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Abstract—Lots  of  approaches  have  been  developed  to 
understand the software source code  and majority of them 
are  focused  on  program  structural  information  which 
results in the loss of domain semantic  crucial information 
contained  in  the  text  or  symbols  of  source  code.  To 
understand software  as  a  whole,  we need to enrich these 
approaches  with  conceptual  insights  gained  from  the 
domain  semantics.  This  paper  proposes  the  mapping  of 
domain  to  the  code  using  the  information  retrieval 
techniques to use linguistic information,  such as identifier 
names and comments in source code. Concept of Semantic 
Clustering  has  been  introduced  in  this  paper  and  an 
algorithm has been provided to group source artifacts based 
on how the  synonymy and polysemy is  related.  Based on 
semantic similarity automatic labeling of the program code 
is done after detecting the clusters, and is visually explore in 
3-Dimension  for  discrete  characterization.  This  approach 
works  at  the  source  code  textual  level  which  makes  it 
language  independent.  The  approach  correlates  the 
semantics  with  structural  information  applies  at  different 
levels of abstraction (e.g. packages, classes, methods).

Index Terms—  Information retrieval,  Semantic  clustering, 
Software reverse engineering.

I.  INTRODUCTION

TO get knowledge about a software system is one of 
the main activities in software reengineering. It has been 
estimated that up to 60 percent of software maintenance 
is spent on comprehension [1]. This is because a lot of 
knowledge about the software system and its associated 
business domain is not captured in an explicit form. Most 
approaches that have been developed focus on program 
structure  [2]  or  on  external  documentation  [3,  4]. 
However,  the  identifier  names  and  the  source  code 
comments  are  the  main  fundamental  source  of 
information. 

The  source  code  comprises  of  two  types  of 
communication: human-machine communication through 
program  instructions  and  human  to  human 
communications   through     names    of     identifiers and 

comments [5]. The executables are for machine where as 
code  is  written  for  humans  not  for  machines.  Let  us 
consider a small code example, which tell whether a time 
value is in the morning:
/**  Return  true  if  the  given  24-hour  time  is  in  the 
morning and false otherwise. */
public  boolean  isMorning(int  hours,int  minutes,int 
seconds) {

if  (!isDate(hours,  minutes,  seconds))  throw 
Exception(”Invalid input: not a time value.”)

return  hours < 10 && minutes  < 60 && seconds < 
60; }

When  we  strip  away  all  identifiers  and  comments, 
from the machine point of view the functionality remains 
the  same,  but  for  a  human  reader  the  meaning  is 
obfuscated  and almost  impossible  to  figure  out.  In  our 
example, retaining formal information yields:
public type1 method1(type2 a, type2 b, type2 c) {

if (!method 2(a, b ,c)) throw Exception(literal 1).
return (a < A) && (b < B) && (c < C); 

}
In  this  informal  information,  the  vocabulary  is 

presented in random order and the domain of the code is 
still  recognizable.  In  this  example,  retaining  only  the 
naming yields:

is int hours minutes int < minutes input hours is
seconds && boolean morning false 24 time minutes not
60 invalid && value seconds time < seconds hour
given hours 60 12 < morning date int is otherwise [5].

It  is  a  well  known  fact  that  information  retrieval 
provides means to analyze, classify and characterize text 
documents  based  on  their  content and  the  given 
representation  of  documents  as  bag-of-terms  is  a  well-
established technique in information retrieval (IR) used to 
model documents in a text corpus. Apart  from external 
documentation,  the  location  and  use  of  source-code 
identifiers is the most frequently consulted source of 

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 1, NO. 3, AUGUST 2010 127

© 2010 ACADEMY PUBLISHER
doi:10.4304/jait.1.3.127-132

mailto:sbatra@thapar.edu
mailto:san.madan@gmail.com


information  in  software  maintenance.  In  the  software 
analysis  different  approaches  that  apply IR  on external 
documentation  [6,  7],  but  only  few  work  has  been 
focused on treating the source code itself as data source. 
In this case we are using information retrieval to derive 
topics from the vocabulary usage at the source code level.
First  three  steps  of  the  domain  extraction  from source 
code  include:  pre-processing,  applying  LSI,  and 
clustering.  Furthermore  we  retrieve  the  most  relevant 
terms for each cluster, thus in short the approach is:

(1)  Pre-processing  the  software  system. Break  the 
system into documents  and  build  a  term-document-
matrix  that  contains  the  vocabulary  usage  of  the 
system.

(2)  Applying  Latent  Semantic  Indexing. Use  LSI  to 
compute  the  similarities  between  source  code 
documents  and  illustrate  the  result  in  a  correlation 
matrix [10].

(3) Identifying topics. Then cluster the documents based 
on their similarity, we rearrange the correlation matrix 
and each cluster is a linguistic topic.

(4) Describing the topics with labels. Use LSI again to 
retrieve for each cluster the top-n most relevant terms.

II.  LATENT SEMANTIC INDEXING

Latent  Semantic  Indexing  (LSI)  is  a  technique 
common in information retrieval to index, analyzes and 
classifies  text  documents.  It  analyzes  how  terms  are 
spread over the documents of a text corpus and creates a 
search space with document vectors:  similar documents 
are located near  each other  in this space and unrelated 
documents far apart of each other. Since LSI can be used 
to locate linguistic topics in a set of documents [8, 9], it is 
applied  to  compute  the  linguistic  similarity  between 
source artifacts  (e.g.  packages,  classes or methods) and 
cluster them according to their similarity. This clustering 
partitions the system into linguistic topics that represent 
groups of documents using similar vocabulary. It is used 
to analyze the linguistic information of a software system 
as  the  source  code  is  basically  composed  of  text 
documents.  

To illustrate it further, like other IR techniques, Latent 
Semantic  Indexing is  based on the vector  space  model 
(VSM)  approach.  This  approach  models  documents  as 
bag-of-words  and  arranges  them  in  a  Term-Document 
Matrix A, such that ai,j equals the number of times term ti 

occurs in document dj. 
LSI  has  been developed to  overcome problems with 

synonymy and polysemy that occurred in prior vectorial 
approaches,  and  thus  improves  the  basic  vector  space 
model  by  replacing  the  original  term-document  matrix 
with an approximation. This is done using singular value 
decomposition  (SVD),  a  principal  components  analysis 
(PCA) technique originally used in signal  processing to 
reduce  noise  while  preserving  the  original  signal. 
Assuming that the original term-document matrix is noisy 
(the  synonymy  and  polysemy),  the  approximation  is 
interpreted as a noise reduced – and thus better – model 
of the text corpus.

For  example,  a  typical  search  engine  covers  a  text 
corpus with millions of web pages, containing some ten 
thousands of terms, which is reduced to a vector space 
with 200-500 dimensions only. In Software Analysis, the 
number of documents is much smaller and we reduce the 
text corpus to 20-50 dimensions.

There is a wide range of applications of LSI, such as 
automatic  assignment  of  reviewers  to  submitted 
conference  papers  [10],  cross-language  search  engines, 
spell checkers and many more. In  the field of software 
engineering  LSI  has  been  successfully  applied  to 
categorized  source  files  [11]  and  open-source  projects 
[12],  detect  high-level  conceptual  clones  [13],  recover 
links  between  external  documentation  and  source  code 
[14,15].  Furthermore  LSI  has  proved  useful  in 
psychology  to  simulate  language  understanding  of  the 
human brain,  including processes  such as  the language 
acquisition of children.

Figure 1 schematically represents the LSI process. The 
document collection is modeled as a vector space. Each 
document  is  represented  by  the  vector  of  its  term 
occurrences,  where  terms  are  words  appearing  in  the 
document.  The  term-document-matrix  A  is  a  sparse 
matrix and represents the document vectors on the rows. 
This matrix is of size n × m, where m is the number of 
documents  and  n  the  total  number  of  terms  over  all 
documents. Each entry ai,j is the frequency of term ti in 
document  dj  .  A  geometric  interpretation  of  the  term-
document-matrix is a set of document vectors occupying 
a  vector  space  spanned  by  the  terms.  The  similarity 
between documents is typically defined as the cosine or 
inner  product  between  the  corresponding  vectors.  Two 
documents are considered similar if their corresponding 
vectors point in the same direction.  

Figure  1,  LSI  takes  as  input  a  set  of  documents  and  the  terms 
occurrences,  and  returns  as  output  a  vector  space  containing  all  the 
terms and all the documents. The similarity between two items (terms or 
documents) is given by the angle between their corresponding vectors 
[5].

LSI  starts  with  an  input  as  term-document-matrix, 
weighted by a weighting function to balance out very rare 
and very common terms. SVD is used to break down the 
vector space model into less dimensions. This algorithm 
preserves  as  much  information  as  possible  about  the 
relative  distances  between the  document  vectors,  while 
collapsing them into a much smaller set of dimensions. 

SVD decomposes matrix A into its singular values and 
its singular vectors, and yields – when truncated at the k 
largest singular values – an approximation A` of A with 
rank  k.  Furthermore,  not  only  the  low-rank  term-
document matrix A` can be computed but also a term-
term matrix and a document-document matrix. Thus, LSI 
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allows  us  to  compute  term-document,  term-term  and 
document-document similarities.

As the rank is the number of linear-independent rows 
and columns of a matrix, the vector space spanned by A` 
is of dimension k only and much less complex than the 
initial  space.  When used for  information retrieval,  k  is 
typically  about  200-500,  while  n  and  m  may  go  into 
millions.  When  used  to  analyze  software  on  the  other 
hand,  k  is  typically  about  20−50  with  vocabulary  and 
documents in the range of thousands only, and since A` is 
the best approximation of A under the least-square-error 
criterion, the similarity between documents is preserved, 
while  in  the  same  time  mapping  semantically  related 
terms on one axis of the reduced vector space and thus 
taking  into  account  synonymy  and  polysemy.  In  other 
words, the initial term-document-matrix A is a table with 
term occurrences and by breaking it down to much less 
dimension the  latent  meaning  must  appear  in  A`  since 
there  is  now  much  less  space  to  encode  the  same 
information. Meaningless occurrence data is transformed 
into meaningful concept information.

III.  TERM AND DOCUMENT SIMILARITY

To show the SVD factors geometrically,  the rows of 
the  matrices  are  taken  as  coordinates  of  points 
representing the documents and terms vector dimensional 
space. The nearer one points to the other, if they are more 
similar documents or terms (see Figure 2). Similarity is 
typically defined as the cosine between the corresponding 
vectors:

sim(di, dj) = cos(vi, vj) 

Figure 2: On the left: An LSI-Space with terms and documents, similar 
elements are placed near each other [5].

Computing the similarity between document di and dj 

is done taking the cosine between the i-th and j-th row of 
the matrix. The resulting cosine value, similarity values 
range from 1 to 0:  1 for  similar vectors with the same 
direction  and  to  0  for  dissimilar,  orthogonal  vectors. 
Theoretically cosine values can go all the way to −1, but 
because there are no negative term occurrences, similarity 
values never goes below to zero.

IV.  SEMANTIC CLUSTERING

Semantic  clustering  is  a  non-interactive  and 
unsupervised  technique  to  analyze  the  semantics  of  a 
software system. Semantic clustering offers a high level 
view on  the  domain  concepts  of  a  system,  abstracting 
concepts from software artifacts. Firstly, Latent Semantic
Indexing (LSI) is used to extract linguistic information 

from the  source  code  and then clustering  is  applied  to 
group  the  related  software  artifacts  into  clusters  and 
groups  of  artifacts  having  the  same  vocabulary  are 
identified and these are called clusters. Thus each cluster 
reveals a different concept of the system. Most of these 
are domain concepts, some are implementation concepts. 
The actual ratio depends on the naming convention of the 
system.

At  the  end,  the  inherently  unnamed  concepts  are 
labelled  with  terms  taken  from  the  vocabulary  of  the 
source code. An automatic algorithm labels each cluster 
with most similar terms, and in this way provide a human 
readable description of the main concepts in a software 
system.  Additionally,  the  clustering  is  visualized  as  a 
shaded Correlation Matrix that illustrates:

•  the  semantic  similarity  between  elements  of  the 
system, the darker a dot the more similar its artifacts,

•  a  partition  of  the  system  into  clusters  with  high 
semantic cohesion, which reveals groups of software 
artifacts that implement the same domain concept,

•  semantic  links  between  these  clusters,  which 
emphasize single software artifacts that  interconnect 
the above domain concepts.

Figure 3: From left to right: unordered correlation matrix, then sorted by 
similarity, then grouped by clusters, and finally including semantic links 
[5].

V. BUILDING THE TEXT CORPUS

Text corpus is a large and structured set of texts.  To 
build a semantic model, Latent Semantic Indexing (LSI) 
is  used to analyze  the distribution of terms over  a text 
corpus. When  applying  LSI  on  a  software  system  we 
break  its  source  code  into  documents  and  use  the 
vocabulary  found therein  as  terms.  The  system can  be 
split into documents at any level of granularity,  such as 
modules,  classes or methods, it  is even possible to use 
entire projects as documents [16].

The vocabulary of source can be extracted both from 
the content of comments and from the identifier names. 
Comments  are  parsed  as  natural  language  text  and 
compound identifier names split into their parts. As most 
modern  naming conventions  are  used  camel  case,  it  is 
straight forward to split identifiers: for example, FooBar 
becomes foo and bar.  In  case of  legacy code that  uses 
other naming conventions, more advanced algorithms and 
heuristics are required [17]-[18].

Common  stop  words  are  excluded  from  the 
vocabulary,  as  they  do  not  help  to  discriminate 
documents, and stemmer algorithm is used to reduce all 
words  to  their  morphological  root.  Finally  the  term-
document matrix is weighted with tf-idf (Term frequency, 
inverted  document  frequency),  to  balance  out  the 
influence of very rare and very common terms.
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VI. SEMANTIC SIMILARITY AND CORRELATION MATRIX

Semantic  similarity is  the  likeness  of 
meaning/semantic  content  within a set of documents or 
terms. Latent  Semantic  Indexing  (LSI)  can  be  used  to 
extract linguistic information from the source code. The 
result  of  this  process  will  be  an  LSI  index  L  with 
similarities between software artifacts  as well as terms. 
Based  on  the  index  we  can  determine  the  similarity 
between  these  elements.  Software  artifacts  are  more 
similar if  they cover the same concept,  terms are more 
similar if they denote related concepts. Since similarity is 
defined  as  cosine  between  element  vectors,  its  values 
range between 0 and 1. The similarities between elements 
are arranged in a square matrix A called the Correlation 
Matrix.

To visualize the similarity values we map them to gray 
values:  the  darker,  the  more  similar.  In  that  way  the 
matrix becomes a raster-graphic with gray dots: each dot 
ai,j shows the similarity between element di and element 
dj. The elements are arranged on the diagonal and the dots 
in the off-diagonal show the relationship between them.

Without proper ordering, the correlation matrix looks 
like a television tuned to a dead channel. An unordered 
matrix  does  not  reveal  any patterns:  arbitrary ordering, 
such as the names of the elements, is generally as useful 
as  random  ordering  [19]—therefore,  matrix  will  be 
clustered  such  that  similar  elements  are  put  near  each 
other  and  dissimilar  elements  far  apart  of  each  other. 
After  applying  the  clustering  algorithm,  the  similar 
elements  are  grouped  together  and  aggregated  into 
concepts.  Hence,  a concept  is  characterized as a set  of 
elements that uses the same vocabulary. Documents that 
are not related to any concept usually end up in singleton 
clusters  in  the  middle  or  in  the  bottom  right  of  the 
correlation matrix. The correlation matrices are ordered 
using average linkage clustering algorithm.

The matrix will be reordered first, and then dots will 
be  grouped  by  clusters  and  colour  them  with  their 
average  cluster  similarity.  As  with  the  element 
similarities  in  the  previous  section,  the  similarities 
between clusters are arranged in a square matrix A. When 
visualized, this matrix becomes a raster-graphic with gray 
rectangles:  each  rectangle  ri,j shows  the  similarity 
between cluster Ri and cluster Rj , and has the size (|Ri|, |
Rj|).  The clusters  are  arranged  on the diagonal  and the 
rectangles  in  the  off-diagonal  show  the  relationship 
between them—see the third matrix on Figure 3.

A correlation matrix is gray-scale raster-graphic: each 
dot  ai,j shows  the  similarity  between  element di and 
element dj—the darker,  the more similar.  The elements 
are arranged on the diagonal while the dots in the off-
diagonal  show  the  relationship  between  them.  An 
unordered matrix does not reveal any patterns; therefore 
we cluster the elements and sort the matrix: all dots in a 
cluster  are  grouped  together  and  are  colour  with  their 
average  similarity;  this is  semantic  cohesion [20].  This 
offers a high-level view on that system, abstracting from 
elements to concepts.

VII. DISCRETE CHARACTERIZATION OF CLUSTERS

Visualization of the cluster in 3-Dimesion extended the 
domain  detection  concept  much  simpler  in  terms  of 
distributed  application.  Just  visualizing  clusters  is  not 
enough; labelling is required to describe the cluster. Often 
just enumerating the names of the software artifacts in a 
cluster gives a sufficient interpretation. If the names are 
badly chosen or unnamed software artifacts are analyzed, 
we need  an automatic  way to  identify  labels.  Figure  4 
shows the labels in the concept of LAN example. 

Figure  4:  Automatically  retrieved  labels  describe  the  concepts.  The 
labels were retrieved using the documents in a concept cluster as query 
to search the LSI space for related terms.

To obtain the most relevant labels comparison will be 
performed  between  the  similar  terms  of  the  current 
cluster and similar terms of all other clusters.

All  the  steps  of  the  domain  extraction  from  source 
code  include:  pre-processing,  applying  LSI,  clustering 
and retrieve the most relevant terms for each cluster and 
the  similarity  measurement  to  identify  topics  in  the 
source code will follow the flow as depicted in the figure:

Figure 5: Modified Semantic clustering of software source code [5].
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VIII. CONCLUSION

When understanding a software system, analyzing its 
structure  reveals  only half  of  the  story.  The  other  half 
resides  in the domain semantics of the implementation. 
Developers  put  their  domain knowledge into identifiers 
name  or  comments.  This  work  presented  the  use  of 
Semantic  Clustering  to  analyze  the  textual  content  of 
source code to recover domain concepts  from the code 
itself [22]. To identify the different concepts in the code, 
we applied Latent  Semantic  Indexing (LSI)  and cluster 
the  source  artifacts  according  to  the  vocabulary  of 
identifiers  and  comments.  Each  cluster  represents  a 
distinct  domain  concept.  To  define  the  concept  and  to 
retrieve  the  most  relevant  labels  for  clusters,  LSI 
technique has been used. For each cluster, the labels are 
obtained by ranking and filtering the most similar terms 
[16]. The result of applying LSI is a vector space, based 
on which we can compute the similarity between either 
documents or terms.
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