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Abstract—Modeling human behavior in dynamic tasks can 

be challenging. As human beings possess a common set of 

cognitive processes, there should be certain robust cognitive 

mechanisms that capture human behavior in these dynamic 

tasks. This paper argues for a learning model of human 

behavior that uses a reinforcement learning (RL) 

mechanism that has been widely used in the fields of 

cognitive modeling, and judgement and decision making. 

The RL model has a generic decision-making structure that 

is well suited to explaining human behavior in dynamic 

tasks. The RL model is used to model human behavior in a 

popular dynamic control task called Dynamic Stock and 

Flows (DSF) that was used in a recent Model Comparison 

Challenge (MCC). The RL model’s performance is 

compared to a winner model that won the MCC, that also 

uses the RL mechanism, and that is the best known model to 

explain human behavior in the DSF task. Results of 

comparison reveal that the RL model generalizes to explain 

human behavior better than the winner model. 

Furthermore, the RL model is able to generalize to human 

data of best and worst performers better than the winner 

model. Implications of this research highlight the potential 

of using experienced-based mechanisms like reinforcement 

learning to explain human behavior in dynamic tasks.  

 

Index Terms—dynamic tasks, best performer, worst 

performer, model comparison, model generalization, 

reinforcement learning 

 

I.  INTRODUCTION 

A common approach in the study of decision making 

involves observing human performance in a decision-

making task followed by the development of a cognitive 

model that reproduces that behaviour and predicts new 

unobserved behaviour [1]. Usually, new conditions 

within the same task lead to the design of cognitive 

models with newer mechanisms, resulting in highly 

condition-specific models. These cognitive models might 

use specific mechanisms that might perform poorly to 

reproduce behaviour in closely related but slightly 

different conditions of the same task. Therefore, the 

practicality of this approach has been examined [1–3] and 

recent cognitive model designs have focused on using 

certain common set of cognitive mechanisms that are able 

to explain human behaviour in different conditions or 

variations of the same task [8-9]. 

A popular and common cognitive mechanism that is 

incorporated in many cognitive models is called 

reinforcement learning (RL), a computational approach to 

understanding and automating goal-directed learning and 

decision-making in dynamic tasks [4]. The RL 

mechanism is distinguished from other computational 

cognitive mechanisms by its emphasis on learning by an 

individual from direct interaction with individual’s 

decision environment in the presence of an explicit goal 

and feedback, and without relying on any exemplary 

supervision [4]. The RL mechanism is simple to 

understand in the sense that a single propensity value (or 

experience) is updated in a task’s condition as a weighted 

sum of the accumulated propensity in the previous trials 

and the outcome experienced by an agent in the last trial. 

Thus, a decision weight typically accounts for reliance on 

either an accumulated set of experiences, or on recent 

outcomes in a task. 

In the recent past, the RL mechanism has been 

extremely popular and successful in explaining human 

behaviour in different dynamic tasks. For example, 

consider a dynamic repeated binary-choice task. In this 

task, people are asked to select between two alternatives 

repeatedly for many trials, each selection of one of the 

two alternatives affects people’s earnings, and they 

receive immediate feedback on obtained outcomes as a 

consequence of their selection. Generally, in the repeated 

binary-choice task one of the alternatives is risky (with 

probabilistic rewards) and the other is safe (with 

deterministic rewards). A number of cognitive models 

like the RELACS [5], explorative sampler (with and 

without recency) [6], ACT-R [7], and instance-based 

learning [8-9] have been proposed to predict learning in 

different conditions of the repeated binary-choice task: 

with outcome feedback, with feedback about foregone 

payoffs, and with probability learning. All these models 

share the RL mechanism as a common mechanism to 

capture human learning and decision making in different 

conditions of the repeated binary-choice task. 

Most recently, a model based upon the RL mechanism 

also won the Market Entry Competition (MEC), where 

the task entailed prediction of human choices in a 4-

player binary-choice market-entry game [10] with 
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alternatives to enter and stay out of a risky market. 

Similarly, it has been demonstrated that a RL model 

provided useful predictions of choice rates in 12 repeated 

binary-choice games with unique mixed-strategy 

equilibrium [11]. Additional indications of the potential 

of cognitive models based upon the RL mechanism 

comes from the observed similarities of the basic reaction 

to feedback across a wide variety of human and animal 

species (e.g., [12-13]), and the discovery that the activity 

of certain dopamine neurons in human brain is correlated 

with one of the terms assumed by RL models [14]. 

This paper builds upon prior work and successes of the 

RL mechanism, and proposes a cognitive model that uses 

the RL mechanism to explain human behaviour in a 

popular dynamic control task, Dynamic Stock and Flows 

(DSF). The DSF task was used in the recently concluded 

2009 Model Comparison Challenge competition 

(hereafter, MCC, see: www.cmu.edu/ddmlab/modeldsf) 

to compare different models of human behaviour 

developed in the task [15-16]. The RL model is first 

calibrated on certain set of calibration conditions in the 

DSF task and then the model is generalized to a different 

and novel set of generalization conditions in the same 

task. Model generalization is an important test for the 

non-specificity of a model compared to other models or 

benchmarks in different conditions of a task [17]. This 

paper demonstrates that the RL model is able to 

generalize to novel conditions of environment in the DSF 

task much better than an existing model that is based 

upon a popular cognitive architecture called ACT-R [3], 

[18-19]. The existing model that is based upon the ACT-

R architecture (hereafter called the winner model) is the 

winner in the MCC and also uses the RL mechanism. In 

the MCC, the winner model outperformed 10 other 

competing models that used different mechanisms and 

approaches to model different conditions in the DSF task 

[15-16]. The winner model explicitly uses strategies and 

reinforcement learning among these strategies to make 

dynamic decisions (more details later in this paper). 

First, this paper explains the DSF task and different 

conditions used to calibrate and generalize models in the 

task. Second, the paper describes a computational RL 

model that is built upon the reinforcement-learning 

mechanism. The RL model is developed from verbal 

protocols provided in the calibration conditions in the 

DSF task, ideas from previous modelling work in the 

DSF task [20-21], and ideas from a popular expectancy – 

valence (EV) model in the Iowa Gambling Task (IGT) 

[22] (the EV model of IGT is also a reinforcement-

learning model). Third, the paper provides details about 

the working of the winner model. Later, the winner model 

is used as a benchmark to compare the performance of 

the RL model. For this comparison, the paper presents 

results of running the calibrated winner and RL models in 

certain generalization conditions in the DSF task. Finally, 

the paper concludes by discussing the utility of 

experienced-based mechanisms like reinforcement 

learning to decision making in both the lab-based and 

real-world dynamic tasks. 

II.  DYNAMIC STOCKS AND FLOWS (DSF) TASK 

The DSF task is a generic dynamic control task that 

was designed to help understand human decision-making 

behaviour, and more concretely for this paper, to develop 

a RL model of human behaviour in dynamic tasks. The 

DSF task was also used in the MCC in which a number of 

models of human behaviour were developed and 

submitted to the competition. 

The objective in the DSF task is to reach and maintain 

a level of water in a tank at a fixed goal level over a 

number of trials. The level of water in the tank is the 

stock or accumulation, which increases with inflow and 

decreases with outflow across trials. There are two types 

of inflows and outflows in the DSF task: those that are 

exogenous (outside of a participant’s control) and those 

that are endogenous (under a participant’s control). The 

exogenous flows are called Environment Inflow (that 

increases the level of the stock without a participant’s 

control) and the Environment Outflow (that decreases the 

level of stock without a participant’s control). The 

endogenous flows are the User’s (or participant’s) Inflow 

and User’s Outflow. The User Inflow and Outflow are the 

main decisions made by participants in each trial that 

increase or decrease the level of stock in the DSF task. 

Fig. 1 presents the graphical user interface of the DSF 

task. In each trial (i.e., a decision point), participants 

observe the past trial’s values of Environment Inflow and 

Outflow, the values of User Inflow and Outflow, the 

Amount of water in the tank (stock), and a Goal level. 

During each trial, participants can submit two values 

(including zero values) for the User Inflow and User 

Outflow, and click upon the Submit button. Participants 

might also receive a “bonus” monetary incentive in each 

trial in which the water level was close enough to the 

Goal level. 

 

Figure 1. The Dynamic Stock and Flows (DSF) task. 

 

An earlier laboratory study investigated how 

individuals controlled the DSF task over 100 trials of 

practice when the environment’s inflow increased 
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(positive slope) or decreased (negative slope) as a 

function of the number of trials [21]. In that study, 

participants played DSF for 100 trials starting at an initial 

water level of 2 gallons with the objective of maintaining 

the tank’s water level at the 4 gallons goal level  or within 

+/- 0.1 gallons of the goal. In one experiment, researchers 

used an Environment Inflow function that was either 

increasing (N=15, L+): 0.08 * (trial) + 2, or decreasing 

(N=11, L-): (-7.92/99) * (trial - 1) + 10. Environment 

Outflow was constant and set at 0 gallons/trial during all 

100 trials. Both the increasing and decreasing functions 

resulted in an equal amount of Net Environmental Flow 

(i.e., Environment Inflow – Environment Outflow) into 

the tank over the course of 100 trials (= 604 gallons). 

Later in a separate experiment, researchers used a non-

linear environment inflow function that was again either 

increasing (N=18, NL+): 5*LOG (trial), or decreasing 

(N=17, NL-): 5*LOG (101- trial). The Environmental 

Outflow was again kept constant and set at 0 gallons/trial 

during all 100 trials. These four functions (or conditions), 

i.e., L and NL, and their positive (+) and negative (-) 

sloped analogues were used in the RL model for the 

purpose of calibrating the model to human data. The 

exact same calibration functions were also provided in 

the MCC to participants to calibrate their models. 

Calibration meant to optimize a set of parameters in a 

model such that the mean-squared error between model 

data and human data upon a dependent measure is 

minimized. 

Furthermore, three novel generalization functions were 

used in the DSF task to test the ability of the calibrated 

RL model to generalize to and explain human data in the 

novel conditions. These generalization functions were 

called Seq2, Seq2Noise, and Seq4. In all these functions, 

Environment Outflow was maintained at 0 gallons/trial. 

In Seq2, the Environmental Inflow function repeated a 

sequence of 1, 5, 1, 5…for 100 trials; while in 

Seq2Noise, the environmental inflow function was 

defined as 1+/-1, 5+/-1, 1+/-1, 5+/-1...for 100 trials. Thus, 

the final sequence could be 0/2, 4/6, 0/2, 4/6...etc. 

However, this sequence was created one-time and all 

participants were run on the same random sequence (thus, 

there was no variability between participants in the 

sequence). The +1 or -1 noise was distributed 50/50 over 

trials when the sequence was created one-time. Similarly, 

in Seq4, the environmental inflow function repeated a 

sequence of 0, 4, 2, 6... for 100 trials. All three 

generalization functions started with 4 gallons of water in 

the tank and had a goal of 6 gallons with a total of 100 

trials. Again, the exact same generalization functions 

were used in the MCC to test the submitted models. 

III.  THE REINFORCEMENT-LEARNING (RL) MODEL 

In this section, a model that is based upon the RL 

mechanism is detailed along with its structure and its 

building process. The RL model is expected to represent 

cognitive processes by which participants go about 

keeping control of the water level (stock) in the DSF task 

under different and unknown functions for Environment 

Inflow and Environment Outflow. Here an approach is 

followed that is traditional in cognitive modelling, which 

involves a “matching process” between the model and 

human data, helping to fine-tune the model with human 

behaviour as shown in data collected from experiments 

[23]. The closeness of the RL model’s data to human data 

is calculated with estimates of trend (R
2
) and the 

deviation (Root Mean Squared Error, RMSE; [23]) over a 

dependent measure. These are also the estimates used to 

evaluate the RL model with the best known winner model 

in the DSF task (the parameters of the winner model were 

originally calibrated by its creator using the same set of 

estimates). 

A.  The RL Model’s Structure 

The RL model is developed using the MS Office 

Excel® 2010 software (the model is available upon 

request from the author). To develop the RL model, the 

author made use of the following: the averages of 

participants’ inflow and outflow decisions; comparisons 

of participants’ inflow and outflow decisions to stock; 

and, environment inflow values across the four 

calibration functions, L+, L-, NL+, and NL-. The author 

also drew upon observations from verbal protocols 

collected from four participants [24]. These verbal 

protocols were collected as part of an earlier study [21] 

and were available to participants that participated in the 

MCC. One protocol was collected from each of the four 

calibration functions: L+, L-, NL+, and NL-. In addition, 

ideas on how to divide a participant’s attention in the 

DSF task to one of the User Inflow and User Outflow 

controls was derived from the expectancy – valence (EV) 

model. The EV model is a reinforcement-learning model 

that incorporates ideas on weighted attention to different 

attributes in a dynamic task [22]. 

The structure of the DSF task and the RL model is 

shown in Fig. 2, using common terminology from the 

system’s literature [25]. In Fig. 2, the DSF task is 

represented by the Stock rectangle, the User and 

Environment Inflow, and the User and Environment 

Outflow. The Environment Inflow could be one of the 

different calibration or generalization functions as 

defined above in the DSF task, and the Environment 

Outflow is zero in all trials across all functions (described 

above). Furthermore, the Discrepancy and Environment 

Net Flow variables are the probable attributes in the DSF 

task that participants might use to decide upon values to 

put in the User Inflow and User Outflow controls (see 

Fig. 2). This fact is because these attributes were clearly 

visible and available to participants in the DSF task’s 

interface (see Fig. 1). 
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Figure 2. A system’s representation of the DSF task and the RL model. 

The Stock, User Inflow, User Outflow, Environment Inflow, and 
Environment Outflow variables form a part of the DSF task. The Error, 

Adjustment Time for Net Flow (ATF), Change in forecast of Net Flow, 

Initial Forecast of Net Flow and Forecast of Net Flow constitute the 
parts forming the reinforcement-learning mechanism in the model (for 

more details refer to main text). 

 

The verbal protocols revealed that participants clearly 

understood their objective to reduce the differences 

between the observed level of water stock and the goal 

level (this difference is called the Discrepancy variable in 

the RL model in Fig. 2). The Discrepancy, however, was 

only one of the many variables that participants used to 

make their User Inflow and User Outflow decisions. The 

protocols also revealed that within the first few trials, 

participants recognized that the unknown Environment 

Outflow did not change from the zero value in the 

experiment, and hence there was only a change in the 

Environment Inflow in each trial, which added water in 

the tank. For example, a participant in the collected 

verbal protocol for the NL+ function was making User 

Inflow and Outflow decisions for the seventh trial and 

had 4.9 gallons of water in the tank. She clearly indicated 

that “…as the Environment has only added water to the 

tank in the previous trials, this time it will again and I 

expect the amount the Environment will add will be 

around 3.9 gallons.” The participant later removed 5 

gallons from the tank by using only the User Outflow 

decision and keeping 0 gallons/Trial in the User Inflow 

decision. It was clear that participants cared about the net 

flow into the DSF’s water stock more than their User 

Inflow and User Outflow decisions. Participants, as part 

of making the User Inflow and User Outflow decisions, 

were also trying to forecast the net flow of the 

Environment into the stock in the DSF task. The forecast 

of net flow is an expectation that forms a part of the 

reinforcement-learning mechanism and is represented by 

the Forecast of Net Flow variable in the RL model (see 

Fig. 2). 

Thus, according to the verbal protocols, participants’ 

User Inflow and User Outflow decisions appeared to be 

determined directly by the Forecast of Net Flow and the 

Discrepancy variables. The verbal protocols revealed that 

participants attempted to correct for an observed 

Discrepancy over the course of a number of trials rather 

than instantaneously. Verbal protocols indicated that 

participants were amazed by the variability of the 

unknown Environment Net Flow (i.e., Environment 

Inflow – Environment Outflow) and could not correctly 

estimate the exact amount of water stock, the 

Environment was going to add in the next trial (this is 

reflected by the Adjustment Time for Net Flow as part of 

the RL mechanism in the model in Fig. 2). For example, 

the participant in the NL+ function (described above), 

decreased the water level to 3.8 gallons at the beginning 

of the eighth trial; she further reduced the water level to 

4.0 gallons in the ninth trial, anticipating correctly this 

time that the Environment would add 4.2 gallons in the 

current trial. The same participant took 9 trials from the 

beginning to make the water level in the tank meet the 

goal level for the first time. Hence, participants corrected 

for the Discrepancy by balancing their Forecast of Net 

Flow and Discrepancy over the course of many trials. 

Although for the participant in the NL+ function this 

course of correction took nine trials, it is clear from the 

collected data that it was only around the seventh trial 

that the participant began to make a real attempt in 

correcting the Discrepancy and understanding the 

mechanics of the DSF task. The time from the seventh 

trial to the ninth trial, i.e., two trials, is the time constant 

or the Adjustment Time for Correction (ATC) in the RL 

model that participants take to reduce the Discrepancy to 

an acceptable range around the goal level. 

The Adjustment Time for Net Flow (ATF) is a 

parameter that accounts for a participant’s memory of 

past Environment Net Flow values (i.e., the experience 

gained by participants about the Environment Net flow 

values in the past trials). The Forecast of Net Flow as 

well as the Error in Forecast (Fig. 2) can be explained by 

the RL mechanism with a memory parameter ATF, as 

described above. The RL mechanism is a time-series 

averaging technique that requires three pieces of 

information to generate a forecast for the Environment 

Net Flow:  1) The previous estimated forecast (Ft-1); 2) 

the last observed value of Environment Net Flow (A t-1); 

and, 3) Adjustment Factor (Alpha or α). Alpha is a factor 

that indicates how much of the most recent miss from the 

last observed value needs to be incorporated into the next 

forecast to bring it closer to the last observed value. 

Alpha is popularly taken to be, EXPONENT (-1/ATF) 

(see [10] for other formulations for ATF). In the DSF 

task, for a trial t, the reinforcement learning is performed 

on the Environment Net Flow and Forecast of Net Flow 

values which were seen in the previous trial, t-1, 

respectively (as shown in Fig. 1, the previous trial’s 

Environment Inflow and Outflow information was 

available on the DSF task’s graphical interface). 

The heart of the model consists of a balancing loop to 

determine the User Net flow Correction in the DSF task 
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in each trial. In the absence of Environment Outflow, the 

Environment Inflow into the stock causes the stock to 

move away from the Goal in every trial. This causes an 

increase in Discrepancy. The increase in Discrepancy 

beyond the acceptable goal range causes a User Net Flow 

Correction to account for the increase in Discrepancy in a 

number of trials, ATC. At this point, the User Net Flow 

Correction is also affected by the Forecast of Net Flow 

(Fig. 2). The Forecast of Net Flow, due to reinforcement 

learning, is estimated from past experiences of the 

Environment Net Flow value (which is accounted by α 

parameter). The Environment Net Flow is directly 

affected by the Environments Inflows and Outflows. Part 

of the User Net Flow Correction determines the User 

Inflow, and the other part determines the User Outflow, 

where both parts are weighted by the User correction 

weight to Inflow and Outflow (W). The concept of using 

an attention weight or W parameter to split the User Net 

Flow Correction is derived from its use in the EV model 

for the Iowa Gambling Task (IGT) [22]. In the EV model 

of the IGT, the W parameter weights the attention to 

gains or losses observed by participants in the task. 

Similarly, in the RL model in this study, the impact of 

User Net Flow Correction in User Inflow and User 

Outflow is weighted by the W parameter. The human 

attention is a limited resource and it will be weighted in 

favour of one of the User Inflow or User Outflow 

controls in the DSF task and the W parameter will help to 

achieve this attention shift in the RL model. The resultant 

value of the User Inflow and User Outflow after 

accounting for the User Net Flow Correction is such that 

it causes the stock to decrease, and hence User Inflow and 

User Outflows move the stock in a direction opposite to 

that caused by the Environment Inflow, bringing the 

stock closer to the goal. 

Thus, the User Net Flow Correction of trial t-1 is used 

to calculate the contribution to User Inflow and User 

Outflow weighted by the attention parameter W as 

 

User Inflow t = User Net Flow Correction t-1 

* (1 – W),   (1) 

 

User Outflow t = User Net Flow Correction t-1 

* (W).    (2) 

 

Where, W is between 0 and 1. As seen above, the User 

Net Flow Correction at time t-1 is computed by using the 

Forecast of Net Flow as 

 

User Net Flow Correction t-1 = 

Forecast of Net Flow t-1 + A t-1.  (3) 

 

The A t-1 is defined as 

 

A t-1 = IF (Discrepancy t-1 > 0.1 OR 

Discrepancy t-1 < -0.1) THEN 

–Discrepancy t-1 / ATC ELSE 0. (4) 

 

The Discrepancy t-1 is defined as 

 

Discrepancy t-1 = Goal – Stock t-1.   (5) 

 

The Forecast of Net Flow (see Fig. 2) is derived using 

the RL mechanism as 

 

Forecast of Net Flow t-1 =  

α *Environment Net Flow t-2 

+ (1- α) * 

Forecast of Net Flow t-2.     (6) 

 

Where, α  (= EXP (-1/ATF)) is between 0 and 1. The 

Environment Net Flow is defined based upon the 

Environment Inflow and Environment Outflow as 

 

Environment Net Flow t-1 = 

Environment Inflow t-1 – 

Environment Outflow t-1.  (7) 

 

Once the User Inflow and User Outflow have been 

computed in a trial, the next trial’s stock in the DSF task 

is computed by the basic stock equation as 

 

Stock t = Stock t-1 + Environment Inflow t – 

Environment Outflow t + 

User Inflow t – User Outflow t.  (8) 

 

In the above equations, the Environment Net Flow 0 = 

0, Forecast of Net Flow 0 = 0, and Stock 0 = Initial Stock 

Level (which was 2 gallons for calibration functions and 

4 gallons for the three generalization functions). Also, the 

use of if - then – else in (4) is provided to ensure that the 

corrections to the User Inflow and User Outflow are only 

applied when the Discrepancy from the Goal is outside 

the goal range of +/- 0.1 about the goal level (this was 

also the range assumed in the DSF task for human 

experiments). 

Furthermore, if ATC has a large value in the RL 

model, then participants make very small changes to the 

User Net flow Correction in each trial and thus 

participants take a lot of time to reduce the Discrepancy 

to 0 in the DSF task. On the other hand, a small value of 

ATC means rapid changes to the User Net Flow 

Correction in each trial where participants are able to 

rapidly reduce the Discrepancy to 0 in the DSF task. 

Similarly, if α has a value greater than 0.5 (i.e., ATF has 

a value of about 1.5 trials), then participants consider a 

greater contribution of the previous trial’s Environment 

Net Flow rather than their accumulated experience of 

Forecast of Net Flow values. In contrast, a value of α that 

is less than 0.5 (i.e., ATF has a value less than 1.5 trials) 

means that participants depend upon their accumulated 

experience of Forecast of Net Flow values more than the 

Environment Net Flow value in the previous trial. Thus, 

if participants use accumulated experience, then we 

expect the empirically determined value of α to be less 

than 0.5 and ATF to be less than 1.5 trials. Finally, if the 

value of the attention parameter W is greater than 0.5, 

then the User Net flow Correction increases the User 

Outflow more than the User Inflow and there is a net 

decrease in the stock in the DSF task. However, if the 
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value of W parameter less than 0.5, then the User Net 

flow Correction increases the User Inflow more than the 

User Outflow and there is a net increase in the stock in 

the DSF task. 

IV.  THE WINNER MODEL 

The winner model was one among 10 other models 

submitted to the MCC that was organized by Carnegie 

Mellon University [15-16], [18]. The winner model was 

the model that generalized best in the MCC where the 

model obtained the lowest RMSE and highest R
2
 values 

on the generalization functions among all models 

submitted to the competition. In order to test the efficacy 

of the RL model in this paper, the winner model is used 

as a benchmark. The use of the winner model is simply 

because it is the best known model to explain human 

behaviour in the DSF task and thus provides an excellent 

benchmark to the RL model. Furthermore, the winner 

model, like the RL model, contains explicit strategies and 

reinforcement learning among these strategies for 

performing in different conditions in the DSF task. 

Each trial in the winner model produces a prediction of 

the slope of Environment Inflow by using one of the two 

explicit strategies, calculating or estimating, in a trial. 

Furthermore, the model monitors the success or utility 

experienced after executing a strategy (success is nothing 

but the Discrepancy in the DSF task). It commits to 

memory, in each trial, an explicit ACT-R chunk encoding 

the type of strategy used (estimating or calculating) and 

the value of the success criterion (chunks are basic units 

of experiences stored in memory). The choice of strategy 

is based upon the success criterion and uses 

reinforcement learning. Thus, to choose a strategy in a 

trial, the model initiates a memory retrieval, requesting a 

strategy of any type, with success criterion 0.0 (i.e., one 

that led to a value of Discrepancy = 0, in one of the past 

trials). The 0.0 success criterion is the value of the 

retrieval attributes used to retrieve strategy chunks from 

memory using a similarity mechanism. The ACT-R 

architecture’s similarity, activation, and blending 

mechanisms retrieve a strategy chunk that is considered 

most promising in a trial (these mechanisms are particular 

instances on reinforcement learning). Specifically, a 

blended chunk for each strategy is calculated in a trial in 

the model. Blending (a weighted averaging technique that 

multiplies the success criterion in a chunk with the 

probability of retrieval of the chunk) takes into account 

prior experiences and implies a bias for more recent 

experiences of using a strategy [26-27]. Noise in 

activation of a strategy chunk leads to explorative 

behaviour and noise is assumed to have a stronger effect 

for the early trials than the later trials in the winner 

model. 

The calculating strategy remembers the last trial's 

Environment Inflow value (i.e., t-2 trial’s value) precisely 

while making the decision in the t
th

 trial. Then, a 

calculation is attempted on the basis of the latest value of 

Environment Inflow that is available on the DSF's 

interface (the value available on the DSF interface is the 

t-1 trial’s value). Then, the t-1 and t-2 values of the 

Environment Inflow are used to derive the slope of the 

Environment Inflow in the t
th

 trial. However, the 

implementation of the addition and subtraction 

procedures assumes more reliable addition than 

subtraction, and a more reliable subtraction A – B, if A > 

B [15-16], [18]. 

The estimating strategy differs from the calculating 

strategy in that the exact value of the Environment Inflow 

in the t-2th trial is not retained by the model in its 

working memory precisely, but stored in and retrieved 

from memory. The last stored Environmental Inflow 

value is retrieved from memory (where the noise in 

retrieval may lead to inexact retrievals from memory). 

Then, the model determines the slope of the Environment 

Inflow just like the calculating strategy, i.e., the 

difference between the retrieved Environment Inflow and 

the current Environment Inflow that is shown on the 

DSF’s interface. 

For both strategies, the determined slope of the 

Environment Inflow is again stored as a chunk in 

memory. These estimates of the slope in slope chunks are 

then blended once again and a blended slope chunk is 

finally used to determine the value of the t
th

 trial’s 

Environment Inflow. The value of the Environment 

Inflow is then used to determine the value of the User 

Inflow and User Outflow in the t
th

 trial in the DSF task 

based upon whether water needs to be added or removed 

from an existing water stock. At the start of the model, 

the memory of the model is prepopulated with initial 

slope chunks with a value of slope determined randomly 

from a uniform distribution between -10 and +10 [15-16], 

[18]. The next section compares and contrasts between 

mechanisms used in both the RL and winner models. 

V.  QUALITATIVE MODEL COMPARISON ON PARAMETERS 

AND MECHANISMS 

Upon a comparison, the RL and winner models seem 

to use the same number of parameters: α (or ATF), ATC, 

and W, in the RL model; and, T, d, and s parameter in the 

winner model. However, in addition to these three 

parameters, the winner model uses the blending 

mechanism twice (once in the estimating strategy and the 

other time in determining the value of the slope chunk to 

use). The winner model also makes a number of retrievals 

from memory, and uses two explicit strategies: 

calculating and estimating. In addition, in the winner 

model, there exist additional hidden parameters to 

calibrate the production (if – then rule) execution times 

and times to retrieve chunks from memory (production 

execution is controlled by a parameter in ACT-R and 

time to retrieve a chunk is an inverse function of the 

chunk’s activation and controlled by two additional 

parameters in ACT-R [3], [19]). Furthermore, there might 

also be a problem with the plausibility of human 

participants using specific strategies that have been 

assumed as part of the winner model, namely, calculating 

and estimating. In the past, researchers have shown that 

the use of a model that is based upon explicit instantiation 

of strategies is only justified when the modeller has prior 

knowledge of the use of such strategies among 
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participants and that participants actually use such 

strategies in the first place [28]. 

Although the RL model (discussed above) could also 

be classified as using implicit strategies in its working, 

these strategies were motivated from verbal protocols and 

other observations in human data. As you would recall, 

the reinforcement-learning mechanism in the RL model 

uses a combination of values of the accumulated Forecast 

of Net Flow and the Environment Net Flow from the last 

trial. Thus, in the RL model, the combination of the 

experience of accumulated forecast of a quantity and the 

most recent values of the same quantity as a strategy is 

sufficient to explain human behaviour. 

In summary, upon evaluating both these models, the 

winner model seems to be more complex in its processing 

compared to the RL model. Also, unlike the RL model, 

the winner model uses explicit definition of strategies in 

its working and instantiation that do not seem to be 

motivated from verbal protocols and observations in 

human data. In the next section, we turn towards 

estimating the best set of parameters in the RL and 

winner models. 

VI.  CALIBRATION OF MODEL PARAMETERS 

This section reports the calibration procedure used for 

determining the best value of parameters in the RL and 

winner models. For the RL model, the model parameters 

that need to be determined includes: α (or ATF), ATC, 

and W. The best value of these three parameters was 

determined using the four calibration functions for 

Environment Inflow in the DSF task: L+, L-, NL+, and 

NL-. 

To calibrate these parameters in the RL model, a 

constraint-based optimization procedure was followed 

which could be defined as 

 

Objective: 

 

Min {Sum of average RMSE Discrepancy in 4 

Environment Inflow functions L+, L-, NL+, and NL-} 

 

Subject to, 

0 ≤ α ≤ 1, {dimensionless} 

0 ≤ ATC ≤ 100, {trial} 

0 ≤ W ≤ 1, {dimensionless} 

 

Thus, the aim of the optimization procedure is to find 

the best values of the three parameters (above) such that 

it would result in the minimum value for the sum of the 

average RMSE over the Discrepancy between the RL 

model’s data and human data across the four calibration 

functions. The average RMSE for Discrepancy is 

evaluated by using average Discrepancy across 100 trials 

in the DSF task, where the Discrepancy is averaged over 

all human and model participants for each of the 100 trial 

points. The number of model participants used was 

exactly the same as the number of human participants in 

four different calibration functions (these were reported 

in the DSF task section for different functions above). 

The lower bound value of the three constraints is defined 

to be 0, as these parameters cannot be negative (and a 

negative value will be meaningless). The upper bound 

value of ATC constraint is defined to be 100, as that is 

the maximum trial value across different functions in the 

DSF task. The α and W parameters are weights in the 

equations of the RL model and thus these parameters can 

only contain real value between 0 and 1. To carry out the 

actual optimization, a genetic algorithm program was 

used [29]. The genetic algorithm tries out different 

combinations of the three model parameters to minimize 

the RMSE between the model’s average Discrepancy and 

the corresponding human’s average Discrepancy. The 

best-fitting model parameters are the ones for which the 

RMSE in the objective function will be minimized. The 

stopping rule for the algorithm in the RL model’s 

optimization was set at 10,000 trials of different 

combinations of the three parameters. This stopping rule 

value is extremely large and thus ensures a very high 

level of confidence in the optimized parameter values 

obtained (for more details on the genetic algorithm 

program refer to [9]). 

The parameters of the winner model were already 

optimized using the four calibration functions, L+, L-, 

NL+, and NL-, by its creator at the time of submitting the 

model to the MCC [15-16], [18]. Thus, the winner model 

was used “as is” to compare it to the calibrated RL model 

in the DSF task. The next section reports the best values 

of the parameters from the RL and winner models. 

VII.  CALIBRATION RESULTS 

The optimization of the RL model resulted in a low 

value of 10.55 gallons for the RMSE averaged across the 

four calibration functions. The individual RMSE and R
2
 

in different calibration functions are detailed in Table I. 

Table I also details the best values for the model 

parameters (ATF, ATC, and W). The best values of these 

parameters seem to have an interesting effect. The ATC 

value is about 3 trials in the RL model and this ATC 

value is much closer to the two trial value that was also 

found in human data of the collected verbal protocol in 

the NL+ function (reported above). Thus, the RL model 

appears to provide a close representation to the 

observations found in human data. Furthermore, the value 

of α in the RL model is about half of 0.5. Thus, the model 

predominantly bases its User Inflow and User Outflow 

decisions on the past experiences of the Environment Net 

Flow values rather than on the last trial’s (or most recent) 

Environment Net Flow value. Furthermore, the value of 

W parameter is very high and close to 1.0. This means 

that the model understands the dynamics of the DSF task 

(a non-zero Environment Inflow and a zero Environment 

Outflow in different calibration functions) and like 

human participants in verbal protocols, it primarily uses 

the User Outflow than the User Inflow. Thus, the model 

tries to bring the stock level back to the goal by removing 

the water stock that is added by the Environment Inflow 

in each trial. The similarity between the behaviour of the 

model and human data highlight the fact that the RL 

model is a plausible account of human behaviour in the 

DSF task. 
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The winner model was already calibrated by its creator 

on the four calibration functions using the RMSE 

dependent measure. The calibrated values of the T, d, and 

s parameters were reported to be 0.35, 0.50, and 0.25, 

respectively [15-16], [18]. The similarity was determined 

based upon a difference similarity function (i.e., one 

which computed the difference between the value of the 

DSF task’s attributes and slots of strategy chunks in 

memory). The retrieval constraint used in the winner 

model was to retrieve chunks with a success criterion of 

0.0 (i.e., Discrepancy = 0). 

The parameters reported in Table I are used to test the 

RL model on the three generalization functions in the 

DSF task: Seq2, Seq2Noise, and Seq4 (described next). 

The results of running the calibrated RL model in the 

generalization functions is compared to those obtained 

from the winner model. The winner model was originally 

run by the organizers of the MCC on the generalization 

functions and those results were directly used in this 

study.  

VIII.  MODEL GENERALIZATION 

An important test for a model’s ability to explain 

human behaviour independent of different conditions in a 

task is generalization [17]. The focus in this section is to 

test the ability of the RL model to generalize to novel 

Environment Inflow and Outflow functions. 

The calibrated RL model was tested for generalization 

on the three different generalization functions: Seq2, 

Seq2Noise, and Seq4. The RL model was run on the three 

generalization functions using a set of 20 model 

participants per function and the optimized values of 

model’s parameters (that was calibrated and reported in 

Table 1). These are the same number of human 

participants that were collected in a lab-based experiment 

on the three generalization functions (as part of the 

MCC). The average Discrepancy was recorded from 

human and model data over 100 trials (thus, the 

Discrepancy was averaged over 20 model and human 

participants for each of the 100 trial points). Later, the 

RMSE and R
2
 were evaluated between the 100 model and 

human average Discrepancy values across the 100 trials. 

Similarly, for the winner model, a set of 20 model 

participants per generalization function were run by the 

organizers of the MCC. The RMSE and R
2 

were 

evaluated between the winner model and human average 

Discrepancy values across the 100 trials (thus, the 

Discrepancy was averaged in the exact same way to that 

for the RL model and human data).  

Table II details the value of RMSE and R
2
 (on average 

Discrepancy) for the RL model in comparison to human 

data in the three generalization functions. Also provided, 

are the RMSE and R
2
 (on average Discrepancy) for the 

winner model in comparison to human data in the 

generalization functions.  

 In Table II, upon comparing the winner model with 

the RL model, one finds that the RL model performs 

better than the winner model consistently on the R
2
 

measure in all three generalization functions. It is only in 

the Seq2 function that the RMSE of the winner model is a 

shade better than the RL model. In fact, upon comparing 

the average values of the two measures across all three 

test functions, one finds that the RL model is much better 

in its explanation of human behaviour compared to the 

winner model (smaller RMSE and higher R
2
 values). 

Therefore, the best model in the DSF task does not fare as 

well as the RL model during generalization. 

Fig. 3 shows the average Discrepancy generated from 

the RL and winner models to the average Discrepancy 

observed in human data across the three generalization 

functions, Seq2, Seq2Noise and Seq4. As seen in Fig. 3, 

although the RL model is similar to the winner model in 

its explanation of human data in the Seq2 function, the 

RL model is better than the winner model in the 

Seq2Noise and Seq4 functions. This observation is 

because the winner model overestimates the average 

Discrepancy in human data in the Seq2Noise and Seq4 

functions (the dotted model line is clearly above the bold 

human data line); however, such an underestimation of 

human average Discrepancy is absent in the RL model 

curves. Most probably, the reason for this consistent 

overestimation of human average Discrepancy in the 

winner model is because of the working of one of the two 

strategies, calculating and estimating, that the model 

consistently uses based upon reinforcement learning. 

TABLE II.   
THE RL MODEL WITH CALIBRATION RESULTS TO HUMAN DATA IN THE 

L+, L-, NL+, AND NL- CALIBRATION FUNCTIONS. 

Function RMSE R
2
 Best Parameter 

Values 

L+ 2.24 0.00 ATF = 0.75 

(α = 0.27) 

ATC = 3.30 

W = 0.97 

L- 1.75 0.85 

NL+ 31.02 0.03 

NL- 6.17 0.20 

Average 10.30 0.27 

 

TABLE I.   
THE RL AND WINNER MODELS WITH THEIR PERFORMANCE ON THE 

THREE GENERALIZATION FUNCTIONS. 

Model Function RMSE R
2
 

RL Seq2 5.88 0.03 

RL Seq2Noise 2.33 0.72 

RL Seq4 0.80 0.84 

RL Average 3.01 0.53 

Winner Seq2 3.98 0.02 

Winner Seq2Noise 12.48 0.00 

Winner Seq4 4.12 0.05 

Winner Average 6.86 0.02 

 

184 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 3, AUGUST 2011

© 2011 ACADEMY PUBLISHER



RL Model on Seq4 

 

Winner Model on Seq4 

 

 

Figure 3. Average Discrepancy for the RL and winner models over 
different generalization functions. The Y axis represents the average 

Discrepancy (i.e., Goal – Stock). The X axis represents trials from 1 to 

100. 

RL Model on Seq2 

 Winner Model on Seq2 

  

 

 

RL Model on Seq2Noise 

 Winner Model on Seq2Noise 

  

 

 

VIII.  GENERALIZATION TO BEST AND WORST 

PERFORMERS 

Another method of testing the ability of a model is to 

test how well the model is able to explain behaviour of 

best and worst performing human participants. In order to 

understand the generality of the RL model, it was 

compared to the human data for the best and worst human 

performers across the three generalization functions: 

Seq2, Seq2Noise, and Seq4. The RL model was also 

compared to the winner model in its ability to explain 

human behaviour for best and worst performers. In all 

these comparisons, the parameters in the RL and winner 

models were left at values that were obtained by 

calibrating these models. 

For this analysis, the best human performer in a 

generalization function is a participant whose absolute 

value of the average Discrepancy across the 100 trials is 

the least compared to all other participants. Similarly, the 

worst human performer in a generalization function is a 

participant whose absolute value of the average 

Discrepancy across the 100 trials is the most compared to 

all other participants. Table III reports the comparison of 

the RL and winner models to human data of the best and 

worst human participants in terms of RMSE and R
2
 

values for the average Discrepancy across the 100 trials 

in the three generalization functions. 

In Table III, the RL model explains human behaviour 

of the worst and best human performers better than the 

winner model. As expected, the explanation of human 

behaviour is not so good for the worst human performer 
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from both the RL and winner models, but reasonably 

good for the best human performer (this conclusion is 

based upon the average RMSE and R
2
 values reported in 

Table III). 

IX.  DISCUSSION 

This study was aimed at testing the generality of a 

popular experienced-based reinforcement-learning 

mechanism in its ability to explain human behaviour in 

dynamic tasks. The study proposed a simple model of a 

dynamic task based upon the reinforcement-learning (RL) 

mechanism. The RL model was calibrated on a set of 

calibration functions in a popular dynamic control task 

called Dynamic Stock and Flows (DSF). Later, the model 

was generalized to a new set of generalization functions 

in the DSF task. The model was compared in its ability to 

explain human behaviour with a winner model that was 

developed by its creator using the RL mechanism in the 

ACT-R architecture and that was the best known model 

in the DSF task. Results revealed that the RL model 

generalized better than the winner model to explain 

human behaviour. 

Reinforcement learning is a simple mechanism that 

depends upon a balance between past experience gained 

from a task’s attribute and the most recent observations of 

the same attribute in the task [4]. Thus, it is a form of 

learning that is most suited to dynamic tasks where 

participants make repeated decisions and learn from the 

outcomes and feedback of these decisions [30]. Because 

the reinforcement-learning mechanism is suited to how 

humans learn in dynamic tasks by a process of trial-and-

error, the mechanism seems to well in different 

conditions or variations of a dynamic task. 

Moreover, the success of reinforcement learning in this 

paper is not limited to DSF task alone as the mechanism 

has been found to be robust in explaining human 

behaviour in economic choice tasks with uncertainties in 

the task environment. For example, recent research has 

highlighted the role of experience-based decisions in 

economic choice behaviour where the dominant 

mechanism to explain human choice in these economic 

games has been reinforcement learning [31]. In a recently 

concluded Technion Prediction Tournament (TPT), two 

large experiments were run examining different problems 

involving a choice between two alternatives, one 

uncertain and risky, and the other certain and safe. The 

first experiment entailed a set of calibration problems and 

a second experiment a set of generalization problems. 

Both sets of problems were drawn randomly from the 

same space. The problems challenged other researchers to 

calibrate their models on the calibration set and then 

predict human choice results on the generalization set. 

The main result from the repeated dynamic decisions part 

of that investigation was an indication of a clear 

advantage of models that explicitly assume human 

behaviour to be governed by experience-based 

mechanisms like reinforcement learning [31]. In fact, the 

winner of the competition was an instance-based model 

that made dynamic decisions based upon experience 

gained in the task i.e., using the Instance-based learning 

(IBL) theory [32]. The instance-based learning 

mechanism is very close to the RL mechanism as both 

depend upon accumulated experiences to make decisions. 

Most recently, the analysis and investigation of the 

applicability and generality of reinforcement learning has 

been extended to team-based economic games where the 

uncertainty in the environment is both a function of the 

task as well as the decisions made by other participants in 

a team [10]. For example, it has been shown that in the 

MEC that used team-based market-entry games, the best 

models among different submissions were those that were 

either based upon the RL mechanism or were simple 

variants of the RL mechanism (e.g., the SAW and I-SAW 

models). In fact, the winner of the competition was a 

model that is based upon RL mechanism [10]. 

In connected research, it has also been shown that a 

model that was developed upon the IBL theory and one 

that uses past set of experiences to make choice decisions 

(an idea similar to RL), is also the one that generalizes 

well to novel task conditions in repeated binary-choice 

tasks. For example, researchers have shown that a single 

IBL model that uses past experiences to make decisions 

generalizes accurately to choices in a repeated-choice 

task, a binary-choice probability-learning task, and a 

repeated-choice task with a changing probability of 

outcomes as a function of trials [8]. Also, a variant of the 

same experience-based IBL model performs equally well 

to explain human choices in both the repeated and 

sampling binary-choice tasks [8]. 

Another important criterion on model specificity is the 

plausibility of different mechanisms used in models that 

TABLE III. 
THE RL AND WINNER MODELS WITH BEST AND WORST PERFORMERS ON 

THE THREE GENERALIZATION FUNCTIONS. 

Model Function Performer RMSE R
2
 

RL Seq2 Best 1.83 0.05 

RL Seq2 Worst 144.72 0.07 

RL Seq2Noise Best 1.77 0.36 

RL Seq2Noise Worst 49.01 0.01 

RL Seq4 Best 2.51 0.00 

RL Seq4 Worst 6.24 0.19 

RL Average Best 2.03 0.14 

RL Average Worst 66.66 0.09 

Winner Seq2 Best 1.70 0.06 

Winner Seq2 Worst 145.33 0.03 

Winner Seq2Noise Best 4.45 0.21 

Winner Seq2Noise Worst 50.92 0.00 

Winner Seq4 Best 4.48 0.02 

Winner Seq4 Worst 8.12 0.11 

Winner Average Best 3.54 0.09 

Winner Average Worst 68.12 0.05 
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explain human behaviour in dynamic tasks. Thus, 

researchers have highlighted the success of specific 

strategies in models that led to equally good predictions 

of human behaviour as the experienced-based and RL 

like models [28]. The important questions to pose here 

are the following: do humans actually use the strategies 

that are assumed as part of the strategy models? How 

well does a modeller know about the use of the assumed 

strategies among participants in a task? For example, the 

best known winner model in the DSF task used the 

calculating and estimating strategies to explain human 

behaviour in the task. But one still does not know 

whether humans actually make use of such strategies in 

their play in the DSF task. The important point to realize 

is that any set of sub-optimal strategies could do well to 

explain the sub-optimal human behaviour without one 

knowing which ones humans actually follow in a task 

[28]. In a situation, where there is little clue to the 

structure and nature of strategies that humans adopt, 

researchers have suggested the use of verbal protocols 

and observations in human data to motivate strategies (as 

assumed in the RL model).  

Furthermore, the use of RL mechanisms in models has 

wide application to the real-world tasks that are outside 

the realm of lab-based settings and human experiments 

[4]. The RL mechanism has been applied to board games 

like backgammon and checkers; elevator control; robo-

soccer; dynamic channel allocation; and, inventory 

problems to name a few [33]. A classic example is of a 

chess grandmaster that is about to make a move: the 

choice for a piece is informed by both the experience of 

planning and anticipating the counter-response and the 

immediate judgements of the intuitive desirability of 

particular positions. Similarly, in the animal world, a 

gazelle calf struggles to its feet minutes after being born. 

Half an hour later it is running at 30 miles per hour [4]. 

The RL mechanism also seems to appeal to some 

researchers who are interested in finding high-quality 

approximate solutions to large-scale stochastic-planning 

problems that are important for industry and government 

[34]. 

However, like with many theoretical mechanisms that 

exist today, the RL mechanism has also its limits and 

boundaries. An important consideration in RL for a 

modeller is the exploration – exploitation (EE) trade off 

[36]. In the EE trade off, a RL-agent (or a model 

participant) needs to explore the task environment in 

order to assess the task’s outcome structure. After some 

exploration, the agent might have found a set of 

apparently rewarding actions. However, how can the 

agent be sure that the found actions were actually the 

best? Hence, when should an agent continue to explore or 

else, when should it just exploit its existing knowledge? 

Similarly, there could be credit-assignment problems in 

using the RL mechanisms in dynamic tasks where the 

outcome is only known after a long delay. For example, a 

robot in a room will normally perform many moves 

through its state-action space where immediate rewards 

are (almost) zero and where more relevant events are 

rather distant in the future. How does one propagate the 

effect of a delayed reinforcement reward/outcome to all 

states and actions that have had an effect on the reception 

of the reinforcement? Some such problems are also found 

in the real world: the consequences of our wait-and-see 

actions for climate change in the status-quo have only a 

delayed reinforcement in terms of adverse consequences 

we might face in the future [35]. Careful assumptions in 

reinforcement-learning models on stopping rules and 

newer techniques like annealing hold a great promise to 

help alleviate such problems [36]. 

Lastly, the potential for research and use of 

reinforcement learning mechanism is immense for the 

community that researches in artificial intelligence (AI) 

and games. Some key problems that are at the forefront of 

researchers in AI include the EE trade off, optimal values, 

constructions of the learning rate (or Alpha) parameter, 

and extension of reinforcement learning in Markov 

processes and non-stationary environments [33]. Thus, 

reinforcement learning provides a formal framework 

defining the interaction between an agent and his decision 

environment in terms of states, actions, and 

outcome/rewards. This framework is intended to be a 

simple way of representing essential features of different 

problems (captured through games) that society faces 

day-to-day without an explicit assumption of use of 

strategies [4]. 
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