PCA) technique originally used in signal processing to
reduce noise while preserving the original signal.
Assuming that the original term-document matrix is noisy
(the synonymy and polysemy), the approximation is
interpreted as a noise reduced – and thus better – model
of the text corpus.

For example, a typical search engine covers a text
corpus with millions of web pages, containing some ten
thousands of terms, which is reduced to a vector space
with 200-500 dimensions only. In Software Analysis, the
number of documents is much smaller and we reduce the
text corpus to 20-50 dimensions.

There is a wide range of applications of LSI, such as
automatic assignment of reviewers to submitted
conference papers [10], cross-language search engines,
spell checkers and many more. In the field of software
engineering LSI has been successfully applied to
categorized source files [11] and open-source projects
[12], detect high-level conceptual clones [13], recover
links between external documentation and source code
[14,15]. Furthermore LSI has proved useful in
psychology to simulate language understanding of the
human brain, including processes such as the language
acquisition of children.

Figure 1 schematically represents the LSI process. The
document collection is modeled as a vector space. Each
document is represented by the vector of its term
occurrences, where terms are words appearing in the
document. The term-document-matrix A is a sparse
matrix and represents the document vectors on the rows.
This matrix is of size n × m, where m is the number of
documents and n the total number of terms over all
documents. Each entry ai,j is the frequency of term ti in
document dj . A geometric interpretation of the term-
document-matrix is a set of document vectors occupying
a vector space spanned by the terms. The similarity
between documents is typically defined as the cosine or
inner product between the corresponding vectors. Two
documents are considered similar if their corresponding
vectors point in the same direction.

Figure 1, LSI takes as input a set of documents and the terms
occurrences, and returns as output a vector space containing all the
terms and all the documents. The similarity between two items (terms or
documents) is given by the angle between their corresponding vectors
[5].

LSI starts with an input as term-document-matrix,
weighted by a weighting function to balance out very rare
and very common terms. SVD is used to break down the
vector space model into less dimensions. This algorithm
preserves as much information as possible about the
relative distances between the document vectors, while
collapsing them into a much smaller set of dimensions.

SVD decomposes matrix A into its singular values and
its singular vectors, and yields – when truncated at the k
largest singular values – an approximation A` of A with
rank k. Furthermore, not only the low-rank term-
document matrix A` can be computed but also a term-
term matrix and a document-document matrix. Thus, LSI

128 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 3, AUGUST 2010

© 2010 ACADEMY PUBLISHER

allows us to compute term-document, term-term and
document-document similarities.

As the rank is the number of linear-independent rows
and columns of a matrix, the vector space spanned by A`
is of dimension k only and much less complex than the
initial space. When used for information retrieval, k is
typically about 200-500, while n and m may go into
millions. When used to analyze software on the other
hand, k is typically about 20−50 with vocabulary and
documents in the range of thousands only, and since A` is
the best approximation of A under the least-square-error
criterion, the similarity between documents is preserved,
while in the same time mapping semantically related
terms on one axis of the reduced vector space and thus
taking into account synonymy and polysemy. In other
words, the initial term-document-matrix A is a table with
term occurrences and by breaking it down to much less
dimension the latent meaning must appear in A` since
there is now much less space to encode the same
information. Meaningless occurrence data is transformed
into meaningful concept information.

III. TERM AND DOCUMENT SIMILARITY

To show the SVD factors geometrically, the rows of
the matrices are taken as coordinates of points
representing the documents and terms vector dimensional
space. The nearer one points to the other, if they are more
similar documents or terms (see Figure 2). Similarity is
typically defined as the cosine between the corresponding
vectors:

sim(di, dj) = cos(vi, vj)

Figure 2: On the left: An LSI-Space with terms and documents, similar
elements are placed near each other [5].

Computing the similarity between document di and dj

is done taking the cosine between the i-th and j-th row of
the matrix. The resulting cosine value, similarity values
range from 1 to 0: 1 for similar vectors with the same
direction and to 0 for dissimilar, orthogonal vectors.
Theoretically cosine values can go all the way to −1, but
because there are no negative term occurrences, similarity
values never goes below to zero.

IV. SEMANTIC CLUSTERING

Semantic clustering is a non-interactive and
unsupervised technique to analyze the semantics of a
software system. Semantic clustering offers a high level
view on the domain concepts of a system, abstracting
concepts from software artifacts. Firstly, Latent Semantic
Indexing (LSI) is used to extract linguistic information

from the source code and then clustering is applied to
group the related software artifacts into clusters and
groups of artifacts having the same vocabulary are
identified and these are called clusters. Thus each cluster
reveals a different concept of the system. Most of these
are domain concepts, some are implementation concepts.
The actual ratio depends on the naming convention of the
system.

At the end, the inherently unnamed concepts are
labelled with terms taken from the vocabulary of the
source code. An automatic algorithm labels each cluster
with most similar terms, and in this way provide a human
readable description of the main concepts in a software
system. Additionally, the clustering is visualized as a
shaded Correlation Matrix that illustrates:

• the semantic similarity between elements of the
system, the darker a dot the more similar its artifacts,

• a partition of the system into clusters with high
semantic cohesion, which reveals groups of software
artifacts that implement the same domain concept,

• semantic links between these clusters, which
emphasize single software artifacts that interconnect
the above domain concepts.

Figure 3: From left to right: unordered correlation matrix, then sorted by
similarity, then grouped by clusters, and finally including semantic links
[5].

V. BUILDING THE TEXT CORPUS

Text corpus is a large and structured set of texts. To
build a semantic model, Latent Semantic Indexing (LSI)
is used to analyze the distribution of terms over a text
corpus. When applying LSI on a software system we
break its source code into documents and use the
vocabulary found therein as terms. The system can be
split into documents at any level of granularity, such as
modules, classes or methods, it is even possible to use
entire projects as documents [16].

The vocabulary of source can be extracted both from
the content of comments and from the identifier names.
Comments are parsed as natural language text and
compound identifier names split into their parts. As most
modern naming conventions are used camel case, it is
straight forward to split identifiers: for example, FooBar
becomes foo and bar. In case of legacy code that uses
other naming conventions, more advanced algorithms and
heuristics are required [17]-[18].

Common stop words are excluded from the
vocabulary, as they do not help to discriminate
documents, and stemmer algorithm is used to reduce all
words to their morphological root. Finally the term-
document matrix is weighted with tf-idf (Term frequency,
inverted document frequency), to balance out the
influence of very rare and very common terms.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 3, AUGUST 2010 129

© 2010 ACADEMY PUBLISHER

VI. SEMANTIC SIMILARITY AND CORRELATION MATRIX

Semantic similarity is the likeness of
meaning/semantic content within a set of documents or
terms. Latent Semantic Indexing (LSI) can be used to
extract linguistic information from the source code. The
result of this process will be an LSI index L with
similarities between software artifacts as well as terms.
Based on the index we can determine the similarity
between these elements. Software artifacts are more
similar if they cover the same concept, terms are more
similar if they denote related concepts. Since similarity is
defined as cosine between element vectors, its values
range between 0 and 1. The similarities between elements
are arranged in a square matrix A called the Correlation
Matrix.

To visualize the similarity values we map them to gray
values: the darker, the more similar. In that way the
matrix becomes a raster-graphic with gray dots: each dot
ai,j shows the similarity between element di and element
dj. The elements are arranged on the diagonal and the dots
in the off-diagonal show the relationship between them.

Without proper ordering, the correlation matrix looks
like a television tuned to a dead channel. An unordered
matrix does not reveal any patterns: arbitrary ordering,
such as the names of the elements, is generally as useful
as random ordering [19]—therefore, matrix will be
clustered such that similar elements are put near each
other and dissimilar elements far apart of each other.
After applying the clustering algorithm, the similar
elements are grouped together and aggregated into
concepts. Hence, a concept is characterized as a set of
elements that uses the same vocabulary. Documents that
are not related to any concept usually end up in singleton
clusters in the middle or in the bottom right of the
correlation matrix. The correlation matrices are ordered
using average linkage clustering algorithm.

The matrix will be reordered first, and then dots will
be grouped by clusters and colour them with their
average cluster similarity. As with the element
similarities in the previous section, the similarities
between clusters are arranged in a square matrix A. When
visualized, this matrix becomes a raster-graphic with gray
rectangles: each rectangle ri,j shows the similarity
between cluster Ri and cluster Rj , and has the size (|Ri|, |
Rj|). The clusters are arranged on the diagonal and the
rectangles in the off-diagonal show the relationship
between them—see the third matrix on Figure 3.

A correlation matrix is gray-scale raster-graphic: each
dot ai,j shows the similarity between element di and
element dj—the darker, the more similar. The elements
are arranged on the diagonal while the dots in the off-
diagonal show the relationship between them. An
unordered matrix does not reveal any patterns; therefore
we cluster the elements and sort the matrix: all dots in a
cluster are grouped together and are colour with their
average similarity; this is semantic cohesion [20]. This
offers a high-level view on that system, abstracting from
elements to concepts.

VII. DISCRETE CHARACTERIZATION OF CLUSTERS

Visualization of the cluster in 3-Dimesion extended the
domain detection concept much simpler in terms of
distributed application. Just visualizing clusters is not
enough; labelling is required to describe the cluster. Often
just enumerating the names of the software artifacts in a
cluster gives a sufficient interpretation. If the names are
badly chosen or unnamed software artifacts are analyzed,
we need an automatic way to identify labels. Figure 4
shows the labels in the concept of LAN example.

Figure 4: Automatically retrieved labels describe the concepts. The
labels were retrieved using the documents in a concept cluster as query
to search the LSI space for related terms.

To obtain the most relevant labels comparison will be
performed between the similar terms of the current
cluster and similar terms of all other clusters.

All the steps of the domain extraction from source
code include: pre-processing, applying LSI, clustering
and retrieve the most relevant terms for each cluster and
the similarity measurement to identify topics in the
source code will follow the flow as depicted in the figure:

Figure 5: Modified Semantic clustering of software source code [5].

130 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 3, AUGUST 2010

© 2010 ACADEMY PUBLISHER

VIII. CONCLUSION

When understanding a software system, analyzing its
structure reveals only half of the story. The other half
resides in the domain semantics of the implementation.
Developers put their domain knowledge into identifiers
name or comments. This work presented the use of
Semantic Clustering to analyze the textual content of
source code to recover domain concepts from the code
itself [22]. To identify the different concepts in the code,
we applied Latent Semantic Indexing (LSI) and cluster
the source artifacts according to the vocabulary of
identifiers and comments. Each cluster represents a
distinct domain concept. To define the concept and to
retrieve the most relevant labels for clusters, LSI
technique has been used. For each cluster, the labels are
obtained by ranking and filtering the most similar terms
[16]. The result of applying LSI is a vector space, based
on which we can compute the similarity between either
documents or terms.

REFERENCES

[1] A. Abran, P. Bourque, R. Dupuis, L. Tripp, “Guide to the
software engineering body of knowledge (ironman
version),” Tech. rep., IEEE Computer Society (2004).

[2] S. Ducasse, M. Lanza, “The class blueprint: Visually
supporting the understanding of classes,” IEEE
Transactions on Software Engineering 31 (1) (2005) 75–
90.

[3] Y. S. Maarek, D. M. Berry, G. E. Kaiser, “An information
retrieval approach for automatically constructing software
libraries,” IEEE Transactions on Software Engineering 17
(8) (1991) 800–813.

[4] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E.
Merlo, “Recovering traceability links between code and
documentation,” IEEE Transactions on Software
Engineering 28 (10) (2002) 970–983.

[5] Adrian Kuhn, Stephane Ducasse, Tudor Girba, “Semantic
Clustering: Identifying Topics in Source Code,” Language
and Software Evolution Group, LISTIC, Universite de
Savoie, France, 2006

[6] Yo¨elle S. Maarek, Daniel M. Berry, and Gail E. Kaiser,
“An information retrieval approach for automatically
constructing software libraries,” IEEE Transactions on
Software Engineering, 17(8):800–813, August 1991.

[7] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza,
Andrea De Lucia, and Ettore Merlo, “Recovering
traceability links between code and documentation,” IEEE
Transactions on Software Engineering, 28(10):970–983,
2002.
[8] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G.
W. Furnas, R. A. Harshman, “Indexing by latent semantic
analysis,” Journal of the American Society of Information
Science 41 (6) (1990) 391–407.
[9] A. Marcus, A. Sergeyev, V. Rajlich, J. Maletic, “An
information retrieval approach to concept location in
source code”, in: Proceedings of the 11thWorking
Conference on Reverse Engineering (WCRE 2004), 2004,
pp. 214–223.
[10] S. T. Dumais, J. Nielsen, “Automating the assignment
of submitted manuscripts to reviewers,” In Research and
Development in Information Retrieval, 1992, pp. 233–244.
[11] J. I. Maletic, A. Marcus, “Using latent semantic
analysis to identify similarities in source code to support

program understanding,” In: Proceedings of the 12th

International Conference on Tools with Artificial
Intelligences (ICTAI 2000), 2000, pp. 46–53.
[12] S. Kawaguchi, P. K. Garg, M. Matsushita, K. Inoue,
“Mudablue: An automatic categorization system for open
source repositories,” in: Proceedings of the 11th Asia-
Pacific Software Engineering Conference (APSEC 2004),
2004, pp. 184–193.
[13] A. Marcus, J. I. Maletic, “Identification of high-level
concept clones in source code,” in: Proceedings of the 16th
International Conference on Automated Software
Engineering (ASE 2001), 2001, pp. 107–114.
[14] A. De Lucia, F. Fasano, R. Oliveto, G. Tortora,
“Enhancing an artefact management system with
traceability recovery features,” in: Proceedings of 20th

IEEE International Conference on Software Maintainance
(ICSM 2004), 2004, pp. 306–315.
[15] A. Marcus, D. Poshyvanyk, “The conceptual cohesion
of classes,” in: Proceedings Internationl Conference on
Software Maintenance (ICSM 2005), IEEE Computer
Society Press, Los Alamitos CA, 2005, pp. 133–142.
[16] Adrian Kuhn, Stephane Ducasse, and Tudor Girba,
“Semantic clustering: Exploiting source code linguistic
information,” Information and Software Technology,
submitted, 2006.
[17] Bruno Caprile and Paolo Tonella. Nomen est omen,
“Analyzing the language of function identifiers,” In
Proceedings of 6th Working Conference on Reverse
Engineering (WCRE 1999), pages 112–122. IEEE
Computer Society Press, 1999.
[18] Nicolas Anquetil and Timothy Lethbridg, “Extracting
concepts from file names; a new file clustering criterion,”
In International Conference on Software Engineering
(ICSE’98), pages 84–93, 1998.
[19] Jaques Bertin, “Graphics and Graphic Information
Processing,” Walter de Gruyter, 1981.
[20] Andrian Marcus and Denys Poshyvanyk, “The
conceptual cohesion of classes,” In Proceedings
Internationl Conference on Software Maintenance (ICSM
2005), pages 133–142, Los Alamitos CA, 2005. IEEE
Computer Society Press.
[21] Michael W. Berry, Susan T. Dumais, and Gavin W.
O’Brien, “Using linear algebra for intelligent information
retrieval,” SIAM Review, 37(4):573–597, 1995
[22] Adrian Kuhn, St´ephane Ducasse, and Tudor Gˆırba,
“Enriching reverse engineering with semantic clustering,”
In Proceedings of Working Conference on Reverse
Engineering (WCRE 2005), pages 113–122, Los Alamitos
CA, November 2005. IEEE Computer Society Press.

Sanjay Madan, Author

Sanjay Madan is working as Software
Engineer in Comviva Technologies Ltd,
Gurgaon since 2009. He has done Post
graduation from Thapar University, Patiala.
He had worked on more than six
professional/research projects. He is the

author/co-author of four publication in international conferences
and journals. His research area of interest include Web semantics
and machine learning particularly semantic clustering and
classification. He had taken courses in their teaching career as of
Data Structure, Web Technologies and Computer Graphics.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 3, AUGUST 2010 131

© 2010 ACADEMY PUBLISHER

Shalini Batra, Author

Shalini Batra is working as Assistant
Professor in Computer Science and
Engineering Department, Thapar
University, Patiala since 2002. She has
done her Post graduation from BITS,
Pilani and is pursuing Ph.D. from Thapar

University in the area of Semantic and Machine Learning. She
has guided fifteen ME theses and presently guiding four. She is
author/co-author of more than twenty-five publications in
national and international conferences and journals. Her areas of
interest include Web semantics and machine learning
particularly semantic clustering and classification. She is taking
courses of Compiler construction, Theory of Computations and
Parallel and Distributed Computing.

132 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 3, AUGUST 2010

© 2010 ACADEMY PUBLISHER

